
The Time Dimension of Neural Network ModelsRichard RohwerDept. of Computer Science and Applied MathematicsAston UniversityAston TriangleBirmingham B4 7ETUKrohwerrj@uk.ac.aston.csAbstractThis review attempts to provide an insightful per-spective on the role of time within neural networkmodels and the use of neural networks for prob-lems involving time. The most commonly usedneural network models are de�ned and explainedgiving mention to important technical issues butavoiding great detail. The relationship between re-current and feedforward networks is emphasised,along with the distinctions in their practical andtheoretical abilities. Some practical examples arediscussed to illustrate the major issues concerningthe application of neural networks to data with var-ious types of temporal structure, and �nally somehighlights of current research on the more di�culttypes of problems are presented.1 IntroductionNeural network models can be used to process time-varyingdata for various purposes using various methods. Researchaimed at improving the methodology makes contact with abroad range of disciplines and raises a panoply of di�cult,though enticing, questions. This happens largely becausethe brain not only lives in an environment �lled with time-varying data, but also generates internal time-varying signalsof its own. The internal signals vary from direct responsesto environmental events to obscure mechanisms for internalprocessing. Therefore the subject of temporal data process-ing with neural networks draws one towards a study of thebrain's inner mechanisms, about which very little is known.For engineering purposes, we hope to understand some ofthe basic computational principles involved without gettingbogged down in the intricate biological details.Section 2 reviews a simple recurrent network model, whichcan have highly complex dynamics, and two feedforwardmodels which are inherently static, but never the less haveapplications in temporal problems. The essentials of hownetworks are trained are explained, with attention to somemajor issues which are present whether or not the problem in-volves time in any important way. Some particular issues andtraining techniques involving time are explained in section 3.Section 4 introduces one of the most important distinctionsin the subject, that between Markovian and non-Markovianproblems. Techniques for the easier category, the Markovianproblems, are discussed in section 5 with a few practical ex-amples, especially from the speech recognition application.Some of the research areas for non-Markovian problems areintroduced in section 6 the �nal, concluding section 7.2 Basic Neural Network ModelsNeural network models specify rules for changing the outputvalues of model neurons, or nodes, with time. These output

values are sometimes regarded as crude models of neural �r-ing rates. Figure 1 and equation (1) illustrate the operationof the most popular type of neural network node. Let yit de-note the value of node i at discrete time t. In a widely-usedclass of models, a subset I of the nodes are designated as in-puts. These are assigned values Yit taken from a model of thenetwork's external environment. The values of the remainingnodes are computed for time t+ 1 from their values at timet according to the rule:yi;t+1 =8><>: f Xj wijyj;t! i 62 IYi;t+1 i 2 I (1)where the weight wij models the strength of a synaptic con-nection from node j to node i, and f is a di�erentiable func-tion with constant asymptotes, such asf(x) = 1=(1 + e�x) (2)which varies smoothly from 0 at �1 to 1 at 1. One input,say node 0, is traditionally assigned the constant value 1:0 sothat wi0 provides a constant o�set or bias for the weightedsum computed by node i. Through rule (1) the weights spec-ify the network dynamics, the manner in which the state (theset of node values) changes with time.The weighted sum of inputs to a node is called its activa-tion. The nonlinearity (2) crudely represents the idea thatthe �ring rate of a neuron should increase with its activa-tion, but should saturate at a maximum value for very largeactivations and at zero for large inhibition (highly negativeactivation). Be that as it may, the nonlinearity provides twocomputationally useful properties, in contrast to linear sys-tems (which can be obtained using f(x) = x). One is aguarantee that the node outputs remain bounded, and theother is the ability to approximate a very general class ofsystems (See Funahashi [8]).2.1 TrainingSome network models can be trained to produce a desired se-quence of target values on a subset T of the non-input nodes.The target nodes are also called the output nodes, a usage notto be confused with the output values possessed by all nodes.The set H of nodes which are neither input nor target nodesare called hidden nodes. Let Yit (for i 2 T ) denote the tar-get value for node i at time t. (There is no confusion with(1) because I \ T = ;.) A scalar measure of the network'sperformance is given byE = 12Xi2T Xt (yit � Yit)2: (3)If the network operates perfectly, E = 0; otherwise E > 0.The sum over time steps in (3) ranges over all time stepsfor which there is target training data. The precise mean-ing of this depends on the structure of the training problem.Some Title 1 SIGART Bulletin, Vol. #, No. #
