Gamma Prime Precipitation, Dislocation Densities, and TiN in Creep-Exposed Inconel 617 Alloy

Krishna, Ram, Atkinson, Helen V., Hainsworth, Sarah V. and Gill, Simon P. (2016). Gamma Prime Precipitation, Dislocation Densities, and TiN in Creep-Exposed Inconel 617 Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 47 (1), pp. 178-193.


Inconel 617 is a solid-solution-strengthened Ni-based superalloy with a small amount of gamma prime (γ′) present. Here, samples are examined in the as-received condition and after creep exposure at 923 K (650 °C) for 574 hours and 45,000 hours and at 973 K (700 °C) for 4000 hours. The stress levels are intermediate (estimated, respectively, as of the order of 350, 275, and 200 MPa) and at levels of interest for the future operation of power plant. The hardness of the specimens has been measured in the gage length and the head. TEM thin foils have been obtained to quantify dislocation densities (3.5 × 1013 for the as-received, 5.0 × 1014, 5.9 × 1014, and 3.5 × 1014 lines/m2 for the creep-exposed specimens, respectively). There are no previous data in the literature for dislocation densities in this alloy after creep exposure. There is some evidence from the dislocation densities that for the creep-exposed samples, the higher hardness in the gage length in comparison with the creep test specimen head is due to work hardening rather than any other effect. Carbon replicas have been used to extract gamma prime precipitates. The morphology of γ′ precipitates in the ‘as-received’ condition was spheroidal with an average diameter of 18 nm. The morphology of these particles does not change with creep exposure but the size increases to 30 nm after 574 hours at 923 K (650 °C) but with little coarsening in 45,000 hours. At 973 K (700 °C) 4000 hours, the average gamma prime size is 32 nm. In the TEM images of the replicas, the particles overlap, and therefore, a methodology has been developed to estimate the volume fraction of gamma prime in the alloy given the carbon replica film thickness. The results are 5.8 vol pct in the as-received and then 2.9, 3.2, and 3.4 vol pct, respectively, for the creep-exposed specimens. The results are compared with predictions from thermodynamic analysis given the alloy compositions. Thermodynamic prediction shows that nitrogen content is important in determining the gamma prime volume fraction. This has not previously been identified in the literature. The higher the nitrogen content, the lower the gamma prime volume fraction. This may explain inconsistencies between previous experimental estimates of gamma prime volume fraction in the literature and the results here. The observed decrease in the γ′ volume fraction with creep exposure would correspond to an increase in TiN. At present, there are insufficient experimental data to prove that this predicted relationship occurs in practice. However, it is observed that there is a higher volume fraction of TiN precipitates in the gage length of a creep sample than in the head. This suggests that secondary TiN particles are precipitating at the expense of existing γ′ due to the ingress of N from the atmosphere, possibly via creep cracks penetrating in from the surface of the gage length. This effect is not expected to be observed in real components which are much larger and operate in different atmospheres. However, this highlights the need to be conscious of this possibility when carrying out creep testing.

Publication DOI:
Divisions: Engineering & Applied Sciences
Uncontrolled Keywords: Condensed Matter Physics,Mechanics of Materials,Metals and Alloys
Full Text Link: http://hdl.hand ... .net/2381/37132
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
https://link.sp ... 1661-015-3193-9 (Publisher URL)
Published Date: 2016-01
Authors: Krishna, Ram
Atkinson, Helen V.
Hainsworth, Sarah V.
Gill, Simon P.

Export / Share Citation


Additional statistics for this record