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Abstract

This review attempts to provide an insightful per-
spective on the role of time within neural network
models and the use of neural networks for prob-
lems involving time. The most commonly used
neural network models are defined and explained
giving mention to important technical issues but
avoiding great detail. The relationship between re-
current and feedforward networks is emphasised,
along with the distinctions in their practical and
theoretical abilities. Some practical examples are
discussed to illustrate the major issues concerning
the application of neural networks to data with var-
ious types of temporal structure, and finally some
highlights of current research on the more difficult
types of problems are presented.

1 Introduction

Neural network models can be used to process time-varying
data for various purposes using various methods. Research
aimed at improving the methodology makes contact with a
broad range of disciplines and raises a panoply of difficult,
though enticing, questions. This happens largely because
the brain not only lives in an environment filled with time-
varying data, but also generates internal time-varying signals
of its own. The internal signals vary from direct responses
to environmental events to obscure mechanisms for internal
processing. Therefore the subject of temporal data process-
ing with neural networks draws one towards a study of the
brain’s inner mechanisms, about which very little is known.
For engineering purposes, we hope to understand some of
the basic computational principles involved without getting
bogged down in the intricate biological details.

Section 2 reviews a simple recurrent network model, which
can have highly complex dynamics, and two feedforward
models which are inherently static, but never the less have
applications in temporal problems. The essentials of how
networks are trained are explained, with attention to some
major issues which are present whether or not the problem in-
volves time in any important way. Some particular issues and
training techniques involving time are explained in section 3.
Section 4 introduces one of the most important distinctions
in the subject, that between Markovian and non-Markovian
problems. Techniques for the easier category, the Markovian
problems, are discussed in section 5 with a few practical ex-
amples, especially from the speech recognition application.
Some of the research areas for non-Markovian problems are
introduced in section 6 the final, concluding section 7.

2 Basic Neural Network Models

Neural network models specify rules for changing the output
values of model neurons, or nodes, with time. These output
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values are sometimes regarded as crude models of neural fir-
ing rates. Figure 1 and equation (1) illustrate the operation
of the most popular type of neural network node. Let ;¢ de-
note the value of node ¢ at discrete time ¢. In a widely-used
class of models, a subset I of the nodes are designated as in-
puts. These are assigned values Y;; taken from a model of the
network’s external environment. The values of the remaining
nodes are computed for time ¢ + 1 from their values at time
t according to the rule:
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where the weight w;; models the strength of a synaptic con-
nection from node j to node ¢, and f is a differentiable func-
tion with constant asymptotes, such as

fl)y=1/(1+€") (2)

which varies smoothly from 0 at —oco to 1 at co. One input,
say node 0, is traditionally assigned the constant value 1.0 so
that w;o provides a constant offset or bias for the weighted
sum computed by node i. Through rule (1) the weights spec-
ify the network dynamics, the manner in which the state (the
set of node values) changes with time.

The weighted sum of inputs to a node is called its activa-
tion. The nonlinearity (2) crudely represents the idea that
the firing rate of a neuron should increase with its activa-
tion, but should saturate at a maximum value for very large
activations and at zero for large inhibition (highly negative
activation). Be that as it may, the nonlinearity provides two
computationally useful properties, in contrast to linear sys-
tems (which can be obtained using f(z) = z). One is a
guarantee that the node outputs remain bounded, and the
other is the ability to approximate a very general class of
systems (See Funahashi [8]).

2.1 Training

Some network models can be trained to produce a desired se-
quence of target values on a subset 1" of the non-input nodes.
The target nodes are also called the output nodes, a usage not
to be confused with the output values possessed by all nodes.
The set H of nodes which are neither input nor target nodes
are called hidden nodes. Let Y (for 1 € T) denote the tar-
get value for node i at time ¢. (There is no confusion with
(1) because I NT = P.) A scalar measure of the network’s
performance is given by

E=3Y % (wie—Ya). 3)
€Tt
If the network operates perfectly, F = 0; otherwise £ > 0.

