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Abstract 

Although electrophiles are considered as detrimental to cells, accumulating recent evidence  

indicates that proliferating non-cancerous and particularly cancerous cells utilize these 

agents for pro-survival and cell cycle promoting signaling. Hence, the redox shift to mild 

oxidant release must be balanced by multiple defense mechanisms. Our latest findings 

demonstrate that cell cycle progression, which dictates oxidant level in stress-free conditions, 

determines PARP1 transcription. Growth modulating factors regulate CDK4/6-RBs-E2Fs 
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axis. In cells arrested in G1 and G0, RB1-E2F1 and RBL2-E2F4 dimers recruit chromatin 

remodelers such as HDAC1, SWI/SNF and PRC2 to condense chromatin and turn off 

transcription. Release of retinoblastoma-based repressive complexes from E2F-dependent 

gene promoters in response to cell transition to S phase enables transcription of PARP1. 

This enzyme contributes to repair of oxidative DNA damage by supporting several strand 

break repair pathways and nucleotide or base excision repair pathways, as well as acting as 

a co-activator of transcription factors such as NRF2 and HIF1a, which control expression of 

antioxidant enzymes involved in removal of electrophiles and secondary metabolites. 

Furthermore, PARP1 is indispensible for transcription of the pro-survival kinases MAP2K6, 

ERK1/2 and AKT1, and for maintaining MAPK activity by suppressing transcription of the 

MAPK inhibitor, MPK1. In summary, cell cycle controlled PARP1 transcription helps cells to 

adapt to a pro-oxidant redox shift. 
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1. Pro-oxidant physiology of proliferating cells 

Human cells proliferate in a variety of contexts. Controlled cell divisions play a particular 

function for development of the embryo, while in the adult organism mainly stem and some 

immune cells retain the ability to proliferate. Cancer cells, as a special type of transformed 

cells, are capable of unlimited and uncontrolled growth. Regardless of the type of dividing 

cell, proliferation imposes a requirement for energy and reducing power. Although 

mitochondrial oxidative phosphorylation is the most efficient source of ATP, it can cause 

extensive release of O2
•-, which is dismutated to H2O2 either in mitochondria (by SOD2) or in 

the cytoplasm (by SOD1). Therefore, above some critical threshold value of this oxidant in 

cell compartments, aerobic glycolysis becomes more favorable than oxidative 

phosphorylation in order to limit the hazardous waste products resulting from the 
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mitochondrial metabolic pathway [1]. During fatty acid oxidation, O2
•- and H2O2 can also be 

produced by xanthine oxidase in peroxisomes, which duplicate and are segregated between 

progeny cells. Although metabolically unrelated, NADPH oxidases act as a primary source of 

oxidants in macrophages and some cancer cells [2].  

Depending on the cell type, proliferation-inducing agents such as growth factors (platelet-

derived, fibroblast, epidermal, insulin-like and transforming growth factor β), cytokines (type I 

interferons, granulocyte-macrophage colony-stimulating factor), mutant K-ras or small 

GTPase Rac-1 elevate intracellular O2
•- through NADPH oxidase and/or mitochondria [3, 4]. 

Due to pressure induced by an elevated and sustained redox shift to a mild oxidative 

environment, cells have developed efficient mechanisms of adaptation and functional 

transformation of „bad” to „good” molecules, which promote cell proliferation and survival at 

different signaling levels [5].  

2. Cell cycle progression regulates PARP1 transcription 

Poly-ADP-ribose polymerase 1 (PARP1) is a multitasking enzyme that regulates many 

intracellular processes, including DNA repair, metabolism, signaling and transcription, by 

direct interaction with other proteins and DNA, involving their ADP-ribosylation and auto-

ADP-ribosylation of PARP1. The data acquired and published in the EMBL-EBI Expression 

Atlas indicate high PARP1 abundance in proliferating cancerous and non-cancerous cells 

