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Abstract. This is an epidemiological SIRV model based study that is designed to analyze the impact of
vaccination in containing infection spread, in a 4-tiered population compartment comprised of suscepti-
ble, infected, recovered and vaccinated agents. While many models assume a lifelong protection through
vaccination, we focus on the impact of waning immunization due to conversion of vaccinated and recov-
ered agents back to susceptible ones. Two asymptotic states exist, the “disease-free equilibrium” and the
“endemic equilibrium” and we express the transitions between these states as function of the vaccination
and conversion rates and using the basic reproduction number. We find that the vaccination of newborns
and adults have different consequences on controlling an epidemic. Also, a decaying disease protection
within the recovered sub-population is not sufficient to trigger an epidemic at the linear level. We perform
simulations for a parameter set mimicking a disease with waning immunization like pertussis. For a diffu-
sively coupled population, a transition to the endemic state can proceed via the propagation of a traveling
infection wave, described successfully within a Fisher-Kolmogorov framework.

1 Introduction

Infectious diseases have a strong impact on the dynam-
ics of human populations and are routinely highlighted
when epidemic outbreaks of deadly infections like Ebola
or MERS occur. Increased human mobility, the rise of
pathogens resistant to antibiotics (“Antimicrobial Resis-
tance”), and the advent of new, so called Emerging
Infectious Diseases are making infectious diseases a major
health challenge of the 21st century.

To understand more deeply transmitting diseases and
epidemic outbreaks and to inform public health organi-
zations, a wide range of mathematical models have been
proposed and studied in detail. One of the simplest and
well-known models illustrating the dynamics of epidemics
is the SIR model, proposed by Kermack and McKendrick
in 1927 [1]. The central idea of this model is to divide
the entire population into three separate groups: suscep-
tible (S) individuals that have never been infected and
are not immune to the disease; infected (I) individuals,
who are infectious and can spread the disease within the
population; and recovered (or removed; R) individuals who
have already had the disease and are therefore immune for
life.
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Temporal changes in the numbers of individuals in dif-
ferent groups of the SIR model are described by the
differential equations

dS

dt
= −βSI, (1a)

dI

dt
= βSI − aI, (1b)

dR

dt
= aI. (1c)

The number of infected agents increases proportionally
with the number of susceptible agents times the force of
infection βI, being itself the product of the non-zero infec-
tion rate β and the number of infectious individuals. This
is an example of a density dependent force of infection,
being an alternative a frequency dependent force of infec-
tion βI/N [2]. Individuals recover from the infection with
rate a.

Adding equations (1a)–(1c), one can see that S + I +R
is time conserved. Furthermore, there is no notion of
physical space in the model, meaning that individuals
are uniformly mixed in the population. Both properties
are common assumptions of simple SIR models that are
rarely realized in real populations.
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One of the key medical advances of the 20th century was
the proliferation of cheap and safe vaccines for a range of
diseases. Vaccines are among the most important tools to
prevent infections and epidemics. One particular benefi-
cial and mathematically interesting aspect of vaccination
is that not 100% of a population need to be immunized in
order to prevent epidemic outbreaks, a property called
herd immunity [2]. Unfortunately, vaccination encoun-
ters opposition in different socio-cultural contexts that
endangers the working of the herd immunity effect as the
fraction of vaccinated individuals falls below a threshold.
Yet another effect that limits the efficiency of vaccines is
that the protection provided has a finite lifetime: depend-
ing on the disease, the immunization effect of the vaccine
fades over time and the patient has to be re-vaccinated
(e.g., diphtheria, tetanus and pertussis).