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%llllllbbbbbbXXXXXX,,,,,,y1ty2t...yNt w0iw1iw2iwNi yi;t+1y0t � 1 Node i(i 62 I)Figure 1: A non-input node of a neural network model con-taining N+1 nodes, including the bias node.Sometimes there is a set of sequences to learn. If the pth ofa total of P sequences has T (p) time steps for which thereare targets (The net might have to run a few time steps be-fore it produces the �rst target.), then Pt actually meansPPp=1PT (p)t=1 . Sometimes there is one in�nite sequence ofdata. This can be handled by summing over a �nite subse-quence, in hopes that it is fairly representative of the whole.In many on-line problems the data is generated by samplinga slowly changing environment. By summing over the mostrecent T samples, where T is a number of timesteps char-acterising the degree of stationarity of the environment, anappropriate slowly varying performance measure can be ob-tained. The choice of T in such cases can often be more ofan art than a science. Many variations are possible, such asusing weight factors with an exponential time dependence.A popular procedure for training a network is back propaga-tion of error through time, which proceeds by computing thederivatives dE=dwij and using these to incrementally adjustthe weights to slightly better values. This procedure is oftenhighly e�ective, but one is guaranteed neither that a perfectsolution E = 0 exists, nor that the smallest value of E willbe found by this procedure. A local minimum can always befound, but not necessarily a globalminimum. Even if a globalminimum is found, there still may be other global solutionswhich may be preferable for some reason not encoded in (3).In types of problems where E itself is time-varying, little canbe said with certainty.For most real-world problems, a solution with E = 0 wouldnot be desirable even if it were obtained, because the result-ing network would generalise poorly. Usually the trainingdata for a neural network model is selected to be representa-tive of the system to be modeled, but does not exhaustivelyspecify the desired response to every possible input. Onesimply hopes that the continuity of the functions in (1) willimply that inputs similar to those on which a network wastrained will result in outputs similar to those which wouldbe desired. Real-world data sets tend to contain some ran-dom noise which an E = 0 solution would model precisely,thereby acquiring a poor basis for generalisation. This iscalled over�tting. But even if the data is noise-free, therewould typically be an in�nite number of possible E = 0 solu-
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Figure 2: A 3-layer feedforward network with 2 input nodesin the �rst layer (I), one layer of 2 hidden nodes (H) , anda third layer with a single target node (T ). One of the inputnodes is a bias node labeled \1". In general there could beany number of hidden layers, including zero. If the weightfrom node 1 to node 4 were removed, this would be a strictlylayered network. Many writers do not count the inputs as alayer, in which case this would be called a 2-layer network.Furthermore the bias node is not normally included whenreporting the number of inputs.tions, most of which have ridiculous generalisation properties.This problem intensi�es as the number of adjustable weightsis increased. Choosing the best solutions requires the useof prior knowledge about the properties which characterise\reasonable" solutions for the problem at hand. For exam-ple, it might be known that networks whose outputs changethe most slowly with respect to their inputs are the bestsolutions. Both noisy data and prior knowledge can be han-dled in a Bayesian probabilistic framework which has beenspecialised to neural networks by MacKay [17], and reviewedbriey by Rohwer [30]. Reasonable results are often obtainedwith a variety of less complicated heuristics expounded in theneural network textbooks.2.2 Feedforward and recurrent networksA useful subclass of network models are the feedforward net-works. Considered as directed graphs, feedforward networkshave no cycles. Thus (1) allows no feedback e�ects wherebythe output value of a node at one time can a�ect its value ata later time. In feedforward networks the nodes can be num-bered so that the matrix of weights amongst the non-inputnodes is lower triangular. In particular there are no self-connections (wii = 0). A non-feedforward network is calledrecurrent.Typically the nodes of feedforward networks are arranged inSome Title 2 SIGART Bulletin, Vol. #, No. #