(e.g. macrophages) [6]. In search for the link between PARP1 transcription and cell cycle 

progression, we recently revealed that cell arrest in G1 or exit to G0 lead to PARP1 

repression by retinoblastoma-based multiprotein complexes, which are also known to 

repress transcription of E2F-depndent genes encoding proteins responsible for cell transition 

to S phase [7]. The mode of growth inhibition determines the composition of the repressive 

complex at the PARP1 promoter, giving priority to E2F1-RB1 dimers under G1 arrest in 

cancer, as well as in CD34+ hematopoietic progenitor/stem cells treated with cycline-

dependent kinases 4 and 6 (CDK4/6) pharmacological inhibitors or depleted of nucleotides 

by mimosine. E2F4-RBL2-based complexes were found to be prevalent in differentiated cells 

(Figure 1). Since PARP1 is involved in cell protection against oxidants, one may think that 
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PARP1 repression in response to proliferation arrest may sensitize cells to agents that 

challenge redox homeostasis. Some ongoing and recruiting clinical trials have been testing 

FDA approved CDK4/6 inhibitors Palbociclib (IBRANCE®, PD0332991) and Ribociclib 

(LEE011, Kisqali) in combination with drugs such as doxorubicin, carboplatin and paclitaxel, 

which trigger acute redox imbalance [8].  

Furthermore, PARP1 enhances cell proliferation. Hormone-activated cyclin-dependent 

kinase 2 (CDK2) phosphorylates and activates PARP1, thereby facilitating H1 displacement 

and transcription of the majority of hormone-responsive genes in breast cancer [9]. In urinary 

bladder carcinoma cells, PARP1 regulates cyclin E expression, cell cycle re-entry and G1/S 

progression [10]. Thus, high levels of PARP1 in cancer cells promote cell cycle progression, 

which is associated with an increased level of oxidants, thereby maintaining PARP1 

transcription and creating a self-promoting cycle.  

3. PARP1 co-activates expression of proteins that enzymatically decompose oxidants 

and remove secondary metabolites 

The primary role in antioxidant defense and in cell adaptation to excessive oxidant or 

electrophile production is fulfilled by enzymatic antioxidant defense, which comprises direct 

scavengers of electrophiles, but also enzymes that detoxify the secondary metabolites. Many 

such enzymes are under transcriptional control of nuclear factor erythroid 2 (NFE2)-related 

factor 2 (NRF2), a basic leucine zipper (bZIP) protein, which dissociates from its repressor 

Keap1 and translocates to nucleus in response to a physiological shift in redox homeostasis 

towards oxidant production. NRF2 requires PARP1 for full transcriptional activity, because 

PARP1 facilitates interaction of NRF2 and NRF2-partner (small MAF protein; MAFG) with the 

antioxidant response element (ARE) (Figure 2) [11]. An inhibitory effect of PARP1 

knockdowns was found in breast cancer cells and proliferating mouse fibroblasts. Although in 

normal cells NRF2 suppresses tumor promotion and progression, this pathway is 

constitutively activated in various cancers by mutation and transcriptional repression of 

Keap-1, accumulation of Keap-1-NRF2 disruptors, transcriptional and post-translational 
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NRF2 induction. In view of NRF2 targets, this transcription factor provides chemoresistance 

and, like PARP1, has become a target for anticancer interventions [12].  

Another oxidant-counteracting mechanism that involves PARP1 is represented by its 

interaction with the transcription factor hypoxia-inducible factor 1-alpha (HIF1α), which 

undergoes activation during hypoxia and hypoxia-triggered redox imbalance [13, 14]. PARP1 

co-activates HIF1α-dependent transcription of genes, which promotes cell survival. In murine 

embryonic fibroblasts, PARP1 caused accumulation of HIF1α via upregulation of NO and 

oxidant production in cells treated with deferoxamine [15]. In addition to PARP1, HIF1α binds 

EP300/CBP acetylase(s) for full transcriptional activity. A similar observation was made for 

nuclear factor kappa B (NF-κB), activation of which required synergistic interaction with 

PARP1 and EP300/CBP. However, for HIF1α mutual dependence between these two types 

of co-activators has not been documented yet.  