In this article, we investigate an SIRV model (“V” for
vaccination) that accounts for the fact that immunization
of the vaccine wanes over time and that even recovered
individuals can fall ill again. Furthermore, we consider the
spatiotemporal dynamics of such a system. Epidemiologi-
cal and SIRV models have been considered in many vari-
ants, for reviews see references [2–4], and some recent work
consider the dynamics on networks [5–7], information-
driven vaccination [8–10], or stochastic behavior [11,12].
Spatiotemporal dynamics in nonlinear systems often show
traveling wave patterns or Turing-like, stationary pat-
terns [13,14]. In the context of spatial epidemiologi-
cal models [15], spatial coupling is often described by
reaction-diffusion equations or networks [16–22].

2 The SIRV model with finite lifetime
protection

Among the range of epidemiological models using the SIR
model as a building block, we focus on those aimed to
investigate the impact of vaccination, using here a modi-
fication of the SIRV models presented in references [4,23].
In this model, an independent birth rate B and death
rate p are taken into account. There are two types of vac-
cination: v1 is the fraction of vaccinated newborns and v2
is the rate of vaccination of susceptible individuals. By
construction, 0 ≤ v1 ≤ 1, with these two limiting cases
representing that all newborns are either susceptible or
vaccinated. Contrary to the classical SIR model, protec-
tion against infection is not for life: recovered individuals
become susceptible again with rate q1, vaccinated ones
with rate q2, yielding the model

dS

dt
= B(1− v1)− βSI − v2S + q1R+ q2V − pS,(2a)

dI

dt
= βSI − aI − pI, (2b)

dR

dt
= aI − q1R− pR, (2c)

dV

dt
= v1B + v2S − q2V − pV . (2d)

A schematic representation of the transitions among the
compartments in the SIRV model is displayed in Figure 1

Fig. 1. Schematic representation of the transition of individ-
uals in the SIRV model (SIR model with additional effect of
vaccination) for infectious diseases.

Table 1. Parameters used in model (2). The parameters
β, a, p and B are positive, the others non-negative and 0 ≤
v1 ≤ 1. All parameters are measured per unit time, except
for v1 (unitless) and β (per unit time times population size
unit).

Parameter Description

β Infection rate
a Recovery rate from infection
p Death rate
B Birth rate
v1 Fraction of vaccinated newborns
v2 Vaccination rate of susceptible individuals
q1 Conversion rate from recovered to susceptible
q2 Conversion rate from vaccinated to susceptible

and the meaning of the parameters is found in Table 1.
All parameters and variables have to be non-negative for
equations (2) being interpreted as a valid epidemiological
model.

From equations (2a)–(2d), and defining the total popu-
lation size as N(t) = S + I +R+ V , we find

dN

dt
= B − pN. (3)

This linear equation has the solution

N(t) =
B

p
+

(
N0 −

B

p

)
e−pt, (4)

where N0 is the initial population size. While the total
population size can vary as a transient if N0 6= B/p, in
the limit lim

t→∞
N = B/p which means that asymptotically

the total population size is constant. In particular, if birth
and death rates are equal, then lim

t→∞
N = 1. In the follow-

ing, we require both birth and death rates to be strictly
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{S2, I2, R2, V2} =

{
a+ p

β
,

(q1 + p)[Bβ(q2 + p− pv1)− p(a+ p)(q2 + v2 + p)]

βp(q2 + p)(a+ q1 + p)
,

a

q1 + p
I2,

Bβv1 + v2(a+ p)

β(q2 + p)

}
(6)

non-zero to exclude cases of vanishing or exponentially
growing populations. Using equation (4), the model in
equations (2) can be interpreted as a time-dependent sys-
tem with 3 variables (using, e.g., R = N − S − I − V ).
However, in the simulations, we numerically integrate the
system defined in equations (2) directly.

3 Stationary states and their stability

A key motivation of the study of population models is
to find the number of possible asymptotic states and to
evaluate the relative size of the sub-populations. We find
these steady state solutions in our model by setting the
left-hand sides of equations (2) to zero.

The first stationary state is characterized by the fol-
lowing solution for susceptible, infected, recovered and
vaccinated agents:

{S1, I1, R1, V1}=

{
B(q2 + p− pv1)

p(q2 + v2 + p)
, 0, 0,

B(v2 + pv1)

p(q2 + v2 + p)

}
.