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Figure 3: A recurrent network with 2 input nodes, includingthe bias node indicated by the \1". Any of the 3 non-inputnodes could be a target or hidden node.numbered layers, with nonzero weights from each layer go-ing to higher-numbered layers, but none going in the reversedirection and none going within a layer. The lowest layer isassigned input from the environment. If the input remains�xed in an L-layer feedforward net, then every node value inthe network remains �xed after L� 1 time steps. By speci-fying target values for the highest layer, and using its deriva-tives to minimise a function similar to (3), these networkscan be trained to implement a mapping from input vectorsto target vectors which agrees with a set of examples. Thehidden nodes in such networks are those in the middle layersbetween the inputs and targets. Figures 2 and 3 illustratea layered feedforward network and a recurrent network. Alayered feedforward network of the type shown in Figure 2 isalso called a multilayer perceptron (MLP).A network is strictly layered if, aside from the bias node, anynode of layer L has weights leading only to nodes in layerL+ 1. It has been proven by Funahashi [8] and others thata strictly layered feedforward network with a single hiddenlayer can approximate any continuous mapping to arbitraryaccuracy (although a large number of hidden units may berequired).Strictly layered networks also have the sometimes usefulproperty that the state of any hidden layer contains enoughinformation to compute the state of any higher-numberedhidden layer or the target layer. The state of each hiddenlayer can be interpreted as a re-expression of the input whichbecomes increasingly appropriate for expressing the targetsas the layer number increases.Note that for �xed inputs, the �xed node values expressedby a strictly layered feedforward network after L � 1 time

steps can be computed by replacing the time index t withthe layer index L in (1). The catchphrase expressing thisparallel is that a recurrent network can be unwound in time toproduce a computationally equivalent feedforward network.This observation is useful when developing expressions forthe derivatives of (3) used to train a recurrent network.2.3 Radial basis functionsAnother popular class of feedforward networks is radial basisfunction networks introduced by Broomhead and Lowe [5].These networks have one layer of hidden nodes, each of whichimplements a radial basis function. Hidden node a is assigneda centre in the input space having input coordinates cia anda radius ra, and computes an output which is large only forinputs near its centre (on a scale set by its radius). Theoutput of this network is fed through a linear transformation.Speci�cally, the output yip produced by example p isyip =Xa wiag pPi(Yip � cia)2ra ! (4)where Yip is the input for example p and g is typically aGaussian g(x) = e�x2 . Non-Euclidian distance measuresare sometimes used. The loosely-de�ned region for whicha radial basis function has a signi�cant output is its recep-tive �eld. For the Gaussian, the receptive �eld is a localisedhyper-ellipsoid, in contrast to the linear half-space given by(2). Usually the centres and radii of a radial basis functionnetwork are assigned using one of a variety of simple algo-rithms which take advantage of the locality of the recptive�elds to ensure that each input data point falls within justa few receptive �elds. Then the weights are adapted to min-imise an error measure similar to (3). This problem amountsto solving a large linear system of equations, which can be ac-complished using textbook methods [20] much more quicklythan a minimisation algorithm can be applied to a multilayerperceptron. This feature is a major attraction of radial basisfunctions.The name \radial basis functions" derives from the sphericalsymmetry of the receptive �elds. However this is not animportant property of the method and generalisations to lesssymmetric basis functions are commonly used.3 Training recurrent networksAny neural network textbook, such as Hertz, Krogh, andPalmer [12] or Beale and Jackson [4], explains the back prop-agation procedure for training a network, so only a few re-marks of special relevance to recurrent networks are worth-while here. Essentially, back propagation is a clever way ofarranging terms to save time and memory in the computa-tion of dE=dwij from (3) and (1). Although the basic con-cepts have a long history (See LeCun [16]) and were appliedto neural network models as early as 1974 by Werbos [41],the �rst widely-read treatment was by Rumelhart, Hinton,and Williams in 1986 [31]. This was oriented around feed-forward networks, although the possibility of unwinding re-current networks in time was noted. Recurrent networks forwhich (1) eventually results in a constant state were of par-ticular interest at that time, and remain an important specialcase. Treatments of this case based on variations of (3) lack-ing the sum over time were given by Rohwer and Forrest [28]and Almeida [2]. Almeida arrived at a calculation essentiallyidentical to back propagation through time, and provided aconvergence proof which is important for this variation ofthe method. Rohwer and Forrest's method is also equivalentSome Title 3 SIGART Bulletin, Vol. #, No. #