Promoters of some antioxidant enzymes such as catalase, SOD1 or SOD2 carry the binding 

motif for NF-κB, but the role of PARP1 in transcription activation of these genes has not been 

confirmed. Instead, PARP1 level negatively correlates with mitochondrial SOD in cancer cells 

(EMBL-EBI Expression Atlas), where SOD2 overexpression causes a growth inhibitory effect 

by shifting the O2
•-/H2O2 balance towards H2O2 accumulation [16]. If PARP1 is involved in 

SOD2 repression, this enzyme could be capable of defining the intracellular repertoire of 

growth promoting or inhibiting oxidants. Furthermore, low SOD2 level is known to stabilize 

HIF1α [17]. 

4. PARP1 regulates redox-sensitive signaling pathways 

The roles that small species of oxidizing nature play in cellular signaling are becoming 

increasingly appreciated. Redox-sensitive pathways allow cells to adapt to mild 

oxidant/antioxidant imbalance and promote survival by linking redox shifts to post-

translational modifications of proteins and to their interactome [5, 18]. According to our and 

previous findings, PARP1 regulates transcription of numerous genes encoding redox sensors 

and mediators transmitting signals upstream or downstream of electrophile sources (Figure 

3). Redox-sensitive MAP kinase signaling serves as a good example of the PARP1-MAPK-
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ROS-cell survival axis since PARP1 couples transcription of MAP2K6, ERK1/2 and AKT1 

with the cell cycle progression, thereby assuring active transcription of kinases that have a 

pro-survival function under mild redox imbalance [19-26]. Furthermore, oxidative stress-

induced PARP1 activation represses transcription of MPK1, a known MAPK inhibitor [27]. 

Although in this particular case JNK and p38 were shown to act as pro-death kinases, the 

beneficial or detrimental activity of kinases and MAPK pathways is determined by the type of 

intracellular or extracellular stimuli that challenges redox homeostasis, for example whether 

the action is acute or prolonged, mild or severe, but is also dependent on the cell type. All 

these aspects also apply to PARP1. In addition to conditions listed above, PARP1-dependent 

cell life or death fate is determined by the pathway to which PARP1 contributes (pro-survival 

or suicidal), the direction (inhibition or stimulation) and mode of mutual interdependence with 

its interacting partner (direct protein-protein binding or covalent modification, i.e. ADP-

ribosylation). Oxidants are one of major agents triggering mono- or poly-ADP-ribosylation; 

the severity of oxidative stress determines the length of ADP polymer synthesized, thus also 

impinging on the beneficial or detrimental effect of PARP1 activation, since NAD+ is utilized 

as a substrate for ADP-ribosylation. High doses of H2O2 cause metabolic catastrophe, 

parthanatos, and activation of detrimental signaling pathways, while moderate PARylation 

protects cells from mild oxidative stress by attracting DNA repair complexes, clearing and 

removal of oxidized or damaged proteins, and re-establishing homeostasis [28, 29].  

5.  Cell cycle determines DNA repair mechanisms 

PARP1 actively contributes to numerous repair pathways of oxidative DNA lesions, which 

comprise covalent modifications of nucleobases as well as single and double strand breaks 

(SSB and DSB, respectively). The deformability of DNA within SSB is recognized by two 

flexibly linked N-terminal zinc fingers, and initiates self-assembly of remaining PARP1 

domains leading to activation of the C-terminal catalytic domain [30]. In case of DSB induced 

by oxidative stress, JNK 6 phosphorylates SIRT6. This enzyme is rapidly mobilized to break 

sites, where it potentiates recruitment and activation of PARP1, which in turn stimulates DSB 

repair [31]. In proliferating cells all repair mechanisms are active, and PARP1 is highly 
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expressed to support SSB repair (SSBR), base excision repair (BER), homologous 

recombination (HR), and alternative non-homologous end joining (Alt-NHEJ), but inhibits 

classical non-homologous end joining (C-NHEJ) (Figure 4). Thus PARP1 has become a 

target for anticancer interventions. G1/G0 arrest shifts error-free HR and Alt-NHEJ to error-

prone C-NHEJ, but low PARP1 impairs also BER and SSBR [32-34]. According to our new 

data, PARP1 repression by CDK4/6 inhibitors reduces PARP1-dependent 8-oxoguanine 

glycosylase (OGG1) activity, causing accumulation of single strand breaks and thereby 

increasing cell vulnerability to anticancer drugs and H2O2-induced oxidative stress [35]. The 

direct binding of OGG1 to PARP1 is stimulated by increased oxidant level, and for full activity 