(5)

The number of infected individuals (and hence the num-
ber of recovered) is zero in this solution, justifying the
name disease-free equilibrium (denoted with subscript “1”
and abbreviated as DFE). This solution describes a pop-
ulation without disease where the parameters control the
relative fractions of susceptible and vaccinated individuals
(summing up to N = B/p).
S1 and V1 are both independent of q1, meaning that in

the disease-free state the finite time of disease protection
of a recovered individual is irrelevant (which is consistent
with R1 = 0). Neither the infection nor the recovery rate
influences the steady state values S1 and V1. Note that S1

cannot be negative since 0 ≤ v1 ≤ 1 (see above).
The second stationary state is characterized by the fol-

lowing solution for susceptible, infected, recovered and
vaccinated agents:

See equation (6) above.

Since the number of infected individuals (and hence
the number of recovered) is non-zero, this state (denoted
with subscript “2”) is referred to as the endemic equi-
librium (EE). Again, only the parameters control the
relative fractions of individuals in the different compart-
ments (summing up to N = B/p). To describe a state
relevant from a population dynamics point of view, the
four compartments must have non-negative population
numbers, constraining the parameter values, as we see
later.

Fig. 2. Illustration of the stability of the disease-free state
(I1 = 0). Note that I2 < 0 corresponds to a non-physical
solution and hence absence of the endemic equilibrium state
(population numbers have to be positive).

To perform a standard linear stability analysis, we
determine the Jacobian of equations (2) and obtain

J =


−(βI∗ + v2 + p) −βS∗ q1 q2

βI∗ −(−βS∗ + a+ p) 0 0

0 a −(q1 + p) 0

v2 0 0 −(q2 + p)

 ,

(7)

where I∗ and S∗ need to be replaced by the respective
stationary state solutions. Evaluated at the disease-free
equilibrium, we obtain the eigenvalues as

λ1 = −p, (8a)

λ2 = −q1 − p, (8b)

λ3 = −q2 − v2 − p, (8c)

λ4 = −a− p+
Bβ(q2 + p− pv1)

p(q2 + v2 + p)
= −a− p+ βS1.

(8d)

The first three eigenvalues are always negative since
all rates are non-negative and p is strictly positive. The
fourth eigenvalue can change sign (and therefore indicate
instability of the solution), depending on the values of all
parameters except q1, that does not influence the stability
of the disease-free state at the linear level.

Setting λ4 = 0, we obtain that the DFE is unstable if
the infection rate β is larger than a critical infection rate
βc, given by

βc =
p(a+ p)(q2 + v2 + p)

B(q2 + p− pv1)
. (9)

For β = βc, one can show that S2 = S1 while I2 = 0.
This is schematically shown in Figure 2. Obviously, this
condition can also be expressed as critical values for
the other parameters (illustrated below). The condition
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Fig. 3. The stationary states as function of v1: the red (solid) curve indicates the endemic state, the blue (dashed) curve the
disease-free state. Other parameters used are as follows: β = 0.05, a = 0.4, p = 0.3, B = 8.0, v2 = 0.25, q1 = 0.45, q2 = 0.15.

λ4 = 0 coincides with the parameter value for which the
DFE and the EE are identical. λ4 can also be written as
β(q2 +p)(a+q1 +p)(q2 +v2 +p)−1I2 which shows that the
existence of the endemic equilibrium is associated with the
instability of the disease-free equilibrium. The stability of
the endemic equilibrium can be checked for in an analo-
gous way but is omitted here as they lead to very lengthy
expressions that have to be evaluated numerically. The
existence of a stable DFE does not exclude the possibil-
ity of an appropriate initial condition mediated epidemic
outbreak via a transient increase in the value of I.

4 Transition between states and basic
reproduction number

In this section, we show how the stationary states vary
as a function of some of the parameters. In particular,
we consider the vaccination parameters v1 and v2 and the
conversion rate q2 (we have seen above that q1 does not
influence the existence or change of stability of the DFE).