to back propagation through time, though less obviously so.The relationship is spelled out by Rohwer and Renals in [29],with a review of Almeida's method.The sum over time in (3) �nds its way into expressions whichmust be re-evaluated every time the weights are adjusted inthe gradient descent procedure. Thus, the entire history ofa learning problem should be reviewed many times duringtraining. This is not possible in on-line problems, in whichan agent only has the opportunity to adapt to environmentaldata as it arrives. It turns out that this case can be handledby simply not making the change of variables which trans-forms the direct expression for the derivatives of (3) into theback propagation formulas. This practice was introduced byRobinson [24], and popularised by Williams and Zipser [44],as Real Time Recurrent Learning. In typical circumstances itrequires more time and memory than back propagation to anextent which is unfortunate but not prohibitive. More recent,separate lines of research by Toomarian and Barhen ([39])and Schmidhuber ([34]) have raised possibilities for combin-ing the advantages of these methods.4 Recurrent network capabilities inprinciple and in practiceAs noted in section 2.2, feedforward multilayer perceptronscan approximate an arbitrary continuous mapping. Recur-rent networks have a further universality property; they cansimulate an arbitrary �nite state machine. This can beproven on the back of an envelope. It is easy to show thata single node connected to itself can be con�gured to act asa ip-op memory element, and equally simple to show thata single node can be con�gured to perform the NOT-ANDBoolean function. It is possible to emulate any computer bybuilding a machine out of these two components, so the resultfollows. Therefore, in principle the neural network model (1)can do any calculation of practical interest. Furthermore, ex-tensive numerical studies by Renals and Rohwer have shownthat this model typically produces complex motion involvinglong time-scales [21].Given an in�nite number of nodes with which to simulatean in�nite Turing tape, a recurrent network model is Turinguniversal. Furthermore Pollack [19] has shown that modelsbased on a variant of (1) using products of inputs can packthe Turing tape into an in�nite-precision real node value,providing Turing universality in a �nite network.Neural networks therefore have the expressive power to unitecomputation with statistical model �tting. But unfortu-nately, this does not imply that networks are easily trainedfrom examples to do complex temporal tasks.4.1 Practical di�culties with non-MarkovianproblemsMost existing training methods work e�ectively only in whatSchmidhuber [33] calls Markovian or nearly Markovian en-vironments. This means that the target values at any timestep can be determined uniquely from the input and targetvalues from one, or a small number of time steps in the re-cent past. If the present state of the environment does notcontain enough information to enable a unique prediction ofthe targets at the following time step, then there is no hopeunless the hidden nodes happen to encode the missing infor-mation. This may be the case if the necessary information liessomewhere in the past, and the network was clever enoughto respond to that information by encoding it in some hiddennodes, and to arrange the dynamics so that this information

is preserved until it is needed. The task of deciding what thehidden nodes should have done in the past to reduce errorsin the future is called the temporal credit assignment problem(See Williams [43]).Thus, the hidden nodes play an essential role in transmit-ting temporally distant relevant contextual information tothe future. This is superposed on the role they already playin feedforward networks, of usefully re-expressing input datain a form amenable for producing the targets. Perhaps itis unsurprising, then, that the most complicated aspects ofthe back propagation calculation in recurrent networks in-volve the hidden nodes. To make matters worse, inspectionof the derivative formulas shows that unless certain improb-able cancellations occur, the