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Abstract: Finite-region stability (FRS), a generalization of finite-time stability (FTS), has
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this paper, we consider the problem of FRS for discrete 2-D Roesser models via dynamic

output feedback. First, a sufficient condition is given to design the dynamic output feedback

controller with a state feedback-observer structure, which ensures the closed-loop system FRS.

Then, this condition is reducible to a condition that is solvable by linear matrix inequalities

(LMIs). Finally, viable experimental results are demonstrated by an illustrative example.

Keywords: finite-region stability; dynamic output feedback; discrete 2-D Roesser models;

observer

2010 MSC: 11C99, 39A06, 93B05, 93B25

1 Introduction

The two-dimensional (2-D) state-space theory was first introduced by Roesser [1]. Since then,

2-D systems have been widely studied in [2–7] with a proliferation of emerging applications

over the last few decades, including image processing, decoding, encoding, iterative learning,

repetitive processes and so forth. As such, the research on 2-D systems has been a hot area in

control field. Roesser model as one of the commonly used models of 2-D systems has attracted

much attention of many researchers, and many interesting findings on stability and control have

been obtained [8–13]. For example, Lam et al. [8] investigated the stabilization problem for

uncertain 2-D Roesser model via dynamic output feedback. Nachidi et al. [9] designed the

static output feedback controller for 2-D Roesser models. Results on l2 − l∞ stability analysis

were established for a class of 2-D nonlinear disturbed systems [10], which guarantees asymptotic

stability without external interference. Besides, Ahn et al. [13] solved the problems of dissipative

control and filtering for 2-D systems, by providing a sufficient condition to check asymptotic

stability and 2-D (Q,S,R)− α dissipativity. However, these results on stability or control were

associated with Lyapunov asymptotic stability (LAS).

Apart from LAS, recent years have also witnessed growing interests on finite-time stability

(FTS) for one-dimensional (1-D) systems. The concept of FTS was first introduced in [14], and

reintroduced by Dorata in [15] which is related to dynamical systems whose state does not

exceed some bounds during the specified time interval. It is important to note that FTS and

LAS are completely independent concepts. FTS aims at analyzing transient behavior of a system

1E-mail addresses: huadingli4284@163.com, weiqunwang@126.com, w.yu3@aston.ac.uk, Swangyix@126.com
*Corresponding author.
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within the finite interval time rather than the asymptotic behavior within the infinite time. FTS

plays vital roles in many practical applications, for instance the problem of not exceeding some

given bounds for the state trajectories, when there exist some saturation elements in the control

loop; or the problem of controlling the trajectory of a spacecraft from an initial point to a final

point in a prescribed time interval. With the in-depth of research on FTS theory for 1-D systems,

many interesting results have come into play, see [16–23]. Among them, Amato et al. [21] used

a two-step procedure (state feedback design followed by observer synthesis) in the finite-time

stabilization problem for 1-D continuous-time linear systems.

In addition, the study of the finite region for discrete 2-D systems have been popping up.

In [24, 25], the concept of finite-region stability (FRS) as the extension of FTS in 1-D systems

case to discrete 2-D systems was put forward, and finite-region stabilization of these discrete

2-D models in the state feedback case was investigated. In practice, the system state is often

unknown or cannot be directly measured. Therefore, it is necessary to study the dynamic output

feedback stabilization problem, and consider designing an observer to estimate the state. For

1-D systems, the problem of observer-based dynamic output feedback is challenging because of

the coupling of the observer design and the controller design, not to mention 2-D systems.

In this paper, motivated by literature [21], we focus on the finite-region stabilization for dis-

crete 2-D Roesser models via dynamic output feedback. We first introduce a Luenberger observer

with a state feedback controller, which is a special dynamic output feedback controller. Then we

get a closed-loop system that treats the state estimation errors as external perturbations, and

the boundedness condition of the external perturbations can be guaranteed by Theorem 3.1 in

[25]. In this way, the problem of finite-region stabilization for discrete 2-D Roesser models via

dynamic output feedback is converted into the problem of designing an observer to guarantee the

closed-loop system finite-region boundedness (FRB). Furthermore, we give a generic sufficient

condition and a sufficient condition that is solvable by linear matrix inequalities (LMIs) for the

existence of such an dynamic output feedback controller that guarantees the closed-loop system

to be FRS.

Notations N+ denotes a set of positive integers, Rn is the n-dimensional space with inner

product xT y. A > 0 means that the matrix A is symmetric positive definite. AT denotes

the transpose of matrix A, I represents the identity matrix. λ(A) denotes the eigenvalue of

A, λmax(A) is the maximum eigenvalue of A and λmin(A) is the minimum eigenvalue of A. ∗

represents the symmetric terms in a matrix.

2 Preliminaries and problem statement

In this paper we consider the following 2-D discrete-time linear system in the Roesser model:

x+(i, j) = Ax(i, j) +Bu(i, j), x0(i, j), (1)

y(i, j) = Cx(i, j), (2)

where x(i, j) =

[
xh(i, j)

xv(i, j)

]
∈ Rn is the state vector, x+(i, j) =

[
xh(i+ 1, j)

xv(i, j + 1)

]
, u(i, j) ∈

Rp is the 2-D control input vector, and y(i, j) ∈ Rq is the 2-D output vector, x0(i, j) =
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[
xh(0, j)

xv(i, 0)

]
is the boundary condition, i, j are the horizontal and vertical discrete variables;

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
and C =

[
C1 C2

]
are constant real matrices with appro-

priate dimensions.