Figure 3 shows the stationary state solutions for all four
sub-populations as a function of the fraction of vaccinated
newborns (v1). For the DFE, the dependence on v1 is lin-
ear for S1 and V1, showing the direct proportionality of
the fraction of vaccinated people in the population on the
fraction of vaccinated newborns. As v1 is decreased. the
DFE becomes unstable at a critical v1c via a transcritical

bifurcation and the EE sets in, a general feature of SIR
models [3]. Then, the number of susceptible remains con-
stant in the population while the number of infected (and
also recovered) increases linearly. At the same time, the
vaccinated fraction of the population decreases, and with
a higher rate than when the DFE was stable.

We now consider the case of varying the vaccination rate
of the susceptible individuals v2 (Fig. 4). Considering first
the EE, it can be seen that the qualitative behavior of the
curves is similar to the case of varying the fraction of vac-
cinated newborns. However, for the DFE the fractions of
susceptible and vaccinated sub-populations do not change
linearly as above, see also equation (5). In particular, the
rate of increase of V1 as a function of v2 starts slowing
down beyond the linear regime, meaning that it becomes
increasingly difficult to protect the population. Also, for
v2 = 0, V1 = V2 and hence if the only vaccination is taking
place at birth, the fraction of vaccinated people is identical
in the endemic and disease-free states.

Finally, we discuss the case of changing the conver-
sion rate from vaccinated to susceptibles (q2). The loss
of protection of the vaccination plays an antagonistic role
to the vaccination rate. It is not a surprise to find that
for the DFE, the vaccinated fraction of the population
decreases as q2 increases. The role of q2 in the equation
for S1 is the same as v2 in the equation for V1 [Eq. (5)].
For the EE, though, the situation is slightly different.
While the infected fraction of the population increases
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Eur. Phys. J. B (2018) 91: 267 Page 5 of 11

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

v
2

v
2

v
2

v
2

S I

R V

Fig. 4. The stationary states as function of v2: the red (solid) curve indicates the endemic state, the blue (dashed) curve the
disease-free state. Other parameters used are as follows: β = 0.05, a = 0.4, p = 0.3, B = 8.0, v1 = 0.35, q1 = 0.45, q2 = 0.15.

with q2, it does so at a rate that is slower than the linear
growth rate at onset, showing that a waning immunization
favors the endemic state, but a change in this parameter
is less dangerous than a decrease of any of the vaccination
parameters.

A relevant quantity in epidemiology is the basic repro-
duction number R0. It is defined as the expected number
of secondary individuals infected by an individual in its
lifetime (for a review see Ref. [24]). This quantity helps
to predict whether a disease present in a population will
create an epidemic (if R0 > 1).

To calculate the basic reproduction number R0, we
use the next generation method for structured popula-
tions [24]. For that we separate the Jacobian given in
equation (7) into a transmission part T and transition
part Σ, evaluated at the DFE. We obtain:

T =

0 −βS1 0 0
0 βS1 0 0
0 0 0 0
0 0 0 0

 (10)

and

Σ =

−v2 − p 0 q1 q2
0 −a− p 0 0
0 a −q1 − p 0
v2 0 0 −q2 − p

 . (11)

Then, R0 is the leading eigenvalue of the matrix [−TΣ−1].
It is determined as

R0 =
Bβ(q2 + p− pv1)

p(a+ p)(q2 + v2 + p)
. (12)

The R0 shown in equation (12) above is identical to S1/S2

and to β/βc, providing alternative interpretations of the
onset of an epidemic. Also, R0 = 1 + (a + p)−1λ4, elu-
cidating the relationship between the basic reproduction
number and the dominant eigenvalue of the stability anal-
ysis of the DFE. Because of this link it is not surprising
that for this model, the same result can be obtained by
evaluating λ4 or by setting I2 to zero.