expressions for these derivativesare dominated by near-context information. Essentially thisis because the near-constancy of (2) over most of it's domainmakes it unlikely that the state at one time will be sensitiveto small variations of the state at a much earlier time. Hence,the derivatives dE=dwij will not suggest a weight adjustmentwhich makes use of distant context until an optimum basedon recent context has been found to absurdly high accuracy.Temporal credit assignment is done in a manner appropriateonly for Markovian, or nearly Markovian environments.5 Techniques for Markovian problemsIn order to carry information into the future in a non-Markovian problem, hidden nodes must employ feedbackamongst themselves. In Markovian problems the need forfeedback disappears with the need for memory. Hence Marko-vian problems can be handled using feedforward networks, orrelatively innocuous forms of feedback.5.1 Teacher ForcingIf the input data at each time step contains enough informa-tion to determine the target at that time, then the problemreduces to using a feedforward network to estimate a map-ping. Time plays no role except as a pattern label.If the target data for the previous time step is needed aswell, then the network model needs to have feedback fromthe target nodes. However, for training, the problem canstill be reduced to a feedforward network using the teacherforcing technique, in which the target nodes are also used asinput nodes. A feedforward network is trained to predict thetargets at time t based on the inputs at time t and the targetsat time t � 1. When training is �nished, the feedforwardweights from the target nodes which were masquerading asinputs are used for feedback weights from the ordinary targetnodes. If training is reasonably successful, then correct targetvalues at time t will result in correct values at time t+1, whichin turn give correct values at step t+ 2, etc.5.2 Delay linesMany prediction problems of interest are su�ciently Marko-vian to be treated this way. Nearly Markovian problems areoften converted into Markovian problems by using delay lines.The current state is augmented with copies of the past �maxstates, so that (1) becomesyi;t+1 =8><>: f  �maxX�=0 Xj w(�)ij yj;t��! i 62 IYi;t+1 i 2 I : (5)Some Title 4 SIGART Bulletin, Vol. #, No. #



The delay lines (w(�)ij , � > 0) transmit all information �maxsteps into the future. If distant context is not needed then�max can be relatively small, making this a practical tech-nique. If large �max is required, the network is likely to beoverwhelmed with large amounts of redundant and irrelevantinformation. This problem is compounded by the increasednumber of variable parameters represented by the extra indexon w, which lead to poor generalisation as noted in section2.1. The technique of using tied weights, to be explained insection 5.4 can combat this problem.5.3 Prediction with feedforward networksThe teacher forcing idea in various guises has been used togood e�ect in a variety of prediction problems. Radial basisfunction networks are popular for these applications becauseof their training speed, but better results are sometimes ob-tained from multilayer perceptrons. Lapedes and Farber [15]trained a feedforward network to predict a chaotic time se-ries generated by the Mackey-Glass equation, a scalar delay-di�erential equation. This has become a standard test prob-lem on which much improved results have since been obtainedby, for instance, Plutowski and others [18]. A similar tech-nique was used by Adomaitis, et. al. [1] to predict propertiesof an electrochemical reaction governed in principle by localdi�erential equations. Many other prediction problems havebeen modeled in this way. For example Hoptro� [13] dis-cusses prediction of various economic time series and Bulsariand Palosaari report accurate modelling of chemical processesin an adsorption column [6].5.4 Time Delay Neural Networks for speechrecognitionA popular technique for reducing the number of adjustableparameters in a network model is weight tying. The backpropagation procedure can be easily modi�ed to accommo-date the constraint that given sets of weights must have thesame, unspeci�ed numerical value. Thus the number of ad-justable parameters is reduced without reducing the numberof weights.The method makes sense if the problem has symmetrieswhich can justify such constraints. Speech recognition prob-lems provide examples like this. Signal processing techniquescan reduce the speech waveform to a time series of vectorsthought to express more explicitly the information needed toidentify speech units such as phonemes and words. Typically,information from several such vectors is required for phonemeidenti�cation. The time delay neural network (TDNN) usesdelay lines for this purpose, but the term has a more speci�ctechnical