Source Detection and Functional Connectivity of the Sensorimotor Cortex during Actual and Imaginary Limb Movement:A Preliminary Study on the Implementation of eConnectome in Motor Imagery Protocols

Athanasiou, Alkinoos, Lithari, Chrysa, Kalogianni, Konstantina, Klados, Manousos A. and Bamidis, Panagiotis D. (2012). Source Detection and Functional Connectivity of the Sensorimotor Cortex during Actual and Imaginary Limb Movement:A Preliminary Study on the Implementation of eConnectome in Motor Imagery Protocols. Advances in Human-Computer Interaction, 2012 , pp. 1-10.

Abstract

Introduction . Sensorimotor cortex is activated similarly during motor execution and motor imagery. The study of functional connectivity networks (FCNs) aims at successfully modeling the dynamics of information flow between cortical areas. Materials and Methods . Seven healthy subjects performed 4 motor tasks (real foot, imaginary foot, real hand, and imaginary hand movements), while electroencephalography was recorded over the sensorimotor cortex. Event-Related Desynchronization/Synchronization (ERD/ERS) of the mu-rhythm was used to evaluate MI performance. Source detection and FCNs were studied with eConnectome. Results and Discussion . Four subjects produced similar ERD/ERS patterns between motor execution and imagery during both hand and foot tasks, 2 subjects only during hand tasks, and 1 subject only during foot tasks. All subjects showed the expected brain activation in well-performed MI tasks, facilitating cortical source estimation. Preliminary functional connectivity analysis shows formation of networks on the sensorimotor cortex during motor imagery and execution. Conclusions . Cortex activation maps depict sensorimotor cortex activation, while similar functional connectivity networks are formed in the sensorimotor cortex both during actual and imaginary movements. eConnectome is demonstrated as an effective tool for the study of cortex activation and FCN. The implementation of FCN in motor imagery could induce promising advancements in Brain Computer Interfaces.

Publication DOI: https://doi.org/10.1155/2012/127627
Divisions: Life & Health Sciences
Additional Information: © 2012 Alkinoos Athanasiou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Full Text Link:
Related URLs: https://www.hin ... ci/2012/127627/ (Publisher URL)
Published Date: 2012
Authors: Athanasiou, Alkinoos
Lithari, Chrysa
Kalogianni, Konstantina
Klados, Manousos A. ( 0000-0002-1629-6446)
Bamidis, Panagiotis D.

Download

[img]

Version: Published Version

License: Creative Commons Attribution

| Preview

Export / Share Citation


Statistics

Additional statistics for this record