Title: Hydrogen evolution enhancement of ultra-low loading, size-selected molybdenum sulfide nanoclusters by sulfur enrichment

Authors: Daniel Escalera-López, Yubiao Niu, Sung Jin Park, Mark Isaacs, Karen Wilson, Richard E. Palmer, Neil V. Rees

PII: S0926-3373(18)30397-7
DOI: https://doi.org/10.1016/j.apcatb.2018.04.068
Reference: APCA TB 16639

To appear in: Applied Catalysis B: Environmental

Received date: 29-1-2018
Revised date: 24-4-2018
Accepted date: 26-4-2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Hydrogen evolution enhancement of ultra-low loading, size-selected molybdenum sulfide nanoclusters by sulfur enrichment

Daniel Escalera-López a,b,‡, Yubiao Niu b,c,‡, Sung Jin Park b,d, Mark Isaacs e, Karen Wilson e,f, Richard E. Palmer c, Neil V. Rees a*

aCentre for Hydrogen and Fuel Cell Research, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK

bNanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK

cCollege of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK.

dKey Laboratory of Materials Modification by Laser, Ion and Electron Beams, Department of Physics, Dalian University of Technology, Dalian, 116024, China.

eEuropean Bioenergy Research Institute, Aston University, Birmingham, B4 7ET, UK

fSchool of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
Electronic Supporting Information (ESI) available

*Corresponding author; Dr NV Rees, Email: n.rees@bham.ac.uk

School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK

Graphical abstract

Highlights

- Successful *in vacuo* sulfur enrichment method for size-selected MoS_{1.9} nanoclusters
- Annealing after S evaporation crucial to maximize S incorporation and crystallinity
- 200mV HER overpotential shift, two-fold higher TOFs in S-rich MoS_{4.9} nanoclusters
- ~111 mA cm^{-2} achieved @ 400mV and 5% surface coverage among best in MoS_{2} literature
Abstract

Size-selected molybdenum sulfide (MoS$_x$) nanoclusters obtained by magnetron sputtering and gas condensation on glassy carbon substrates are typically sulfur-deficient ($x = 1.6 \pm 0.1$), which limits their crystallinity and electrocatalytic properties. Here we demonstrate that a sulfur-enriching method, comprising sulfur evaporation and cluster annealing under vacuum conditions, significantly enhances their activity towards the hydrogen evolution reaction (HER). The S-richness ($x = 4.9 \pm 0.1$) and extended crystalline order obtained in the sulfur-treated MoS$_x$ nanoclusters lead to consistent 200 mV shifts to lower HER onset potentials, along with two-fold and more-than 30-fold increases in turnover frequency and exchange current density values respectively. The high mass activities (\sim111 mA mg$^{-1}$ @ 400 mV) obtained at ultra-low loadings (\sim100 ng cm$^{-2}$, 5 % surface coverage) are comparable to the best reported MoS$_2$ catalysts in the literature.

KEYWORDS: molybdenum disulfide, nanoclusters, sulfur-rich, hydrogen evolution, magnetron sputtering deposition.

1. Introduction

The interest in the hydrogen economy as a potential candidate to replace the current fossil fuel-based energy system[1] has motivated extensive research on environmentally-friendly hydrogen production methods. The hydrogen evolution reaction (HER) taking place at a water electrolyser...
cathode is a scalable yet energy-efficient route[2] which demands earth-abundant catalysts to be commercially viable. Among them, transition metal dichalcogenides (TMDs) and in particular molybdenum disulfide (MoS₂) have stood out in the past decade.[3,4] Their layered structure, analogous to that of graphene, also implies anisotropic properties: only the metallic 1T phase sites located at the Mo-edge planes of naturally occurring MoS₂ are active for the HER,[5,6] whereas the 2H semiconducting basal planes are almost inactive if no defects are present.[7–9] Several strategies have proven to maximize MoS₂ HER activities[10]: triggering the 2H→1T phase transition in basal planes by chemical intercalation[11–13] or stress/strain effects[14,15]; basal plane activation by incorporation of transition metals[16–20] or other chalcogenides[21,22]; and the fabrication of MoSₓ nanostructures which are defect-rich[23–30] or have additional S vacancies.[31–36] However, the in-operando proven role of S atoms as the HER active sites[37] indicates that sulfur-rich MoS₂ₓ materials should also present high HER activities.[38–41] Our recently reported size-selected MoSₓ nanoclusters, obtained by magnetron sputtering and gas condensation,[42] were demonstrated to be sulfur-deficient (x = 1.6 ± 0.1) with low crystallinities. In this article we have evaluated the influence of sulfur content in the HER catalysis of MoS₂ materials through use of an in vacuo sulfur addition treatment previously developed for freshly deposited, sulfur-deficient (MoSₓ)₁₀₀₀ nanoclusters.[43] We demonstrate that sulfur evaporation (5 min) followed by annealing treatment (7 min, 215 ± 5 °C) incorporates S in the MoSₓ nanocluster structure (x = 4.9 ± 0.1), by reducing oxygen-containing Mo surface species and converting the amorphous S₂²⁻ moieties to crystalline S²⁻ sites, which also extends the crystalline order. A consistent 200 mV shift to lower HER overpotential, along with a two-fold increased turnover frequency and more-than 30-fold increase of exchange current density.
values proves the beneficial role of higher S surface content and crystallinities in the $\text{(MoS}_x\text{)}_{1000}$ nanoclusters HER catalysis.