The sum over time steps in (3) ranges over all time steps
for which there is target training data. The precise mean-
ing of this depends on the structure of the training problem.
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Figure 1: A non-input node of a neural network model con-
taining N+1 nodes, including the bias node.

th

Sometimes there is a set of sequences to learn. If the p== of
a total of P sequences has T'(p) time steps for which there
are targets (The net might have to run a few time steps be-
fore it produces the first target.), then Zt actually means

Z;D:l Zlf) Sometimes there is one infinite sequence of

data. This can be handled by summing over a finite subse-
quence, in hopes that it is fairly representative of the whole.
In many on-line problems the data is generated by sampling
a slowly changing environment. By summing over the most
recent 1" samples, where T' is a number of timesteps char-
acterising the degree of stationarity of the environment, an
appropriate slowly varying performance measure can be ob-
tained. The choice of T" in such cases can often be more of
an art than a science. Many variations are possible, such as
using weight factors with an exponential time dependence.

A popular procedure for training a network is back propaga-
tion of error through time, which proceeds by computing the
derivatives dE/dw;; and using these to incrementally adjust
the weights to slightly better values. This procedure is often
highly effective, but one is guaranteed neither that a perfect
solution F = 0 exists, nor that the smallest value of F will
be found by this procedure. A local minimum can always be
found, but not necessarily a global minimum. Even if a global
minimum is found, there still may be other global solutions
which may be preferable for some reason not encoded in (3).
In types of problems where E' itself is time-varying, little can
be said with certainty.

For most real-world problems, a solution with £ = 0 would
not be desirable even if it were obtained, because the result-
ing network would generalise poorly. Usually the training
data for a neural network model is selected to be representa-
tive of the system to be modeled, but does not exhaustively
specify the desired response to every possible input. One
simply hopes that the continuity of the functions in (1) will
imply that inputs similar to those on which a network was
trained will result in outputs similar to those which would
be desired. Real-world data sets tend to contain some ran-
dom noise which an £ = 0 solution would model precisely,
thereby acquiring a poor basis for generalisation. This is
called overfitting. But even if the data is noise-free, there
would typically be an infinite number of possible £ = 0 solu-
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Figure 2: A 3-layer feedforward network with 2 input nodes
in the first layer (I), one layer of 2 hidden nodes (H) , and
a third layer with a single target node (7'). One of the input
nodes is a bias node labeled “1”. In general there could be
any number of hidden layers, including zero. If the weight
from node 1 to node 4 were removed, this would be a strictly
layered network. Many writers do not count the inputs as a
layer, in which case this would be called a 2-layer network.
Furthermore the bias node is not normally included when
reporting the number of inputs.

tions, most of which have ridiculous generalisation properties.
This problem intensifies as the number of adjustable weights
is increased. Choosing the best solutions requires the use
of prior knowledge about the properties which characterise
“reasonable” solutions for the problem at hand. For exam-
ple, it might be known that networks whose outputs change
the most slowly with respect to their inputs are the best
solutions. Both noisy data and prior knowledge can be han-
dled in a Bayesian probabilistic framework which has been
specialised to neural networks by MacKay [17], and reviewed
briefly by Rohwer [30]. Reasonable results are often obtained
with a variety of less complicated heuristics expounded in the
neural network textbooks.

2.2 Feedforward and recurrent networks

A useful subclass of network models are the feedforward net-
works. Considered as directed graphs, feedforward networks
have no cycles. Thus (1) allows no feedback effects whereby
the output value of a node at one time can affect its value at
a later time. In feedforward networks the nodes can be num-
bered so that the matrix of weights amongst the non-input
nodes is lower triangular. In particular there are no self-
connections (w” = 0). A non-feedforward network is called
recurrent.

Typically the nodes of feedforward networks are arranged in
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Figure 3: A recurrent network with 2 input nodes, including
the bias node indicated by the “1”. Any of the 3 non-input
nodes could be a target or hidden node.

numbered layers, with nonzero weights from each layer go-
ing to higher-numbered layers, but none going in the reverse
direction and none going within a layer. The lowest layer is
assigned input from the environment. If the input remains
fixed in an L-layer feedforward net, then every node value in
the network remains fixed after L — 1 time steps. By speci-
fying target values for the highest layer, and using its deriva-
tives to minimise a function similar to (3), these networks
can be trained to implement a mapping from input vectors
to target vectors which agrees with a set of examples. The
hidden nodes in such networks are those in the middle layers
between the inputs and targets. Figures 2 and 3 illustrate
a layered feedforward network and a recurrent network. A
layered feedforward network of the type shown in Figure 2 is
also called a multilayer perceptron (MLP).

