A method for producing conductive graphene biopolymer nanofibrous fabrics by exploitation of an ionic liquid dispersant in electrospinning

Abstract

Owing to its high conductivity, graphene has been incorporated into polymeric nanofibers to create advanced materials for flexible electronics, sensors and tissue engineering. Typically, these graphene-based nanofibers are prepared by electrospinning synthetic polymers, whereas electrospun graphene-biopolymer nanofibers have been rarely reported due to poor compatibility of graphene with biopolymers. Herein, we report a new method for the preparation of graphene-biopolymer nanofibers using the judicious combination of an ionic liquid and electrospinning. Cellulose acetate (CA) has been used as the biopolymer, graphene oxide (GO) nanoparticles as the source of graphene and 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) as the ionic liquid (IL) to create CA-[BMIM]Cl-GO nanofibers by electrospinning for the first time. Moreover, we developed a new route to convert CA-[BMIM]Cl-GO nanofibers to reduced GO nanofibers using hydrazine vapor under ambient conditions to enhance the conductivity of the hybrid nanofibers. The graphene sheets were shown to be uniformly incorporated in the hybrid nanofibers and only 0.43 wt% of GO increase the conductivity of CA-[BMIM]Cl nanofibers by more than four orders of magnitude (from 2.71× 10−7 S/cm to 5.30 × 10−3 S/cm). This ultra-high enhancement opens up a new route for conductive enhancement of biopolymer nanofibers to be used in smart (bio) electronic devices.

Publication DOI: https://doi.org/10.1016/j.carbon.2018.08.034
Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
College of Engineering & Physical Sciences > Aston Institute of Materials Research (AIMR)
College of Engineering & Physical Sciences > Energy and Bioproducts Research Institute (EBRI)
College of Engineering & Physical Sciences
Additional Information: © 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Publication ISSN: 1873-3891
Last Modified: 11 Nov 2024 08:23
Date Deposited: 13 Sep 2018 10:36
Full Text Link:
Related URLs: https://linking ... 00862231830767X (Publisher URL)
PURE Output Type: Article
Published Date: 2018-12-01
Published Online Date: 2018-08-22
Accepted Date: 2018-08-17
Authors: Javed, Kashif
Krumme, Andres
Viirsalu, Mihkel
Krasnou, Illia
Plamus, Tiia
Vassiljeva, Viktoria
Tarasova, Elvira
Savest, Natalja
Mere, Arvo
Mikli, Valdek
Danilson, Mati
Kaljuvee, Tiit
Lange, Sven
Yuan, Qingchun (ORCID Profile 0000-0001-5982-3819)
Topham, Paul D. (ORCID Profile 0000-0003-4152-6976)
Chen, Cheng-meng

Export / Share Citation


Statistics

Additional statistics for this record