2. Experimental

2.1 ($\text{MoS}_x\text{)}_{1000}$ nanoclusters deposition and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging

Size-selected MoS$_2$ nanoclusters were produced using a DC magnetron sputtering and gas condensation cluster beam source as shown in Figure 1 from a 2-inch sputtering MoS$_2$ target (PI-KEM, 99.9% purity).[44] The positively charged clusters were accelerated with ion optical electrostatic lenses and then size-selected with a lateral time-of-flight mass filter.[45] A mass of 160000 amu, corresponding to 1000 MoS$_2$ units (designated as $\text{(MoS}_2\text{)}_{1000}$), was selected for depositing onto an amorphous carbon coated TEM grids (Agar Scientific, 200 Mesh Cu) and onto glassy carbon (GC) stubs (5 mm x 5 mm x 3 mm, mirror finish). The loading of the TEM grid samples was approx. 5% projected surface area coverage (i.e., approx. 5% of the surface covered by clusters), while the loadings of the GC samples were 5%, 10% and 20% projected surface area. The clusters were deposited onto amorphous carbon covered TEM grids and GC stubs with an impact energy of 1.0 eV and 1.5 eV per MoS$_2$ unit, respectively. Sulfur addition was conducted in a sulfur atmosphere created by evaporating sulfur using a home-built in-situ thermal evaporator (5 min). Annealing (7 min, 215 ± 5 °C) was performed with an electron beam bombardment heating stage. The temperature was monitored using a pyrometer (IMPAC Pyrometer, IPE 140). Scanning transmission electron microscopy (STEM) images were acquired with a 200 kV spherical aberration-corrected STEM (JEOL 2100F) in the high-angle annular dark-field (HAADF) mode[46,47].

2.2 Physical characterization of ($\text{MoS}_x\text{)}_{1000}$ nanoclusters: X-ray photoelectron spectroscopy (XPS)
XPS spectra were recorded using a Kratos Axis SUPRA fitted with a monochromated aluminium source (Al Ka, 1486.69 eV) and a charge neutraliser. Samples were mounted on silicon wafers by use of silver epoxy, and affixed to a sample bar using carbon tape. Wide scans were recorded using pass energies of 160 eV and high-resolution scans were recorded using pass energies of 20 eV and an analysis area of 30 μm². All scans were recorded at <5 × 10⁻⁹ Torr using an emission current of 15 mA. All high-resolution spectra were corrected to the adventitious C 1s peak at 284.6 eV, and deconvoluted using the CasaXPS 2.3.18 software, applying a Shirley background correction before individual peak deconvolution. Mo⁰OsSₓ is used to refer to the molybdenum oxysulfide species: the superscript a represents the oxidation state of Mo, whilst the subscripts b and c the stoichiometry of O and S atoms in the specific oxysulfide.

2.3 Electrochemical characterization

All electrochemical measurements were performed in a conventional 3-electrode electrochemical setup comprising a thermostatted two-compartment cell (295± 2K), the first compartment containing both a saturated calomel reference electrode (SCE, BAS Inc., Japan) and 5 mm diameter, 3 mm thick glassy carbon working electrodes (GC) type 2 stubs (Alfa Aesar, U.K.) modified with as deposited or sulfur evaporated and annealed (MoSₓ)₁₀₀₀ nanoclusters; and a second compartment containing a bright Pt mesh counter electrode (Alfa Aesar, U.K.). All experiments were conducted using a PC-controlled PGSTAT128N potentiostat (Metrohm Autolab B.V, Netherlands). GC samples were polished to until a mirror finish was achieved by use of decreasing size diamond (45 to 3 μm) and alumina slurries (1 to 0.05 μm) on a Buehler MetaServ 250 automatic polisher using Trident/Microcloth polishing pads. All GC samples were immediately tested after nanocluster modification, being transported to the electrochemical cell in a N₂-saturated sealed container to avoid exposure to air. The nanocluster-modified GC stubs were embedded in a E4TQ ChangeDisk RDE Tip and electrically connected to a E4 Series
Rotating Shaft and a Modulated Speed Rotator (Pine Research Instrumentation, USA). No rotation was applied during any electrochemical experiment.