OGG1 requires acetylation by EP300, which physically interacts with PARP1 and is recruited 

to some genomic loci by PARP1 [36, 37].  

PARP1 has been postulated to cooperate with transcription factor(s) that activate expression 

of genes encoding proteins contributing to DNA repair [38]. Although such a premise must be 

experimentally confirmed, PARP1 is a bona fide co-regulator of NF-κB, p53, AP-1, E2F1, and 

BRCA1, which control promoter activation, epigenetic landscape and miRNA transcription of 

DNA repairing machinery. The confirmation for likely contribution of PARP1 in regulation of 

DNA repair gene transcription comes from observations in human growth arrested 

monocytes differentiating to proliferating macrophages [39]. This process was associated 

with increased PARP1 expression, but also with transcriptional activation of XRCC1, ligase 

IIIα, OGG1 and catalytic subunit of DNA-dependent protein kinase (DNA-PKcs).  Severe DNA 

repair defects that impacted base excision repair and double-strand break repair in 

monocytes sensitized these cells to death by t-butyl hydroperoxide and irradiation with γ-

rays, while macrophages revealed almost complete resistance to these redox-challenging 

agents.  

To conclude, PARP1 provides cell with protection against oxidants at different levels: by 

activating expression of proteins setting up antioxidant defense and redox sensitive signaling 

pathways, and by fine tuning of DNA repair machinery. Therefore PARP1 expression, which 
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is defined by the proliferative status of cells, can determine cell resistance to oxidants, even 

though an adaptive response is only apparent within a narrow dose window.  
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Figure 1. Cell cycle progression dictates PARP1 transcription via growth 

factors/inhibitors-G1/G0-CDK4/6-RBs axis. Cell cycle machinery is controlled by external 

signals in order to adapt cells to environmental requirements and conditions. Stimulation of 

receptor tyrosine kinases (RTKs), MYC protooncogene or estrogen receptor (ER) in 

response to peptide and non-peptide growth-promoting agents activates cyclin-dependent 

kinase 4 and 6 (CDK4/6), which associate with cyclin D1 and phosphorylate retinoblastoma 

proteins (RB1, RBL2). This modification keeps retinoblastoma proteins released from 

promoters of PARP1 and cell cycle promoting genes, thereby allowing active gene 

transcription and enabling cell transition from G1 to S phase. Upon cell growth arrest in G1 or 
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cell cycle exit to G0, CDK4/6 inhibition results in hypophosphorylation of retinoblastoma 

proteins, their binding to E2F-driven gene promoters and recruitment of chromatin 

remodelers, which are capable of inactivating gene expression by removing transcription-

promoting indicators and/or inserting transcription-inhibiting histone modification(s). It leads 

to an increase in nucleosome density and chromatin condensation. Notably, composition of 

the repressive complex varies between cells arrested in G1 and in G0. Limiting PARP1 

expression in G0 is achieved solely by histone deacetylase 1 (HDAC1) for histone 

deacetylation, while in G1 HDAC1 additionally requires PRC2 (polycomb repressor complex 

2) activity and trimethylation of H3K27 by enhancer of zeste homolog 2 (EZH2) to repress 

PARP1 transcription. Cell cycle arrest in G2 does not affect the mRNA and protein levels of 

PARP1.  

