A techno-economic analysis of energy recovery from organic fraction of municipal solid waste (MSW) by an integrated intermediate pyrolysis and combined heat and power (CHP) plant

Yang, Yang, Wang, Jiawei, Chong, Katie J and Bridgwater, Anthony V (2018). A techno-economic analysis of energy recovery from organic fraction of municipal solid waste (MSW) by an integrated intermediate pyrolysis and combined heat and power (CHP) plant. Energy Conversion and Management, 174 , pp. 406-416.

Abstract

The increasing environmental concerns and the significant growth of the waste to energy market calls for innovative and flexible technology that can effectively process and convert municipal solid waste into fuels and power at high efficiencies. To ensure the technical and economic feasibility of new technology, a sound understanding of the characteristics of the integrated energy system is essential. In this work, a comprehensive techno-economic analysis of a waste to power and heat plant based on integrated intermediate pyrolysis and CHP (Pyro-CHP) system was performed. The overall plant CHP efficiency was found to be nearly 60% defined as heat and power output compared to feedstock fuel input. By using an established economic evaluation model, the capital investment of a 5 tonne per hour plant was calculated to be £27.64 million and the Levelised Cost of Electricity was £0.063/kWh. This agrees the range of cost given by the UK government. To maximise project viability, technology developers should endeavour to seek ways to reduce the energy production cost. Particular attention should be given to the factors with the greatest influence on the profitability, such as feedstock cost (or gate fee for waste), maintaining plant availability, improving energy productivity and reducing capital cost.

Publication DOI: https://doi.org/10.1016/j.enconman.2018.08.033
Dataset DOI: https://doi.org/10.17036/researchdata.aston.ac.uk.00000374
Divisions: Engineering & Applied Sciences > European Bioenergy Research Institute (EBRI)
Engineering & Applied Sciences > Chemical engineering & applied chemistry
Engineering & Applied Sciences
Additional Information: © 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Uncontrolled Keywords: municipal solid waste,energy from waste,combined heat and power (CHP),intermediate pyrolysis,techno-economic analysis
Full Text Link:
Related URLs: https://www.sci ... 196890418308823 (Publisher URL)
Published Online Date: 2018-10-15
Published Date: 2018-10-15
Authors: Yang, Yang ( 0000-0003-2075-3803)
Wang, Jiawei ( 0000-0001-5690-9107)
Chong, Katie J ( 0000-0002-3800-8302)
Bridgwater, Anthony V ( 0000-0001-7362-6205)

Download

Item under embargo.

Export / Share Citation


Statistics

Additional statistics for this record