Figure 6 shows R0 as a function of the vaccination
parameters v1, v2, and the rate of loss of protection q2.
The panels (A)–(C) exhibit a situation involving an epi-
demic with low R0, while panels (D)–(F) use parameter
values for pertussis, a disease with high R0. In agreement
with the above figures for the stationary states, we observe
that for low vaccination rates (v1, v2) and a high rate of
loss of protection (q2), the endemic state is stable while
the disease-free state is unstable. On the other hand, if the
vaccinated fraction of the population loses its protection
at a high rate, a transition from the disease-free state to
the endemic equilibrium occurs. Only the dependence of
R0 on v1 is linear. As the infection rate β increases, the
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Fig. 5. The stationary states as function of q2: the red (solid) curve indicates the endemic state, the blue (dashed) curve the
disease-free state. Parameter values chosen are as follows: β = 0.05, a = 0.4, p = 0.3, B = 8.0, v1 = 0.35, v2 = 0.25, q1 = 0.45.

R0 curves are shifted upwards (panels (A)–(C)), reflect-
ing an increased tendency to destabilize the disease-free
equilibrium. For the specific case of pertussis, we observe
that the curve R0(v1) is relatively flat (for three different
combinations of values of v2 and q2), meaning that even
complete vaccination of a newborn population is not suf-
ficient to contain the disease if the vaccination rate v2 is
not high enough. This is confirmed by the curve R0(v2)
(Fig. 6E) which shows a sharp decay, illustrating that vac-
cination is an efficient way of decreasing R0 (for three
different combinations of values of v1 and q2). It is worth
noting that red and blue curves differ only in v1 and while
the values are very different (0.95 and 0.05), the position
of the curves are similar. In contrast to this, increasing
q2 from 0.05 to 0.3 makes the control via v2 more diffi-
cult (purple curve). Finally, the curves in Figure 6F show
that R0 is also very sensitive to the conversion rate from
vaccinated to susceptible as only small values allow that
R0 stays below 1.

As mentioned above, the stability analysis of the
endemic equilibrium leads to very lengthy expressions that
we exclude for the sake of brevity. We, hence, assess the
stability of the endemic equilibirium numerically. In Fig-
ure 7 we show how the four eigenvalues vary as a function
of the main parameters q1, q2, v1 and v2. As we know that
the EE only exists if the DFE is unstable, we also plot
the R0 curve indicating the critical parameter values. The

fundamental result is that where R0 > 1, the real parts
of the four eigenvalues are negative, showing that the EE
is stable in these parameter regions. A particular case is
the graph Figure 7A which confirms that q1 is not only
irrelevant for the stability of the DFE, but also of the EE.

While the existence and stability of the asymptotic
states are fundamental properties of any epidemiological
system, an epidemic is a time-dependent process. For
example, even if the DFE is stable and asymptotically
obtained, an epidemic outburst can occur. Hence, in a
deterministic system, the initial state of the population is
fundamentally important. In the presence of birth-death
processes, a high death rate can mask slow processes
(if the loss of immunization is on the timescale of life
expectancy) or an expanding population may require a
higher vaccination rate in order to keep the population
protected.

5 The spatiotemporal SIRV model

Epidemiological models without spatial degrees of free-
dom can only be applied to very well mixed populations.
However, people live in confined communities that are spa-
tially connected. As a starting approach, we assume that
the population is distributed over a one-dimensional space
where transport between adjacent areas is diffusive (equiv-
alent to nearest-neighbor interactions). Therefore, we add

https://epjb.epj.org/
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diffusion terms to the SIRV model (2) and obtain

∂S

∂t
= B(1− v1)− βSI − v2S + q1R+ q2V − pS

+DS∇2S, (13a)

∂I

∂t
= βSI − aI − pI +DI∇2I, (13b)

∂R

∂t
= aI − q1R− pR+DR∇2R, (13c)

∂V

∂t
= v1B + v2S − q2V − pV +DV ∇2V , (13d)

where DF (F = S, I, R, V ) are diffusion constants for sus-
ceptible, infected, recovered and vaccinated individuals,
respectively.
The two fixed points shown in equations (5) and (6) of

the diffusion-free system are solutions of the system with
diffusion (13) in case the variables do not show any spa-
tial dependence, i.e., represent a homogeneous solution.
However, the linear stability of this homogeneous solution
depends on diffusion, as we shall see now.