A 2 mM HClO₄ (ACS ≥ 70%, Sigma-Aldrich), 0.1 M NaClO₄ (ACS ≥ 98%, Sigma-Aldrich) solution (pH 2.7) was used in all experiments, freshly prepared with ultrapure water (Millipore Mili-Q Direct 8, resistivity not less than 18.2 MΩ cm). This fully supported, non-coordinating anion-containing, low proton concentration electrolyte was chosen in contrast to the more commonly reported high proton concentration electrolytes in hydrogen evolution experiments (0.5 M H₂SO₄, pH ≈ 0.3; 0.1 M HClO₄, pH ≈ 1) as previous experiments on (MoSₓ)ₙ nanoclusters yielded more reproducible electrochemical results, enabling accurate elucidation of the HER reaction kinetic parameters. Acidic electrolytes with lack of a supporting electrolyte (in our case 0.1 M NaClO₄) are reported to distort any kinetic analysis due to migration effects of the electroactive species.[48]

Nanocluster-modified GC electrodes were preconditioned prior to HER experiments with 10 cycles from -0.045 to -1.645V (vs. SCE) at a voltage scan rate of 50 mVs⁻¹ to obtain a stabilized performance. HER electrocatalysis measurements were then recorded at a range of voltage scan rates from 2 to 1200 mVs⁻¹, and electrochemical impedance spectroscopy measurements (EIS) were acquired in the -0.1 to -1.4 V vs. SCE with 100 mV steps, using a frequency range of 10⁻¹ to 10⁵ Hz (voltage amplitude = 10 mV) to apply the iR compensation correction on all HER voltammograms. All HER potentials reported are corrected versus the normal hydrogen electrode (NHE) using the Nernstian shift correction (E_NHE = 0.242 V + 0.059pH). The electrochemical cell was vigorously purged with N₂ prior to any electrochemical experiment (Oxygen-free grade, BOC Gases plc), and a positive N₂ pressure was maintained during experiments. All electrochemical glassware was cleaned overnight by use of a dilute KMnO₄ (ACS ≥ 99%,
Sigma-Aldrich) solution in concentrated H₂SO₄ (> 95% analytical grade, Fisher Scientific) followed by rinsing with ultrapure water.

3. Results and discussion

3.1 Physical characterization of size-selected (MoSₓ)₁₀₀₀ nanoclusters: HAADF-STEM imaging and XPS

Figure 2 shows the aberration-corrected HAADF-STEM images of (MoSₓ)₁₀₀₀ nanoclusters (selected mass at cluster source, 160000 amu, equivalent to 1000 MoS₂ units per cluster) at 5% projected surface area coverage after deposition on amorphous carbon covered TEM grids. For cluster source schematic and further deposition parameters, see Fig. 1. Fig 2a and 2b are acquired at low magnification before and after sulfur evaporation and annealing, respectively. The as-deposited MoSₓ clusters are rather irregular with poorly ordered structures, and a mean diameter of 5.5 nm is given based on the projected surface area from our previous study.[43] The STEM image of as-deposited MoSₓ cluster at a higher magnification (Figure 2c), together with its FFT pattern (inset), show the amorphous feature of the cluster and confirm the absence of extended crystalline order. The clusters have an uneven layered structure revealed by the HAADF intensity line profile, which agrees with previous first-principle simulation studies.[49] Compared with the as-deposited clusters, the sulfurised clusters become larger with a mean diameter of 6.0 nm. This is due to the morphological reconstruction of MoSₓ clusters with the added sulfur. In contrast to the as-deposited clusters, the sulfurised clusters shown in Figure 2d and 2e present rather crystalline structures, which can also be confirmed by their FFT patterns (inset). The sulfurised clusters retain the layered structure with 3 to 4 layers-thick. The Moiré pattern shown in Figure 2e indicates a misorientation between layers, which can be commonly found in the sulfurised clusters with 3 or more layers. Given that sulfur is long known to sublime at
temperatures well below 100 °C,[50,51] we can conclude that the crystalline structures come from the chemical bond between the added sulfur and the clusters, and that the structural modification into crystalline clusters mainly takes place within the 2D layers.