A network is strictly layered if, aside from the bias node, any
node of layer L has weights leading only to nodes in layer
L + 1. Tt has been proven by Funahashi [8] and others that
a strictly layered feedforward network with a single hidden
layer can approximate any continuous mapping to arbitrary
accuracy (although a large number of hidden units may be
required).

Strictly layered networks also have the sometimes useful
property that the state of any hidden layer contains enough
information to compute the state of any higher-numbered
hidden layer or the target layer. The state of each hidden
layer can be interpreted as a re-expression of the input which
becomes increasingly appropriate for expressing the targets
as the layer number increases.

Note that for fixed inputs, the fixed node values expressed
by a strictly layered feedforward network after I — 1 time
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steps can be computed by replacing the time index ¢ with
the layer index L in (1). The catchphrase expressing this
parallel is that a recurrent network can be unwound in time to
produce a computationally equivalent feedforward network.
This observation is useful when developing expressions for
the derivatives of (3) used to train a recurrent network.

2.3 Radial basis functions

Another popular class of feedforward networks is radial basis
function networks introduced by Broomhead and Lowe [5].
These networks have one layer of hidden nodes, each of which
implements a radial basis function. Hidden node a is assigned
a centrein the input space having input coordinates c¢;, and
a radius rq, and computes an output which is large only for
inputs near its centre (on a scale set by its radius). The
output of this network is fed through a linear transformation.
Specifically, the output y;p produced by example p is

Yip = Z Wiag —\W (4)

where Y, is the input for example p and g is typically a
Gaussian g(z) = e~ . Non-Euclidian distance measures
are sometimes used. The loosely-defined region for which
a radial basis function has a significant output is its recep-
tive field. For the Gaussian, the receptive field is a localised
hyper-ellipsoid, in contrast to the linear half-space given by
(2). Usually the centres and radii of a radial basis function
network are assigned using one of a variety of simple algo-
rithms which take advantage of the locality of the recptive
fields to ensure that each input data point falls within just
a few receptive fields. Then the weights are adapted to min-
imise an error measure similar to (3). This problem amounts
to solving a large linear system of equations, which can be ac-
complished using textbook methods [20] much more quickly
than a minimisation algorithm can be applied to a multilayer
perceptron. This feature is a major attraction of radial basis
functions.

The name “radial basis functions” derives from the spherical
symmetry of the receptive fields. However this is not an
important property of the method and generalisations to less
symmetric basis functions are commonly used.

3 Training recurrent networks

Any neural network textbook, such as Hertz, Krogh, and
Palmer [12] or Beale and Jackson [4], explains the back prop-
agation procedure for training a network, so only a few re-
marks of special relevance to recurrent networks are worth-
while here. Essentially, back propagation is a clever way of
arranging terms to save time and memory in the computa-
tion of dE/dw;; from (3) and (1). Although the basic con-
cepts have a long history (See LeCun [16]) and were applied
to neural network models as early as 1974 by Werbos [41],
the first widely-read treatment was by Rumelhart, Hinton,
and Williams in 1986 [31]. This was oriented around feed-
forward networks, although the possibility of unwinding re-
current networks in time was noted. Recurrent networks for
which (1) eventually results in a constant state were of par-
ticular interest at that time, and remain an important special
case. Treatments of this case based on variations of (3) lack-
ing the sum over time were given by Rohwer and Forrest [28]
and Almeida [2]. Almeida arrived at a calculation essentially
identical to back propagation through time, and provided a
convergence proof which is important for this variation of
the method. Rohwer and Forrest’s method is also equivalent
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to back propagation through time, though less obviously so.
The relationship is spelled out by Rohwer and Renals in [29],
with a review of Almeida’s method.

The sum over time in (3) finds its way into expressions which
must be re-evaluated every time the weights are adjusted in
the gradient descent procedure. Thus, the entire history of
a learning problem should be reviewed many times during
training. This is not possible in on-line problems, in which
an agent only has the opportunity to adapt to environmental
data as it arrives. It turns out that this case can be handled
by simply not making the change of variables which trans-
forms the direct expression for the derivatives of (3) into the
back propagation formulas. This practice was introduced by
Robinson [24], and popularised by Williams and Zipser [44],
as Real Time Recurrent Learning. In typical circumstances it
requires more time and memory than back propagation to an
extent which i1s unfortunate but not prohibitive. More recent,
separate lines of research by Toomarian and Barhen ([39])
and Schmidhuber ([34]) have raised possibilities for combin-
ing the advantages of these methods.