Perturbed around the homogeneous fixed points, in
the Fourier transformed (k, t) space, the dynamics is
represented through the Jacobian Jk that is given by

See equation (14) next page

where I∗ and S∗ need to be replaced by the respective
stationary state solution [equations (5), (6)]. Around the
disease-free steady state, one can find the eigenvalues as
follows

See equation (15) next page.

The eigenvalue λ1(k) is a generalization of λ2 of the ODE
system and is always negative. The eigenvalue λ2(k) is the
generalization of λ4 of the ODE system and can there-
fore change sign. The eigenvalues λ3,4(k) depend on the
sum and differences of the diffusion coefficients of the sus-
ceptible and vaccinated population fractions. It can be
easily shown that λ3,4(k) are always negative and hence
diffusion has always a stabilising effect on the DFE. The
most unstable wavenumber is k = 0. Hence, whenever the

https://epjb.epj.org/
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Jk =

 −(βI∗ + v2 + p+DSk
2) −βS∗ q1 q2

βI∗ −(−βS∗ + a+ p+DIk
2) 0 0

0 a −(q1 + p+DRk
2) 0

v2 0 0 −(q2 + p+DV k
2)

 , (14)

λ1(k) = −q1 − p−DRk
2, (15a)

λ2(k) = −a− p+
Bβ(q2 + p− pv1)

p(q2 + v2 + p)
−DIk

2, (15b)

λ3(k) =
1

2

[
− 2p− (DS +DV )k2 − q2 − v2

+

√
[q2 − (DS −DV )k2]

2
+ 2[(DS −DV )k2 + q2]v2 + v22

]
, (15c)

λ4(k) =
1

2

[
− 2p− (Ds +DV )k2 − q2 − v2

−
√

[q2 − (DS −DV )k2]
2

+ 2[(DS −DV )k2 + q2]v2 + v22
]
. (15d)

DFE is unstable in the purely temporal system, it is also
unstable in the spatiotemporal system.

Figure 8 shows a numerical simulation of the spa-
tiotemporal SIRV model [Eqs. (13)] in one-dimensional
space. The initial condition is a disease-free state with
a small nucleus of infected agents at the center of the
medium. Parameters have been chosen to ensure that the
disease-free state is unstable, leading to a transition to
the endemic state. This can be clearly seen as a traveling
wave in the space-time plot for I in Figure 8A. Figures 8B
and 8C illustrate the behavior of all variables for a fixed
point in space (B) and for a fixed point in time (C). The
latter displays the profile of the traveling wave front. For
this set of parameters, the spatial distribution for I shows
small peaks in the fronts.

The wave of infection observed in Figure 8 can be inves-
tigated in more detail. In Figure 9, we show how the front
velocity changes with the diffusion constant DI and the
infection rate β. Both functional forms follow a square root
dependence reminiscent of the Fisher-Kolmogorov equa-
tion [14,25]. Indeed, for a single-species population model
with variable u, it is known that the natural front velocity
of a front triggering a transition from the unstable to the
stable state is given by v = 2

√
f ′(u1)D, where D is the

diffusion constant, f(u) describes the temporal dynamics
and u1 is the unstable steady state [25]. Applying the same
rationale to equation (2b), we obtain

v = 2
√

(βS1 − a− p)DI = 2
√

(β − βc)S1DI . (16)

The qualitative agreement between the curves is surpris-
ingly good which is remarkable as no fitting parameters
are applied and the analytic expression uses only one equa-
tion of a coupled 4-dimensional dynamical system. There
is a slight quantitative difference for small velocities, as
seen in Figure 9A that could be partially explained by the

fact that the simulations are performed in a finite sized
system and that the calculation of the front speed from
the simulation data carries an error.