XPS measurements were acquired from molybdenum sulfide clusters deposited onto amorphous carbon TEM grids to investigate the degree of sulfur incorporation. The high-resolution Mo 3d and S 2p spectra of the as-deposited molybdenum sulfide nanoclusters reveal a complex surface composition (see Fig. 3a). The Mo spectra (Fig. 3, top row) could not be solely deconvoluted into the Mo$^{4+}$ 3$d_{5/2}$:3/2 spin-orbit doublet characteristic of MoS$_2$ materials (binding energies of ~229.8 and ~232.9 eV, respectively). Two additional doublets were needed, ascribed to Mo6O$_n$S$_c$ (~231.5 and ~234.6 eV, see ESI for Mo6O$_n$S$_c$ definition) and Mo$^{6+}$ (~233.1 and ~236.2 eV) oxidation states reported in molybdenum compounds such as molybdenum oxysulfides[52] and MoO$_3$.[53] Analysis of the Mo$^{4+}$: Mo6O$_n$S$_c$: Mo$^{6+}$ relative percentages (at. %) from the XPS photoemission intensities yields a relative ratio of 53.8:25.2:21.0 at. %, corroborating the significant proportion of oxidized molybdenum species at the nanoclusters. The S spectra (Fig. 3, bottom row) were deconvoluted using two 2$p_{3/2}$:1/2 spin-orbit doublets related to the S$^{2-}$ (~161.3 and ~162.5 eV) and S$_2$$^{2-}$ (~162.6 and ~163.8 eV) oxidation states consistently reported for amorphous MoS$_x$ thin films and nanoparticles,[54,55] yielding a S$^{2-}$/S$_2$$^{2-}$ relative ratio of 20:80. The broad S signal centered at ca. 170 eV is ascribed to SO$_xy$ species.[56] The XPS intensity ratio between the S-containing Mo species (Mo$^{4+}$/Mo6O$_n$S$_c$) and the S$^{2-}$/S$_2$$^{2-}$ species yields a close-to-stoichiometric but still S-deficient ratio (1:1.9±0.1), similar to that found in our previous investigations.[42,57]

Likewise, high-resolution XPS spectra on the sulfur-evaporated and annealed (MoS$_x$)$_{1000}$ nanoclusters (Fig. 3c) reveal an almost total conversion of oxidized Mo species to Mo$^{4+}$ (Mo$^{4+}$:
MoaO\textsubscript{b}S\textsubscript{c}: Mo6+ at. % ratio of 88.9:8.0:3.1), as well as an effective S-enrichment, obtaining a Mo4+/MoaO\textsubscript{b}S\textsubscript{c}: S2-/ S22- ratio of 1: 4.9±0.1. As for the S2-/ S22- XPS intensity ratio, this is now 75:25. Further analysis of the sulfurised but non-annealed (MoS\textsubscript{x})\textsubscript{1000} nanoclusters sample (Fig. 3b) reveals that S incorporation onto the nanoclusters occurs at this stage to a certain extent (Mo4+/MoaO\textsubscript{b}S\textsubscript{c}: S2-/ S22- ratio of 1: 3.3±0.1), but it leads neither to an effective depletion of oxygen-containing Mo species (Mo4+: MoaO\textsubscript{b}S\textsubscript{c}: Mo6+ at. % ratio of 62.2:21.4:16.4), nor to full crystallization of the nanocluster structures.[43] Hence, it is concluded that the best methodology to produce S-enriched MoS\textsubscript{x} nanoclusters with enhanced crystalline order is by the adoption of sequential sulfur evaporation and thermal annealing.

3.2 **Electrocatalytic activity to the hydrogen evolution reaction: influence of sulfur enrichment**

The hydrogen evolution activity of the as-prepared and sulfur-enriched (MoS\textsubscript{x})\textsubscript{1000} nanoclusters was evaluated in a 3-electrode electrochemical setup, by recording linear sweep voltammograms between 0 to -1.2 V (scan rate= 50 mV s-1) in a 2mM HClO\textsubscript{4}/0.1 M NaClO\textsubscript{4} aqueous electrolyte (normalized vs. NHE and iR compensated, for further details, see Experimental). The low proton concentration in the electrolyte used ([H+] \approx 2 \times 10-6 mol cm-3, pH\approx 2.7) is responsible for the diffusion decay peak profile in Figs. 4a and 4b, analogous to that found with our previously reported magnetron-sputtered nanoclusters.[57,58] The as-prepared samples present onset potentials, |\eta\textsubscript{onset}| for current densities of |j|=0.05 mA cm-2, of ca. 690 mV, which are \textasciitilde 60 mV positively shifted compared to the recorded |\eta\textsubscript{onset}| for bare glassy carbon. This confirms that even at ultra-low loadings MoS\textsubscript{2} effectively catalyzes the HER. The peak half-maximum
overpotentials ($\eta_{\text{half max}}$) and current densities ($j_{\text{half max}}$) metrics previously used to describe the HER catalysis of magnetron-sputtered nanoclusters\cite{57} are found to be ca. 810 mV and 0.31 mA cm$^{-2}$, respectively (see Table S1 ESI).