4 Recurrent network capabilities in
principle and in practice

As noted in section 2.2, feedforward multilayer perceptrons
can approximate an arbitrary continuous mapping. Recur-
rent networks have a further universality property; they can
simulate an arbitrary finite state machine. This can be
proven on the back of an envelope. It is easy to show that
a single node connected to itself can be configured to act as
a flip-flop memory element, and equally simple to show that
a single node can be configured to perform the NOT-AND
Boolean function. It is possible to emulate any computer by
building a machine out of these two components, so the result
follows. Therefore, in principle the neural network model (1)
can do any calculation of practical interest. Furthermore, ex-
tensive numerical studies by Renals and Rohwer have shown
that this model typically produces complex motion involving
long time-scales [21].

Given an infinite number of nodes with which to simulate
an infinite Turing tape, a recurrent network model is Turing
universal. Furthermore Pollack [19] has shown that models
based on a variant of (1) using products of inputs can pack
the Turing tape into an infinite-precision real node value,
providing Turing universality in a finite network.

Neural networks therefore have the expressive power to unite
computation with statistical model fitting. But unfortu-
nately, this does not imply that networks are easily trained
from examples to do complex temporal tasks.

4.1 Practical difficulties with non-Markovian
problems

Most existing training methods work effectively only in what
Schmidhuber [33] calls Markovian or nearly Markovian en-
vironments. This means that the target values at any time
step can be determined uniquely from the input and target
values from one, or a small number of time steps in the re-
cent past. If the present state of the environment does not
contain enough information to enable a unique prediction of
the targets at the following time step, then there is no hope
unless the hidden nodes happen to encode the missing infor-
mation. This may be the case if the necessary information lies
somewhere in the past, and the network was clever enough
to respond to that information by encoding it in some hidden
nodes, and to arrange the dynamics so that this information
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is preserved until it is needed. The task of deciding what the
hidden nodes should have done in the past to reduce errors
in the future is called the temporal credit assignment problem

(See Williams [43]).

Thus, the hidden nodes play an essential role in transmit-
ting temporally distant relevant contextual information to
the future. This is superposed on the role they already play
in feedforward networks, of usefully re-expressing input data
in a form amenable for producing the targets. Perhaps it
is unsurprising, then, that the most complicated aspects of
the back propagation calculation in recurrent networks in-
volve the hidden nodes. To make matters worse, inspection
of the derivative formulas shows that unless certain improb-
able cancellations occur, the expressions for these derivatives
are dominated by near-context information. Essentially this
is because the near-constancy of (2) over most of it’s domain
makes 1t unlikely that the state at one time will be sensitive
to small variations of the state at a much earlier time. Hence,
the derivatives d F'/dw;; will not suggest a weight adjustment
which makes use of distant context until an optimum based
on recent context has been found to absurdly high accuracy.
Temporal credit assignment is done in a manner appropriate
only for Markovian, or nearly Markovian environments.

5 Techniques for Markovian problems

In order to carry information into the future in a non-
Markovian problem, hidden nodes must employ feedback
amongst themselves. In Markovian problems the need for
feedback disappears with the need for memory. Hence Marko-
vian problems can be handled using feedforward networks, or
relatively innocuous forms of feedback.

5.1 Teacher Forcing

If the input data at each time step contains enough informa-
tion to determine the target at that time, then the problem
reduces to using a feedforward network to estimate a map-
ping. Time plays no role except as a pattern label.

If the target data for the previous time step is needed as
well, then the network model needs to have feedback from
the target nodes. However, for training, the problem can
still be reduced to a feedforward network using the teacher
forcing technique, in which the target nodes are also used as
input nodes. A feedforward network is trained to predict the
targets at time ¢ based on the inputs at time ¢ and the targets
at time ¢ — 1. When training is finished, the feedforward
weights from the target nodes which were masquerading as
inputs are used for feedback weights from the ordinary target
nodes. If training is reasonably successful, then correct target
values at time ¢ will result in correct values at time ¢+1, which
in turn give correct values at step ¢t + 2, etc.