meaning than just a neural network with delay lines.The structure of a TDNN is illustrated in Figure 4. The de-lays are grouped into (possibly overlapping) sets, such thatthe delays in one set are o�set by a constant amount from thedelays in any other. A separate set of hidden nodes is pro-vided for each set of delays, and each such set of hidden nodesreceives input only from the correspondingly delayed inputs.Each resulting set of weights speci�es a transformation frominput vectors to hidden vectors such that, hopefully, the hid-den vectors more explicitly express the information relevantto classifying phonemes. It seems reasonable to assume thatthe optimal transformation for this purpose will not dependstrongly on the overall delay, so the same set of weight valuesis used for every group. This basic strategy is repeated in afew further layers of hidden nodes. Finally the target nodesreceive input from all of the �nal layer of hidden nodes.The TDNN has been used with some success by Waibel and
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TimeFigure 4: A simpli�ed illustration of the structure of a TimeDelay Neural Network (TDNN). Weights with correspond-ing markings have equal values. Therefore only 9 of the 27weights shown are independent. The bias weights are notshown. Each node of this diagram would be replaced by aset of nodes in a realistic network.others to classify phonemes and words segmented by handfrom continuous speech [14, 11, 40]. In combination withdynamic programming it has been used for spotting a smallnumber of words in continuous speech [45].It is interesting to note a formal similarity between recurrentnetworks and TDNNs. If a recurrent network is unwound intime, turning time steps into layers, then the weight matricesfor each layer are tied to each other. The detailed pattern oftying is di�erent than for the TDNN, however.5.5 A speech recognition system using hiddennode feedbackAlthough it tends to be viewed as somewhat of a last resort,recurrent networks with hidden node feedback have foundnontrivial applications. In the example presented here, it isnot wildly unrealistic to regard the problem as nearly Marko-vian, but using recurrence rather than delay lines keeps downthe number of parameters and produces excellent results.Speech recognition presents formidable temporal credit as-signment problems because the identity of a word, phonemeor other speech unit present at a given point in time can de-Some Title 5 SIGART Bulletin, Vol. #, No. #
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Figure 5: A schematic illustration of a recurrent networkarchitecture used for speech recognition. The bias weightsare not shown. The network discussed in the text used 22input nodes, 176 hidden nodes, and 61 output nodes.pend on acoustic data from the relatively distant past andnear future. Robinson [23, 22] and others have obtainedstate of the art results using a large recurrent network forthis problem. Standard signal processing methods are usedto convert the time-domain speech signal into a sequence of22-component vectors. One vector at a time is presentedto the inputs of the neural network, while 61 output nodesare targeted to represent one of 61 sub-phonetic speech units(called phones) assigned by a phonetician. As illustrated inFigure 5, there is full feedback among the hidden nodes, butnot from the target nodes. Small but important variants of(2) and (3) were used, and considerable e�ort went into handtuning the details of the minimisation algorithm.On a standard database (TIMIT) providing a total of 3360sentences of training data from 420 speakers and 1680 sen-tences of testing data from 210 speakers, the system clas-si�ed about 69% of the speech units accurately. There areconsiderable subtleties involved in de�ning what counts as acorrect classi�cation because one speech unit can be presentfor a substantial and variable number of time steps. Fur-thermore, for speech recognition it only matters that correctspeech units should be hypothesised in the correct order atroughly the correct times. In this case a dynamic program-ming method was used to align the network outputs with thecorrect transcriptions in order to judge the accuracy.Results have been published for the TIMIT database withseveral of the best speech recognition systems in existence,and the recurrent network ranks with the best of them on thistask. In particular, the TDNN has not been demonstratedon a comparably di�cult task. However, this is not an un-quali�ed victory for recurrent networks. To continue to wordand sentence level speech recognition, the recurrent networkoutputs have to be plugged into a Hidden Markov Model(HMM) system, the traditional way to do speech recogni-tion. The HMM then handles most of the modelling of thetemporal properties of the speech.