These are in good agreement with the results obtained for (MoS$_{0.9}$)$_{300}$ nanoclusters, which presented a higher cluster loading (ca. 3.5 \(\mu\)g cm$^{-2}$) but equivalent surface coverage given the smaller cluster sizes (~20%).\cite{57} Interestingly, such ultra-low loadings of size-selected MoS$_x$ nanoclusters used in the present work (5\% coverage: ~84 ng cm$^{-2}$, 10\% coverage: ~168 ng cm$^{-2}$, 20\% coverage: ~335 ng cm$^{-2}$) already present HER activities comparable to those of (MoS$_{0.9}$)$_{300}$ nanoclusters with loadings higher by 1 order of magnitude. Despite both smaller dimensions (~2.6 nm) and higher loadings, the S-deficient Mo:S ratio and cluster overlapping upon random surface landing can then explain the (MoS$_{0.9}$)$_{300}$ nanoclusters’ reported performance. After sulfur incorporation, all (MoS$_x$)$_{1000}$ nanoclusters exhibit remarkable improvements in their HER performance. A consistent 200 mV shift in the HER $|\eta_{\text{half max}}|$ was found independently of the sample loading (see. Figs. 4a-b).

To gather further insight about the HER kinetics and electron transfer properties, Tafel slope analysis and electrochemical impedance spectroscopy (EIS) experiments were carried out before and after sulfur enrichment of (MoS$_x$)$_{1000}$ nanoclusters. Tafel plots of the cathodic linear sweep voltammograms (η vs. log$|j_{\text{geom}}|$, Fig. 4c) show Tafel slopes in the 143-154 mV dec$^{-1}$ range for all (MoS$_x$)$_{1000}$ nanocluster samples irrespective of both loading and sulfur modification, similar values to the one found for bare GC (\approx154 mV dec$^{-1}$). This indicates that the sulfurisation treatment does not modify the mechanism under which the HER operates: for slopes close to b=\approx 120 mV dec$^{-1}$ this is the Volmer mechanism, its rate-limiting step being the electroadsorption of monoatomic hydrogen.\cite{59} Previous reports on amorphous MoS$_x$ catalysts have reported Tafel
slopes of $b \approx 40$ mV dec$^{-1}$ (Volmer-Heyrovsky rate-limiting step), significantly lower than the ones obtained for the as-deposited amorphous (MoS$_x$)$_{1000}$ nanoclusters. Two main factors are responsible for this: the electrolyte pH and the inherent morphology or the clusters. Recent investigations by Dubouis et al. on electrodeposited, amorphous MoS$_x$ materials have shown that the HER mechanism (and consequently the Tafel slope) is pH-dependent[60]: for pH ≤ 1, the hydronium cation electroreduction governs the proton reduction with pH-independent Tafel slopes of $b \approx 40$ mV dec$^{-1}$; at higher pH values the lower proton concentration leads to mass transport limitations which ultimately result in the proton electroadsorption (i.e. Volmer rate-limiting HER step, $b \approx 120$ mV dec$^{-1}$) dominating the HER. Alternatively, the 40 mV dec$^{-1}$ Tafel slopes reported on amorphous MoS$_x$ are well known to arise from the [Mo$_3$S$_{13}$]$^{2-}$ cluster-based structure and the different sulfur moieties entailed.[61,62] The pH ≥ 1 used for our electrolyte along with the trigonal prismatic coordination as found in 2H-MoS$_2$ for our size-selected MoS$_x$ nanoclusters[42] support the ca. 143-154 mV dec$^{-1}$ Tafel slopes obtained.