5.2 Delay lines

Many prediction problems of interest are sufficiently Marko-
vian to be treated this way. Nearly Markovian problems are
often converted into Markovian problems by using delay lines.
The current state is augmented with copies of the past Tmax
states, so that (1) becomes

max o |
Y41 = f Z; § :wi] Yjt—r 1€ 1 . 5)
T= J
Y5 t41 il
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The delay lines (wET), 7 > 0) transmit all information 7max
steps into the future. If distant context is not needed then
Tmax Can be relatively small, making this a practical tech-
nique. If large Tmax is required, the network is likely to be
overwhelmed with large amounts of redundant and irrelevant
information. This problem is compounded by the increased
number of variable parameters represented by the extra index
on w, which lead to poor generalisation as noted in section
2.1. The technique of using tied weights, to be explained in
section 5.4 can combat this problem.

5.3 Prediction with feedforward networks

The teacher forcing idea in various guises has been used to
good effect in a variety of prediction problems. Radial basis
function networks are popular for these applications because
of their training speed, but better results are sometimes ob-
tained from multilayer perceptrons. Lapedes and Farber [15]
trained a feedforward network to predict a chaotic time se-
ries generated by the Mackey-Glass equation, a scalar delay-
differential equation. This has become a standard test prob-
lem on which much improved results have since been obtained
by, for instance, Plutowski and others [18]. A similar tech-
nique was used by Adomaitis, et. al. [1] to predict properties
of an electrochemical reaction governed in principle by local
differential equations. Many other prediction problems have
been modeled in this way. For example Hoptroff [13] dis-
cusses prediction of various economic time series and Bulsari
and Palosaari report accurate modelling of chemical processes
in an adsorption column [6].

5.4 Time Delay Neural Networks for speech
recognition

A popular technique for reducing the number of adjustable
parameters in a network model is weight tying. The back
propagation procedure can be easily modified to accommo-
date the constraint that given sets of weights must have the
same, unspecified numerical value. Thus the number of ad-
justable parameters is reduced without reducing the number
of weights.

The method makes sense if the problem has symmetries
which can justify such constraints. Speech recognition prob-
lems provide examples like this. Signal processing techniques
can reduce the speech waveform to a time series of vectors
thought to express more explicitly the information needed to
identify speech units such as phonemes and words. Typically,
information from several such vectors is required for phoneme
identification. The time delay neural network (TDNN) uses
delay lines for this purpose, but the term has a more specific
technical meaning than just a neural network with delay lines.
The structure of a TDNN 1is illustrated in Figure 4. The de-
lays are grouped into (possibly overlapping) sets, such that
the delays in one set are offset by a constant amount from the
delays in any other. A separate set of hidden nodes is pro-
vided for each set of delays, and each such set of hidden nodes
receives input only from the correspondingly delayed inputs.
Each resulting set of weights specifies a transformation from
input vectors to hidden vectors such that, hopefully, the hid-
den vectors more explicitly express the information relevant
to classifying phonemes. It seems reasonable to assume that
the optimal transformation for this purpose will not depend
strongly on the overall delay, so the same set of weight values
is used for every group. This basic strategy is repeated in a
few further layers of hidden nodes. Finally the target nodes
receive input from all of the final layer of hidden nodes.

The TDNN has been used with some success by Waibel and

Some Title

Figure 4: A simplified illustration of the structure of a Time
Delay Neural Network (TDNN). Weights with correspond-
ing markings have equal values. Therefore only 9 of the 27
weights shown are independent. The bias weights are not
shown. Each node of this diagram would be replaced by a
set of nodes in a realistic network.

others to classify phonemes and words segmented by hand
from continuous speech [14, 11, 40]. In combination with
dynamic programming it has been used for spotting a small
number of words in continuous speech [45].

It is interesting to note a formal similarity between recurrent
networks and TDNNs. If a recurrent network is unwound in
time, turning time steps into layers, then the weight matrices
for each layer are tied to each other. The detailed pattern of
tying is different than for the TDNN, however.

5.5 A speech recognition system using hidden
node feedback

Although it tends to be viewed as somewhat of a last resort,
recurrent networks with hidden node feedback have found
nontrivial applications. In the example presented here, it is
not wildly unrealistic to regard the problem as nearly Marko-
vian, but using recurrence rather than delay lines keeps down
the number of parameters and produces excellent results.