6 Methods for highly non-MarkovianproblemsHighly non-Markovian problems present severe di�culties,but various lines of research are producing signi�cant in-roads into this borderland between statistics and computa-tion. Most lines of inquiry explore methods other than stan-dard back propagation for solving the temporal credit as-signment problem. One of these, the Moving Targets methodadopts a set of variables which make this issue more ex-plicit. Others attempt to blend neural network techniqueswith standard computational data structures such as stacks.6.1 Moving TargetsThe back propagation algorithm for feedforward networks hasa natural extension to temporal problems, but it turns outthat this algorithm's ability to utilise contextual informationdiminishes exponentially with time. The \Moving Targets"algorithm of Rohwer [25, 26, 27] reduces this to a linear de-crease, but su�ers from serious practical di�culties. The ba-sic idea of this algorithm is to treat hidden nodes as targetnodes with variable target values. This allows errors to beallocated directly to the hidden nodes, so that the sum in theerror measure (3) can be extended toE = 12 X(it)2T[Hfyit � Yitg2: (6)The \moving target" variables, Yit for i 2 H, are lumped inwith the weights in the minimisation problem; they are ini-tialised randomly and optimised by a derivative-based pro-cedure. If minimisation is successful, the moving targets arediscarded and the weights retained. In the course of min-imisation, errors on target nodes can be traded for errors onhidden nodes at possibly quite distant time steps if that helpsto reduce this sum. This provides greater exibility in tem-poral credit assignment than is possible with the standardmethod in which the weights are the only variables. Figure6 illustrates this credit assignment mechanism.The moving targets algorithm has been successfully appliedto a problem which requires contextual information from 100time steps in the past. The training data for this examplecontains 2 sequences. In each sequence a single input node isgiven a value of 1:0 at time step 100. It is 0:0 at all other timesin sequence 2, and 0:0 at all other times in sequence 1 exceptat time step 1, when it is 1:0. A single target node is askedto respond with 0:0 at all times for sequence 2, and for timesteps 0 to 100 of sequence 1, but with 1:0 after time step 100in sequence 1. Thus, the input sequences are distinguishedonly by an event at time 1, and the targets are identical untiltime 101. Using 1 hidden node it is easy to \hand-wire" aweight matrix which will solve this problem; the hidden nodeneeds to \turn on" in response to the �rst input 1:0-value insequence 1, and to stay on (using a positive self-weight) forall time. That way the two sequences will be distinguishedat time step 100 by the state of the hidden node. Whenthe moving targets algorithm is applied to this problem, thenetwork quickly adjusts so that the largest errors are on thetarget nodes at time step 100 in each training sequence. Themoving target value of the hidden node settles to 0.5 for mosttime steps. As training progresses, the moving target valueson the hidden nodes at time step 100 increase for sequence 1and decrease for sequence 2, thereby providing the distinctionneeded to reduce the target node error at time 101. Themoving targets at time step 99 then respond similarly in orderto accommodate the errors at step 100. This process carrieson until the moving targets are distinguished at time step2,Some Title 6 SIGART Bulletin, Vol. #, No. #
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y2ty1tY1t Y2ty1;t+1 y2;t+1
Y2;t�1Y1;t�1Figure 6: The Moving Targets credit assignment mechanismimplied by the error measure (6). A recurrent network isrepresented as a feedforward network unwound in time. Fur-thermore each state transition is \separated" from the othersby introducing variable \surrogate" training data, indicatedby upper-case Y . The springs symbolise that error minimi-sation \pulls" moving targets Y1t and Y2t toward the outputvalues y1t and y2t of the \separate" network representing theprevious time step. Y1t and Y2t are also pulled toward valueswhich would reduce the error at time t + 1. Errors at othertime steps do not have any inuence via the network, as theywould do in back propagation through time, but errors fromall time steps appear on an equal footing in (6).at which point they can be \anchored" on a distinction inthe inputs at step 1.Although this example demonstrates that this algorithm hasconsiderable capabilities for non-Markovian problems, prac-tical experience shows that it has serious disadvantages. Ina large problem the minimisation process is beset by a largenumber of moving target variables which must be optimised.Presumably for this reason, the minimisation proceeds at animpractically slow pace, and local minima are frequently en-countered.

