
Useful ideas for exploiting time to engineerrepresentations �Richard RohwerDept. of Computer Science and Applied MathematicsAston University, Birmingham B4 7ET, UKrohwerrj@uk.ac.aston.cs25 September 1992Shastri and Ajjanagadde have found an interesting way to exploit the representationalpotential of time in neural network models. In most `neural software engineering',a correspondence is de�ned between some of the state vectors of the model andinterpretations in an application domain. The representational power of a state islimited by its dimension; eg., a network of N binary-valued nodes can represent atmost 2N di�erent things. But without allocating any further hardware resources, thatrepresentational power can be increased to 2NT by interpreting length-T temporalsequences of states instead of individual states. It's a space-time tradeo�: It takesT times longer to represent something this way, but 2T times as many things arerepresentable.The authors have found a situation in which this trade-o� is an impressively good deal.It is important to have the power to represent a great variety of variable bindings,but most will never actually get represented in practice, and most of those that dowill not need to be represented for very long. So it is better to spend some timerebuilding the representational setting each time a binding needs to be representedthan to keep lots of spare representational capacity on tap.The space-time tradeo� in this system is partly illusory, because its dynamics is orderT�1 in the state variables, where T is the number of phases in a fundamental period.This is because maintenance of synchrony requires connections with time-delay T �1between the �-btu nodes representing corresponding parts of rule-related predicates.Consequently, so far as the dynamics is concerned, a `state' has N(T�1) components.�Comment for Behavioral and Brain Sciences target article \From Simple Associations to Sys-tematic Reasoning: A Connectionist representation of rules, variables, and dynamic bindings usingtemporal synchrony", by Lokendra Shastri and Venkat Ajjanagadde.1



Whether temporal synchrony is implemented with simple delay lines or the elaboratemechanism in section 7.3, a bu�er of size N(T � 1) has to be directly or indirectlyimplemented in order for the system to run. These extra degrees of freedom canbe thought of as implemented at a sub-cellular level. Computer simulations have todedicate memory to them.Although temporal coincidence plays a key role in this system, the oscillations seeminessential to its operation. What matters is that fact predicates `observe' whethertheir arguments �re synchronously with any constants at least once during a reasoningepisode, and that variables linked by rules eventually �re at the same time as anyconstant to which they may be bound. Periodic reiteration of these coincidences seemsa waste of time. The only important role of the oscillations is in keeping variableslinked by rules synchronised with each other. That way a constant synchronisedwith one is synchronised with all. The synchronisation among rule-related variableswould be maintained by instantaneous propagation of activations, if only that werepossible. Instead it is achieved (eventually) by delaying propagation for nearly onebasic oscillation period, or by more elaborate mechanisms which require at least onecycle to take e�ect. Perhaps there is a cheaper way.This system's elegant distribution of representations over time is not matched by anelegant distribution of representations over nodes. Grandmother-cell (or cell cluster)representations of constants and variables are used throughout. This may be just aswell for expository purposes, but greater e�ciency and potentially interesting prop-erties may arise from more fully distributed representations. A set of C constants, forexample, can be represented as patterns distributed over O(logC) nodes. (A moresparse representation using � logC nodes, with �� 1 but nevertheless � logC � C,might have more useful properties.) Smolensky, Dolan, and others have developed`tensor product' binding methods which use distributed representations of constantsand variables [?]. Unfortunately, these methods require (� logC)(� log V ) nodes torepresent bindings among C constants and V variables. C and V refer to all constantsand variables, not just those used in an episode of reasoning. It seems feasible, how-ever, to distribute the tensor product over time, using a mixture of the tensor productbinding and phase binding approaches [?]. This o�ers the combined advantages ofeach system. The total number of nodes required to represent the constants and vari-ables is reduced from the grandmother-cell system's O(C + V ) to O(logC + log V ).No extra nodes are needed to represent the tensor product, but some extra time stepsare needed, as many as there are bindings in the episode of reasoning. In addition toproviding increased e�ciency, the distributed representations might give such a sys-tem interesting generalisation properties found in the more popular neural networkmodels. 2