Figure 2. PARP1 contributes to antioxidant cell defense by enhancing transcription of 

enzymatic scavengers of electrophiles and secondary metabolites. Under normal 

oxygen conditions, PARP1 determines intracellular redox homeostasis by intensifying 

nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2)-dependent transcription of 

enzymatic redox-balancing enzymes (NAD(P)H quinone oxidoreductase 1, NQO1; heme 

oxygenase-1, HO-1; aldo-keto reductase family 1, member C1, AKR1C1; superoxide 

dismutase 1, SOD1), as well as phase II detoxifying enzymes (glutathione S-transferase, 

GST; UDP-glucuronosyltransferase, UGT; catalytic and modifier subunits of glutamate 

cysteine ligase, GCLC and GCLM respectively) and drug transporters (multidrug resistance-

associated proteins, MRPs). In the absence of PARP1, transcription of the above-mentioned 

genes is restricted as NRF2 moderately associates with small MAF proteins (in this case with 

MAFG) and the antioxidant response element (ARE), which is localized within the promoter 

of NRF2 target genes. When abundant, PARP1 enhances the interaction among NRF2, 

MAFG and ARE, thereby acting as a co-activator of NRF2-dependent gene transcription.  

PARP1 also functions actively in cell adaptive responses to match O2 supply under hypoxia 

by supporting hypoxia-inducible factor 1-alpha (HIF1α) at different signaling levels. This 

protein, together with PARP1, acts as a key modulator of the transcription response in cells 
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that experience a low O2 level. Under normal oxygen condition, factor inhibiting HIF1α (FIH1; 

asparaginyl hydroxylase) and propyl hydroxylase domain-containing enzymes (PHDs) 

hydroxylate HIF1α, thereby preventing transcription factor interaction with EP300/CBP 

coactivators and marking HIF1α for proteasomal degradation by E3 ubiquitin ligase, the von 

Hippel-Lindau (pVHL) complex. Low O2 concentration inhibits hydroxylases and stabilizes 

HIF1α. PARP1 forms complex and co-activates HIF1α in a PARP1 enzymatic activity-

dependent manner, therefore enabling expression of genes controlled by hypoxia response 

element (HRE)-positive promoters. This group comprises antioxidant defense enzymes such 

as heme oxygenase-1 (HO-1), glutathione peroxidase 8 (GPX8), ER oxidoreductin 1 (ERO1) 

and glucose transporter 1 (GLUT1), the activity of which helps to maintain glutathione 

homeostasis.  

Figure 3. PARP1 contributes to regulation of redox-related signaling pathways. PARP1 

regulates both positively and negatively transcription of numerous enzymes involved in the 

transmitting signals to and from oxidant-releasing intracellular systems or extracellular 

sources. Expression of MAP2K6 and ERK1 are, like PARP1, controlled by cell cycle 

progression and RB-based repressive complexes. In proliferating cells, PARP1 is 

indispensable for their transcription, because it mediates EP300 recruitment to their 

promoters. Although AKT and ERK2 are not directly repressed by RBs, PARP1 maintains 

their expression. All these kinases were shown to protect proliferating cells facing mild or 

physiological increases in the electrophile abundance from death. In the AKT pathway, PI3 

acts as a redox sensor and after activation phosphorylates AKT, which in turn activates 

mTOR kinase. This enzyme stimulates cell proliferation via the SGK1-FOXO3 pathway, 

which represses transcription of CDK inhibitors. Moreover, mTOR phosphorylates and 

inactivates BAD, thus blocking the release of cytochrome c from mitochondria. AKT 

contributes to H2O2 accumulation by stimulating oxidative metabolism and FOXO-dependent 

repression of catalase. Growth factors and oxidants switch on ERK signaling via RAS, which, 

depending on the isoform expressed in a particular cell type, shifts up or down the 

intracellular level of oxidants. Ha-RAS isoform promotes O2
•- accumulation by activating 
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NADPH oxidase, while the Ki-RAS pathway upregulates transcription of SOD2. There are 

numerous ERK targets, which implicate this enzyme in cell proliferation: carbamoyl 

phosphate synthetase (CPS II, source of pyrimidine nucleotides), MSK1/2 (chromatin 

remodeling and induction of cell cycle-related gene transcription), RNA polymerase I 