Electrochemical impedance spectroscopy (EIS) Nyquist plots were fitted with a simplified equivalent circuit model based on the recently-used linear transmission model[63,64] for amorphous/porous MoS$_x$ structures (see Fig. S1 ESI for further details).[65,66] Unlike the Randles circuit conventionally used to physically describe the HER on TMD materials, this circuit not only accounts for the charge transfer resistance (R_{ct}), but also for the contact resistance between the nanoclusters and the glassy carbon electrode interface (R_c). Such information is of physical relevance given the layer-dependent HER catalysis of TMDs and their inherently high through-plane resistance.[67–71] At -1.1 V vs. SCE (~ -0.7 V vs. NHE), a significant decrease in all EIS resistance components was found after the combined treatment of
sulfur evaporation plus annealing on the (MoS_x)_{1000} nanoclusters (Fig. 4d, Table S2 ESI): R_{ct} (~1240 vs. ~1180 Ω, 5% coverage; ~6060 vs. ~840 Ω, 20% coverage), and R_c (~4640 vs. ~3250 Ω, 5% coverage; ~12420 vs. ~6820 Ω, 20% coverage). We postulate the extended crystalline order of the sulfur-enriched nanocluster structure to be the governing factor.

This can be supported by both the FFT analysis of the nanoclusters imaged by HAADF-STEM and the high-resolution S 2p XPS results. The former shows, after sulfur incorporation, that the (MoS_x)_{1000} nanocluster FFT pattern changes from a diffuse ring characteristic of highly amorphous materials to a well-defined set of diffraction spots ranging from single sets ascribed to aligned MoS_2 layers along the (100) plane (intralayer spacing: 0.25 nm) to dual sets related to misoriented stacking layer arrangements.[43] The high-resolution S 2p XPS data monitoring the S^2^-/S^{2-} intensity ratio, which serves as a descriptor of the degree of MoS_x crystallinity, reveals an increased S^2^- relative content after the sulfur evaporation treatment: 75:25 vs. the 20:80 found in pristine nanoclusters. Thus, the sulfur evaporation and annealing not only incorporates sulfur into the nanocluster structures but also converts the characteristic amorphous MoS_x/MoS_3 S^2^- moieties[41,55,72,73] to S^{2^-} as found in crystalline MoS_2.[74] From these findings we can conclude that the sulfur evaporation and subsequent annealing of (MoS_x)_{1000} nanoclusters results in an overall improvement in their charge transfer properties. A previous report on polymorphic MoS_2 (a system which resembles the non-crystalline nature of our as-deposited nanoclusters) revealed that electron hopping only occurs between metallic 1T domains bounded by semiconducting 2H regions, and therefore is limited.[75]

On a separate note, it is also noteworthy to explore which are the potential HER active sites in our MoS_x nanoclusters. For amorphous MoS_x, terminal S^2^-[76] bridging S^2^-[37] or unsaturated Mo^{IV} centers (i.e. S vacancies)[40] have been proposed as moieties responsible for hydrogen
evolution, reaching no unambiguous consensus to date. For the as-prepared (MoS\textsubscript{x})1000 nanoclusters, the presence of terminal/bridging S2- as found in our S 2p XPS spectra seems to indicate they might participate in the HER along with the well-established TMD unsaturated S2- active sites.[5,77] In the case of our S-enriched (MoS\textsubscript{x})1000 nanoclusters, the almost total conversion of the partially-oxidized Mo6+O\textsubscript{6}S\textsubscript{6} and S2- species to Mo4+ and S2- as found in crystalline MoS\textsubscript{2} and subsequent HER enhancement lead us to believe that the main HER actives are the unsaturated S2- moieties.