Speech recognition presents formidable temporal credit as-
signment problems because the identity of a word, phoneme
or other speech unit present at a given point in time can de-
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Figure 5: A schematic illustration of a recurrent network
architecture used for speech recognition. The bias weights
are not shown. The network discussed in the text used 22
input nodes, 176 hidden nodes, and 61 output nodes.

pend on acoustic data from the relatively distant past and
near future. Robinson [23, 22] and others have obtained
state of the art results using a large recurrent network for
this problem. Standard signal processing methods are used
to convert the time-domain speech signal into a sequence of
22-component vectors. Omne vector at a time is presented
to the inputs of the neural network, while 61 output nodes
are targeted to represent one of 61 sub-phonetic speech units
(called phones) assigned by a phonetician. As illustrated in
Figure 5, there is full feedback among the hidden nodes, but
not from the target nodes. Small but important variants of
(2) and (3) were used, and considerable effort went into hand
tuning the details of the minimisation algorithm.

On a standard database (TIMIT) providing a total of 3360
sentences of training data from 420 speakers and 1680 sen-
tences of testing data from 210 speakers, the system clas-
sified about 69% of the speech units accurately. There are
considerable subtleties involved in defining what counts as a
correct classification because one speech unit can be present
for a substantial and variable number of time steps. Fur-
thermore, for speech recognition it only matters that correct
speech units should be hypothesised in the correct order at
roughly the correct times. In this case a dynamic program-
ming method was used to align the network outputs with the
correct transcriptions in order to judge the accuracy.

Results have been published for the TIMIT database with
several of the best speech recognition systems in existence,
and the recurrent network ranks with the best of them on this
task. In particular, the TDNN has not been demonstrated
on a comparably difficult task. However, this is not an un-
qualified victory for recurrent networks. To continue to word
and sentence level speech recognition, the recurrent network
outputs have to be plugged into a Hidden Markov Model
(HMM) system, the traditional way to do speech recogni-
tion. The HMM then handles most of the modelling of the

temporal properties of the speech.
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6 Methods for highly non-Markovian
problems

Highly non-Markovian problems present severe difficulties,
but various lines of research are producing significant in-
roads into this borderland between statistics and computa-
tion. Most lines of inquiry explore methods other than stan-
dard back propagation for solving the temporal credit as-
signment problem. One of these, the Moving Targets method
adopts a set of variables which make this issue more ex-
plicit. Others attempt to blend neural network techniques
with standard computational data structures such as stacks.

6.1 Moving Targets

The back propagation algorithm for feedforward networks has
a natural extension to temporal problems, but it turns out
that this algorithm’s ability to utilise contextual information
diminishes exponentially with time. The “Moving Targets”
algorithm of Rohwer [25, 26, 27] reduces this to a linear de-
crease, but suffers from serious practical difficulties. The ba-
sic idea of this algorithm is to treat hidden nodes as target
nodes with variable target values. This allows errors to be
allocated directly to the hidden nodes, so that the sum in the
error measure (3) can be extended to

EZ% Z {yz‘t—Yit}2~ (6)

(it)eETUH

The “moving target” variables, Y;; for ¢+ € H, are lumped in
with the weights in the minimisation problem; they are ini-
tialised randomly and optimised by a derivative-based pro-
cedure. If minimisation is successful, the moving targets are
discarded and the weights retained. In the course of min-
imisation, errors on target nodes can be traded for errors on
hidden nodes at possibly quite distant time steps if that helps
to reduce this sum. This provides greater flexibility in tem-
poral credit assignment than is possible with the standard
method in which the weights are the only variables. Figure
6 illustrates this credit assignment mechanism.