6 Discussion

In this article, we have considered an SIRV model in the
temporal and spatiotemporal domain. The model has two
asymptotic states, the disease-free state and the endemic
state. We have focused on the consequences of diminishing
immunization, i.e., the effect when vaccinated or recovered
individuals become susceptible again. The results have
been obtained through bifurcation analysis of the individ-
ual solutions (for S, I, R and V ), as well as through the
determination of the basic reproduction number R0. In the
asymptotic regime the number of each sub-populations is
proportional to its density in the whole population, so the
results refer directly to population densities or fractions.
Our exclusively temporal model shares similarities with a
model studied in [23], however, the models only coincide
if we set v1 = q1 = 0 in our model and simultaneously
set µ = σ = 0 in the model discussed in reference [23].
However, assuming non-zero values for these parameter is
crucial for both our model (possible vaccination at birth
and conversion from recovered to susceptible agents) and
the model discussed in reference [23] (variable vaccine effi-
cacy and possibility of disease-induced deaths) and hence
the interpretation and applicability of the models differ
substantially.

By considering the results of a linear stability analy-
sis of the disease-free state, we have found that the loss
of protection of the recovered fraction of the population
(with rate q1) has no influence on the onset of the endemic
state. While the rate q1 does not influence the asymptotic
DFE, it can impact on the transient time to equilibrium.

https://epjb.epj.org/
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Fig. 7. Stability of the endemic equilibrium. We show the real parts of the four eigenvalues as function of the parameters q1
(A), q2 (B), v1 (C) and v2 (D), together with the curve for R0 (black) indicating the stability of the DFE (the dotted line at
R0 = 1 is a guide to the eye). Where the DFE is unstable, the EE is stable. Other parameter values are as follows: a = 0.4,
β = 0.05, p = 0.3, B = 8.0, v1 = 0.35, v2 = 0.25, q1 = 0.45, q2 = 0.15.
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Fig. 8. Wave of an epidemic spread as observed in the SIRV model. (A) Space-time density plot for I. (B) Temporal variation
of {S, I, R, V } at the centre of the simulation domain considered (x = 0). (C) Front profile of {S, I, R, V } at t = 100. The brown
(dashed) curve denotes S, the red (dot-dashed) curve denotes I, the green (dotted) curve denotes R and the blue (solid) curve
represents V . Parameters used are as follows: β = 0.05, a = 0.4, p = 0.3, B = 8.0, v1 = 0.25, v2 = 0.15, q1 = 0.45, q2 = 0.25,
DS = 10, DI = 0.5, DR = 10, DV = 10. The system size is −100 ≤ x ≤ 100, the boundary conditions are periodic and the
displayed time interval in (A) is T = 180.
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Fig. 9. Wave speed of an epidemic in the SIRV model as a
function of DI (A) and β (B). Speeds are measured from the
simulation data (black solid curves) and compared with equa-
tions (16) (red dashed curves). No fitting parameters are used.
Other parameters are as in Figure 8.

On the other hand, the loss of protection of the vacci-
nated fraction of the population (with rate q2) can shift
the population from a disease-free state to an endemic
one. An interesting feature of this model is that the den-
sity of susceptibles in the endemic regime does not depend
on q2. The curve of R0 with q2 is increasing, however,
with a decreasing slope, meaning that decreasing q2 in
the epidemic regime may bring the population closer to
the threshold than predicted by a linear regression. Con-
sidering the effect of the vaccination rates, we find that the
fraction of vaccinated newborns v1 changes the asymptotic
fractions linearly in both stationary states, as well as R0.
This is in contrast to v2 where the dependence is non-
linear. There, we have found that if v2 is decreased in an
disease-free state, the basic reproduction number increases
more strongly than predicted by a linear regression. This
implies that the critical R0 = 1 may be reached for higher
v2 than assumed.