3.3 Evaluation of figures of merit and catalyst benchmarking

Further catalyst benchmarking by turnover frequency (TOF) and exchange current density (j\textsubscript{0}) analysis also demonstrates the HER enhancement observed. For 5\% surface coverage, as-deposited (MoS\textsubscript{x})1000 nanoclusters present TOF \approx 3.0 H\textsubscript{2} s-1 and j\textsubscript{0} \approx 8.8 \times 10-10 A cm-2 at |\eta\textsubscript{half max}|= 825 mV, whereas for an equivalent |\eta\textsubscript{half max}| the sulfur-modified (MoS\textsubscript{x})1000 nanoclusters sample exhibits TOF \approx 6.1 H\textsubscript{2} s-1 and j\textsubscript{0} \approx 2.8 \times 10-8 A cm-2. At 20\% surface coverage, similar enhancements can be found (TOF \approx 1.4 vs. 0.8 H\textsubscript{2} s-1 at |\eta\textsubscript{half max}|= 814 mV; j\textsubscript{0} \approx 5.2 \times 10-8 vs. 7.9 \times 10-10 A cm-2). The two-fold increase in TOF and more than 30-fold increase in j\textsubscript{0} indicates improved per-site activities and active site densities: positive shifts in onset potential values under given HER kinetics (i.e. same Tafel slope values) have been related to higher densities of active sites.[11] This, along with the onset potential shift, significantly surpasses the HER enhancement (ca. 70 mV at |\eta\textsubscript{half max}|, see Fig. S2a ESI), found after S-edge site doping with Ni in (Ni-MoS\textsubscript{2})1000 nanoclusters (3-fold increase in j\textsubscript{0} but lower TOF after doping),[57] indicating that the synergistic effect of sulfur enrichment and improved crystallinity prevails over a S-edge activation strategy on as-deposited MoS\textsubscript{x} nanoclusters.
We finally proceeded to benchmark the performance of our (MoS\(_x\))\(_{1000}\) nanoclusters with recently-reported MoS\(_2\)-based catalysts from the literature. (Table S3 ESI) However, the ultralow loadings utilized in this report preclude quantitative comparisons based on the HER metrics commonly cited (\(|\eta|\) at 10 mA cm\(^{-2}\) and \(|j_{\text{geom}}|\) at 200 mV). It is well known that these metrics are heavily affected by the catalyst loading (for loading-dependent HER see Fig. S2b ESI).[54,78–81] catalyst layer thickness[67,82,83] and TMD morphologies.[25,41,84] Instead, we normalized all previous \(|j_{\text{geom}}|\) reported values by mass activity (mA mg\(^{-1}\)), a metric widely accepted in the noble metal electrocatalysis community (see Table S3 ESI).[85,86] The mass activities found for (MoS\(_x\))\(_{1000}\) nanoclusters at \(|\eta|\) values as low as 400 mV (close to the HER onset) are, after sulfur evaporation and annealing, comparable with the best reported MoS\(_2\) catalysts at 200 mV tested using a high proton concentration electrolyte. The values obtained are ca. 110 mA mg\(^{-1}\) at 5% coverage and ca. 70 mA mg\(^{-1}\) at 20% coverage (see Table S1 ESI). For \(|\eta_{\text{half max}}|\), mass activities are in the 1000 mA mg\(^{-1}\) range: for 5% coverage, ca. 3620 mA mg\(^{-1}\) (pristine) and ca. 4010 mA mg\(^{-1}\) (sulfurised); for 20% coverage, ca. 980 mA mg\(^{-1}\) (pristine) and ca. 1040 mA mg\(^{-1}\) (sulfurised). This highlights the remarkable activities of the sulfurised (MoS\(_x\))\(_{1000}\) nanoclusters obtained at very low loadings.

The electrochemical stability of MoS\(_x\) electrocatalysts is also an important feature for evaluating prospective long-term HER performance. A preliminary comparison of the very first cathodic HER cycle recorded during our preconditioning step with the final pseudo-stationary LSV reported (11\(^{\text{th}}\) real HER cycle, as shown in Figs. 4a and 4b) reveals clear differences in stability before and after sulfur evaporation and enrichment (Fig. S3 ESI). For 20% surface coverage, as-deposited and S-deficient (MoS\(_x\))\(_{1000}\) nanoclusters present an extraordinarily high activity on their first cathodic polarization scan (\(|\eta_{\text{half max}}|\approx 380\) mV) which dramatically decays shown by a
415 mV overpotential shift at the 11th scan (Fig. S3a). This indicates that, despite of their high activity, the edge/defect-abundant nature of amorphous MoSₓ nanoclusters also confers them a high electrochemical instability. Remarkably, the S-enriched crystalline (MoSₓ)₁₀₀₀ nanoclusters present a dramatically enhanced stability (Fig. S3b): although their initial activity is not as high as the amorphous nanocluster counterparts, |η_{half max}| is modified less than 30 mV. We believe that the improved crystallinity and subsequent minor presence of dissolution-prone undercoordinated Mo sites after S-enrichment mitigates electrochemically-induced MoSₓ leaching yielding higher stabilities.