(transcription of the ribosomal RNA genes), CDK inhibitors or MYC (transcription of cyclin 

D1). ERK protects cells from death by repressing pro-apoptotic BIM and stabilizing anti-

apoptotic MCL-1 protein. PARP1-MAP2K6 functional cross-talk at the genomic level is not 

limited to upregulation of kinase transcription. MAP2K6 links PARP1 with transcription of 

anti-apoptotic genes indirectly by starting the phosphorylation cascade MAP2K6-p38-

MSK1/2-CREB. The last component of this axis controls transcription of HO-1 and PGC-1α; 

the latter promotes mitochondrial biogenesis. Furthermore, PARP1 regulates activity of 

MAPKs independently of their promoters by regulating transcription of JNK, ER1/2 and the 

p38 inhibitor MKP1. Downregulation of MKP1 expression by PARP1 blocks 

dephosphorylation of tyrosine and threonine residues of MAPKs, which undergo activation 

upon acute cell exposure to H2O2.  

Figure 4. PARP1 regulates repair of oxidative DNA damages. The cell decision on 

involvement of particular repair system depends on the type of DNA damage and is strongly 

related to cell cycle progression. For double strand breaks, the cell is equipped with three 

repair systems: homologous recombination (HR), classical non-homologous end joining (C-

NHEJ) or alternative non-homologous end joining (Alt-NHEJ). Proliferating cells, with high 

PARP1 levels, make use mainly of two mechanisms: HR and/or Alt-NHEJ, which assure 

accurate and error-free repair of double strand breaks since they use a replicated DNA 

template to reconstruct the missing fragment with high fidelity. These two pathways rely on 

the recognition of detrimental lesions by PARP1, which recruits other proteins to the affected 

sites: first MRN complex (consisting of MRE11, Rad50, Nbs1), an initiator of repair, then 

MRE11 determines the composition of proteins for each repair mechanism (HR or NHEJ).  

The low C-NHEJ involvement in repair is achieved by high expression of PARP1, an inhibitor 

of DNA-dependent protein kinases (DNA-PKcs), which is crucial for C-NHEJ progression. In 
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G1/G0 arrested cells (deficient in HR and Alt-NHEJ), low expression of PARP1 allows 

recruitment of the Ku70/80 heterodimer to double strand breaks and sites of DNA-PKcs 

activation. Repair machinery such as nuclease Artemis, DNA ligase IV and XRCC4 further 

process the damaged DNA and directly ligate DNA ends, leading to the irreversible loss of 

genetic material.  

Base excision repair (BER) is a substantial pathway to repair oxidized bases. The damaged 

base is recognized and removed by OGG1 glycosylase, which requires PARP1 for proper 

and efficient functioning. AP endonuclease (APE1) is binds to apurynic sites and produces 

single-strand breaks (SSBs), which again involve PARP1 in the BER machinery at a later 

repair step. DNA nick-induced poly-ADP-ribosylation facilitates PARP1 interaction with 

DNAPδ/ε and PCNA, which further govern repair machinery. Single strand breaks resulting 

from direct oxidant action also need PARP1 activity to be repaired. Poly-ADP-ribose 

polymers recruit XRCC1, then the remaining SSBR machinery comprising DNA polymerase 

(DNAP) and DNA ligase III, which also can be PARylated by PARP1. PARP1 deficiency in 

growth-arrested cells substantially impairs both pathways. Of note, inhibition of OGG1 in 

combination with G1-blockade leads to further accumulation of single strand breaks. 
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Highlights 

· Cell proliferation determines PARP1 transcription and production of electrophiles  

· PARP1 contributes to cell protection against electrophiles 

· PARP1 controls transcription of redox-sensitive kinases, antioxidants and detoxifying 

enzymes 

· DNA repair machinery requires PARP1 to maintain genome integrity 

· G1 and G0 arrest vulnerable cells during mild oxidative stress 
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