Our results show that in the diffusion-free state
the dominant eigenvalue of the disease-free state λ4 =
β(q2 + p)(a+ q1 + p)

q2 + v2 + p
I2. This means that if the endemic

state exists, the disease-free equilibrium is unstable that
is associated with positive λ4 values and R0 > 1. In the
complete absence of adult vaccination, implying v2 = 0,
equations (5) and (6) show that the vaccinated num-
ber density is the same for the two asymptotic states(
Bv1
q2 + p

)
. This then implies that one cannot predict

the actual epidemic state from the proportion of the
vaccinated population alone. We have presented a numer-
ical solution for the stability problem of the endemic
equilibrium. It indicates that while the EE exists, it is
stable.

The features obtained from a study of this model can
be put in the appropriate context of epidemiological data.
Diphtheria and Pertussis (whooping cough) are amongst
the diseases that are associated with waning immuniza-
tion. Repeated vaccinations (“boosts”) are needed to
prevent the spreading of such diseases. Due to the high
R0 values of these diseases, children are vaccinated at

early ages. Without epidemiological control, the R0 of per-
tussis has been estimated at 16–18 [26], a value lowered
to 11–15 [27] later. In the presence of vaccination, the
value could be lowered to around 5.5 [28]. The incidence
among adults are explained by waning immunization and
the possibility of evolving subclinical strains that are held
responsible for persistence of pertussis in vaccinated pop-
ulations [28]. In Figure 10, we show a short time series
of a population suffering from pertussis infection and for
which the endemic equilibrium is stable. The initial state
consists of a population with very few infected agents. We
clearly notice some outbursts of infection, with a charac-
teristic time gap between 1 and 2 years. This timescale
is not far off from known deterministic models of pertus-
sis which consistently predict annual epidemics [29]. Note,
however, that detailed and more realistic models for per-
tussis rely on an SEIR mechanism, with an exposed/latent
phase and/or age structure, and possibly term-time forc-
ing. Furthermore, stochastic effects are also known to be
crucial in the disease dynamics [30]. A recent work com-
pares the different classes of models including reinfection
of recovered and loss of infection-derived immunity and
subsequent reinfection [31]. In the context of this arti-
cle, we simply want to illustrate an example of a specific
disease for our model.

For all realistic epidemiological models, spatial inter-
actions have to be considered. In our model, we have
assumed a nearest-neighbor interaction, modeled by dif-
fusion terms. Our linear stability analysis of the DFE
confirms that the most unstable wavenumber is k = 0, and
that the disease-free equilibrium cannot be destablized by
controlling the diffusion rates. A discussion of the spatial
stability problem of the endemic equilibrium is beyond the
scope of the present work.

A well-known feature of infection models with dif-
fusion is that they are able to describe the propaga-
tion of waves, of particular interest being waves that
represent the onset of an epidemic. We have shown
that in spite of the comparatively high complexity of
the model (4 coupled equations), the wave speed still
approximately follows the one-species Fisher-Kolmogorov
model, similar to what has been observed for a different
model [16].

Temporal and spatiotemporal epidemiological models
have been studied in many variants. A series of recent
works tries to find optimal vaccination strategies, for
example by a probabilistic modelling of infection in net-
works [32], by minimizing the number of infected and
susceptibles [33], by a Poisson distributed vaccination
schedule on networks [6], by an information (and time)
dependent vaccination rate [10], or by optimizing the
vaccination rate through a stochastic maximum princi-
ple [12]. In contrast to these articles, we analyze the
front speed of a general SIRV model, similar to the
approaches of [18] for a stochastic SIR model and [20] for
an SIR model with non-smooth treatment (vaccination)
functions.

As possible follow-up, we mention the spatial stabil-
ity analysis of the endemic equilibrium, an analytical and
numerical investigation of fronts in two space dimensions
and the incorporation of social effects.
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