6.2 Combining neural networks with externalmemory devicesGiles, Sun, [9, 10] and others have done a substantial seriesof experiments on training recurrent networks to learn for-mal grammars from the Chomsky hierarchy. Unsurprisingly,they �nd that standard architectures such as (1) are limitedto learning simple regular grammars, as these only requirethe use of information distributed over �nite, and typicallyshort timescales. They also �nd that generalisations of (1) in-volving products of node values are more successful at thesetasks. In order to learn context free grammars, which caninvolve correlations over arbitrary timescales, they have de-vised a generalisation of a stack which can be expressed interms of di�erentiable functions [7]. Thus, a practical train-able Turing machine may be one step closer to reality.7 ConclusionsSimple neural network models have the power to do arbitrarycomputations with time-varying data, and are amenable tolearning from examples. However, existing training methodsare either unable to handle problems requiring attention todistant temporal context, or are highly impractical from acomputational point of view. Nevertheless there is a usefullylarge class of problems in which distant temporal context isnot particularly important. Methods using techniques fortraining feedforward networks can be easily applied to thistype of problem, and often produce very good results. Re-current network techniques have been used to a lesser extentin this area, but some of the results are excellent.Recurrent networks are required for problems in which thenetwork must learn to remember speci�c information for rel-atively long periods of time, but standard training methodsperform poorly in this situation. Considerable research isnow taking place in this area. Perhaps the most promisingmethods are based on the Adaptive Critic concept, in whichan auxiliary adaptive learning system, such as an extra neuralnetwork, learns to solve the temporal credit assignment prob-lem for another network. After all, having recognised that thetemporal credit assignment problem is a fundamental issuefor non-Markovian problems, and that neural network mod-els provide trainable learning systems, why not train neuralnetworks to solve temporal credit assignment problems?Sutton [35] used the term Adaptive Critic to describe the useof one linear system (the critic) to provide error informa-tion to train another linear system, in this case a controller.The basic idea goes back at least as far as Samuel [32] whoused an adaptive method to evaluate board positions in thegame of Checkers (also known as Draughts). Drawing on laterideas, particularly Sutton's Temporal Di�erence Method [36]whereby the critic provides part of its own target informationwith which to train itself, Tesauro [37, 38] has produced aworld computer champion Backgammon program. Dynamicprogramming draws on the same basic idea of using an adap-tive evaluation function together with a learning controller(or policy), and dynamic programming techniques now playa major part in this line of research. This area is reviewedby Barto [3] and Werbos [42].Encouraging results are starting to appear, especially whenneural networks models are used to model the temporal creditassignment problem itself. Substantial progress in this areamay open the door to qualitative advances in the use of neuralnetworks as a vehicle for bringing powerful new inductive,statistical tools to computation and automated reasoning.Some Title 7 SIGART Bulletin, Vol. #, No. #
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