4. Conclusions

In summary, the initially sulfur-deficient (MoS_{1.9})₁₀₀₀ size-selected nanoclusters obtained by magnetron sputtering and gas condensation and deposited onto glassy carbon substrates have been successfully sulfur-enriched, by sequential application of sulfur evaporation and annealing, for HER applications. This treatment has been shown to induce extended crystalline order, compared with the initially amorphous nanocluster morphology, plus the incorporation of S²⁻ moieties at the (MoSₓ)₁₀₀₀ nanocluster surface to yield Mo⁴⁺/Mo⁶OₓSₓ: S²⁻/ S₂²⁻ ratios of 1:4.9±0.1 instead of 1:1.9±0.1. The annealing step is found key to reducing fully the oxygen-containing Mo species to Mo⁴⁺ and maximizing sulfur incorporation at the nanoclusters surface. A consistent positive shift in the HER |η_{onset}| was found irrespective of sample loading of S-enrichened (MoSₓ)₁₀₀₀ nanoclusters (approximately 200 mV), whilst the Tafel slope remained unaffected by the sulfur treatment (ca. 145mV dec⁻¹). The 2-fold and more than 30-fold increases in TOF and j₀ values, respectively, surpass the HER enhancements previously reported after S-edge site activation by Ni in (Ni-MoS₂)₁₀₀₀ hybrid nanoclusters. The results illuminate the critical role played by S-enrichment and crystallinity in MoSₓ nanocluster hydrogen electrocatalysis:
creating higher densities of proton-acceptor S sites and lower charge transfer resistances, as well as conferring higher electrochemical stabilities. Nanocluster benchmarking by mass activity emphasizes the remarkable performance of S-rich (MoS$_x$)$_{1000}$ size-selected nanoclusters at the ultra-low loading level (83.78 ng cm$^{-2}$, 5% surface coverage): 110.5 mA mg$^{-1}$ at 400 mV overpotential, and 4010.5 mA mg$^{-1}$ at $|\eta_{\text{half max}}|$= 652 mV. These results are comparable to the state-of-the-art MoS$_2$-based catalysts, reflecting the significant activities of size-selected MoS$_x$ nanoclusters obtained at ultra-low loadings, resembling previous enhancements reported for noble metals[87–89].

Author Contributions

‡ D. E-L and Y. N contributed equally to this work

Acknowledgements

The authors thank the EPSRC for support through funding for the Centre for Doctoral Training in Fuel Cells and their fuels (D.E.L., N.V.R., EP/G037116/1) and a fellowship grant (R.E.P., EP/L015749/1 and EP/K006061/2) and, as well as the European Commission for the Marie-Curie ITN project "Catsense" (Y.N.) The authors would also like to thank Dr. Mark Isaacs at the European Bioenergy Research Institute (Aston University, Birmingham) for the XPS measurement acquisition.
References

[45] B. von Issendorff, R.E. Palmer, A new high transmission infinite range mass selector for

[67] Y. Yu, S.Y. Huang, Y. Li, S.N. Steinmann, W. Yang, L. Cao, Layer-dependent

Figure 1. Cluster beam source schematic. It consists of five sections: magnetron sputtering, ion optics, mass filter, cluster deposition and cluster post-treatment.
Figure 2. STEM images of as-deposited size-selected (MoS_x)_{1000} nanoclusters shown at a) low and c) high magnification, and STEM images of (MoS_x)_{1000} nanoclusters after sulfur evaporation and annealing at b) low magnification and d, e) high magnification. The insets shown in c, d and e are the FFT patterns of corresponding clusters.

Figure 3. High-resolution Mo 3d (top) and S 2p (bottom) XPS spectra of a) as-deposited (MoS_x)_{1000} nanoclusters, b) sulphurised, non-annealed (MoS_x)_{1000} nanoclusters and c) sulphurised, annealed (MoS_x)_{1000} nanoclusters. Labels: raw spectra (black), cumulative peak fit (red), Mo^{4+} 3d_{5/2,3/2} (green), Mo^{6+} 3d_{5/2,3/2} (blue), Mo^{6+} 3d_{5/2,3/2} (orange), S 2p_{3/2,1/2} (S^{2-}, yellow) and S 2p_{3/2,1/2} (S^{2-}, magenta).
Figure 4. a,b) Linear sweep voltammograms recorded at 5 mm diameter mirror-polished glassy carbon samples (black) modified with as-deposited (MoS\(_x\))\(_{1000}\) nanoclusters (blue) and sulfurised, annealed (MoS\(_x\))\(_{1000}\) nanoclusters (gold) at surface coverages of 5% (a) and 20% (b). Red arrows denote overpotential shift due to sulfurisation at \(\eta_{\text{half max}}\). c) Tafel plots (\(|\eta|\) vs. \(\log|j_{\text{geom}}|\)) of the different (MoS\(_x\))\(_{1000}\) nanoclusters plotted in a,b). Scan rate: 50 mV s\(^{-1}\). d) Electrochemical impedance spectroscopy Nyquist spectra of samples in a,b) recorded at \(\eta \sim -700\) mV vs. NHE. Labels in c,d): mirror-polished glassy carbon (black), as-deposited (MoS\(_x\))\(_{1000}\) nanoclusters at 5% (red) and 20% (purple) coverage, and sulfurised and annealed (MoS\(_x\))\(_{1000}\) nanoclusters at 5% (green) and 20% (blue) coverage.