The moving targets algorithm has been successfully applied
to a problem which requires contextual information from 100
time steps in the past. The training data for this example
contains 2 sequences. In each sequence a single input node is
given a value of 1.0 at time step 100. It is 0.0 at all other times
in sequence 2, and 0.0 at all other times in sequence 1 except
at time step 1, when it is 1.0. A single target node is asked
to respond with 0.0 at all times for sequence 2, and for time
steps 0 to 100 of sequence 1, but with 1.0 after time step 100
in sequence 1. Thus, the input sequences are distinguished
only by an event at time 1, and the targets are identical until
time 101. Using 1 hidden node it is easy to “hand-wire” a
weight matrix which will solve this problem; the hidden node
needs to “turn on” in response to the first input 1.0-value in
sequence 1, and to stay on (using a positive self-weight) for
all time. That way the two sequences will be distinguished
at time step 100 by the state of the hidden node. When
the moving targets algorithm is applied to this problem, the
network quickly adjusts so that the largest errors are on the
target nodes at time step 100 in each training sequence. The
moving target value of the hidden node settles to 0.5 for most
time steps. As training progresses, the moving target values
on the hidden nodes at time step 100 increase for sequence 1
and decrease for sequence 2, thereby providing the distinction
needed to reduce the target node error at time 101. The
moving targets at time step 99 then respond similarly in order
to accommodate the errors at step 100. This process carries
on until the moving targets are distinguished at time step2,
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Figure 6: The Moving Targets credit assignment mechanism
implied by the error measure (6). A recurrent network is
represented as a feedforward network unwound in time. Fur-
thermore each state transition is “separated” from the others
by introducing variable “surrogate” training data, indicated
by upper-case Y. The springs symbolise that error minimi-
sation “pulls” moving targets Y1+ and Y2, toward the output
values y1;: and yo: of the “separate” network representing the
previous time step. Y1: and Y2; are also pulled toward values
which would reduce the error at time ¢t + 1. Errors at other
time steps do not have any influence via the network, as they
would do in back propagation through time, but errors from
all time steps appear on an equal footing in (6).

at which point they can be “anchored” on a distinction in
the inputs at step 1.

Although this example demonstrates that this algorithm has
considerable capabilities for non-Markovian problems, prac-
tical experience shows that it has serious disadvantages. In
a large problem the minimisation process is beset by a large
number of moving target variables which must be optimised.
Presumably for this reason, the minimisation proceeds at an
impractically slow pace, and local minima are frequently en-
countered.
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6.2 Combining neural networks with external
memory devices

Giles, Sun, [9, 10] and others have done a substantial series
of experiments on training recurrent networks to learn for-
mal grammars from the Chomsky hierarchy. Unsurprisingly,
they find that standard architectures such as (1) are limited
to learning simple regular grammars, as these only require
the use of information distributed over finite, and typically
short timescales. They also find that generalisations of (1) in-
volving products of node values are more successful at these
tasks. In order to learn context free grammars, which can
involve correlations over arbitrary timescales, they have de-
vised a generalisation of a stack which can be expressed in
terms of differentiable functions [7]. Thus, a practical train-
able Turing machine may be one step closer to reality.

7 Conclusions

Simple neural network models have the power to do arbitrary
computations with time-varying data, and are amenable to
learning from examples. However, existing training methods
are either unable to handle problems requiring attention to
distant temporal context, or are highly impractical from a
computational point of view. Nevertheless there is a usefully
large class of problems in which distant temporal context is
not particularly important. Methods using techniques for
training feedforward networks can be easily applied to this
type of problem, and often produce very good results. Re-
current network techniques have been used to a lesser extent
in this area, but some of the results are excellent.

Recurrent networks are required for problems in which the
network must learn to remember specific information for rel-
atively long periods of time, but standard training methods
perform poorly in this situation. Considerable research is
now taking place in this area. Perhaps the most promising
methods are based on the Adaptive Critic concept, in which
an auxiliary adaptive learning system, such as an extra neural
network, learns to solve the temporal credit assignment prob-
lem for another network. After all, having recognised that the
temporal credit assignment problem is a fundamental issue
for non-Markovian problems, and that neural network mod-
els provide trainable learning systems, why not train neural
networks to solve temporal credit assignment problems?

Sutton [35] used the term Adaptive Critic to describe the use
of one linear system (the critic) to provide error informa-
tion to train another linear system, in this case a controller.
The basic idea goes back at least as far as Samuel [32] who
used an adaptive method to evaluate board positions in the
game of Checkers (also known as Draughts). Drawing on later
ideas, particularly Sutton’s Temporal Difference Method [36]
whereby the critic provides part of its own target information
with which to train itself, Tesauro [37, 38] has produced a
world computer champion Backgammon program. Dynamic
programming draws on the same basic idea of using an adap-
tive evaluation function together with a learning controller
(or policy), and dynamic programming techniques now play
a major part in this line of research. This area is reviewed

by Barto [3] and Werbos [42].

Encouraging results are starting to appear, especially when
neural networks models are used to model the temporal credit
assignment problem itself. Substantial progress in this area
may open the door to qualitative advances in the use of neural
networks as a vehicle for bringing powerful new inductive,
statistical tools to computation and automated reasoning.
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