Define the finite-region for discrete 2-D Roesser model (1)-(2) as follows:

I0 = I1 × I2 = {(i, j)|0 ≤ i ≤ I1, 0 ≤ j ≤ I2; I1, I2 ∈ N+}. (3)

For 1-D discrete systems, the concept of FTS is given below.

Definition 2.1. [20] Given three positive scalars c1, c2, M , with 0 < c1 < c2, M ∈ N+, and a

positive definite matrix R, the discrete-time linear system

x(k + 1) = Ax(k), x(0) = x0

is said to be FTS with respect to (c1, c2,M,R), if

xT0 Rx0 ≤ c1 ⇒ xT (k)Rx(k) < c2, k ∈ {1, · · · ,M}.

It is worth noting that the concept of finite-time boundedness (FTB) was first given in

[26, 27] when one deals with the FTS of 1-D linear systems in the presence of nonzero exogenous

perturbations.

The definitions of FRS and FRB for 2-D discrete systems given in [25] are different from

those of FTS and FTB for 1-D systems. Thus, we slightly change the definitions of FRS and

FRB for 2-D systems, to keep their forms consistent with the definitions of FTS and FTB for

1-D systems.

Definition 2.2. Given two positive scalars c1, c2, with c1 < c2, I0, where I0 is defined in (3),

and positive definite matrix R, where R = diag{R1, R2}, R1 > 0, R2 > 0, the system (1) with

zero input:

x+(i, j) = Ax(i, j), x0(i, j) (4)

is said to be FRS with respect to (c1, c2, I0, R), if

xT0 (i, j)Rx0(i, j) ≤ c1 ⇒ xT (i, j)Rx(i, j) < c2, ∀(i, j) ∈ I0.

Considering that the exogenous perturbations influence system (4), further, we introduce

the following system

x+(i, j) = Ax(i, j) +Gw(i, j), x0(i, j). (5)

As usual, we impose the following restrictions on exogenous perturbations.

Assumption 2.1 Assume that the external perturbation w(i, j) of system (5) satisfies the

following condition:

∃ d > 0 s.t. wT (i, j)Rw(i, j) < d, ∀(i, j) ∈ I0. (6)
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Definition 2.3. Given three positive scalars c1, c2, d, with c1 < c2, I0, where I0 is defined in

(3), and positive definite matrix R, where R = diag{R1, R2}, R1 > 0, R2 > 0, the 2-D Roesser

model (5) is said to be FRB with respect to (c1, c2, I0, R, d), if

xT0 (i, j)Rx0(i, j) ≤ c1 ⇒ xT (i, j)Rx(i, j) < c2, ∀(i, j) ∈ I0,

for all w(i, j) satisfying Assumption 2.1.

In this paper, we will study the finite-region stabilization issue for discrete 2-D Roesser mod-

els via dynamic output feedback. First consider the general dynamic output feedback controller

of the given discrete 2-D system (1)-(2):

ξ+(i, j) = Acξ(i, j) +Bcy(i, j), ξ0(i, j) = 0, (7)

u(i, j) = Ccξ(i, j) +Dcy(i, j), (8)

where ξ+(i, j) =

[
ξh(i+ 1, j)

ξv(i, j + 1)

]
, ξ(i, j) =

[
ξh(i, j)

ξv(i, j)

]
, ξ0(i, j) =

[
ξh(0, j)

ξv(i, 0)

]
, and Ac =

[
Ac,11 Ac,12

Ac,21 Ac,22

]
, Bc =

[
Bc,1

Bc,2

]
, Cc = [Cc,1, Cc,2] and Dc are constant real matrices with

appropriate dimensions.

Together with the system (1)-(2) and the controller (7)-(8), then

x+(i, j) = (A+BDcC)x(i, j) +BCcξ(i, j), x0(i, j), (9)

ξ+(i, j) = BcCx(i, j) +Acξ(i, j), ξ0(i, j) = 0. (10)

Remark 2.1 Systems (9)-(10) are well posed. Given controller (7)-(8), for any initial condition

x0(i, j) with xT0 (i, j)Rx0(i, j) ≤ c1 and ξ0(i, j) = 0, ξ(i, j) is unique and it makes sense to let

ξT (i, j)Rξ(i, j) < d.

Clearly, the problem of finite-region stabilization for system (1)-(2) via dynamic output

feedback is now simplified to the FRB problem of system (9). And this issue can be specifically

described as the following problem.

Problem 2.1 Given three positive scalars c1, c2, d, with c1 < c2, I0, where I0 is defined in (3),

and a positive definite matrix R, where R = diag{R1, R2}, R1 > 0, R2 > 0, our goral is to find

a dynamic output feedback controller in the form (7)-(8) such that 2-D discrete system (1)-(2)

under the input (8), i.e. system (9), is FRB with respect to (c1, c2, I0, R, d).

In general, it is quite difficult to design a generic dynamic output feedback controller (7)-(8)

for discrete system (1)-(2). Fortunately, a two-step procedure for designing a dynamic output

feedback controller of 1-D linear systems has been proposed in [21]. In light of this, we next

design a specific one for discrete 2-D Roesser model. The existence of such a controller ensuring

the closed-loop system FRS can be studied by using finite-region stabilization via state feedback.

First, we introduce the Luenberger observer [28] of system (1)-(2):

ξ+(i, j) = Aξ(i, j) +Bu(i, j) + L (Cξ(i, j)− y(i, j)) , ξ0(i, j) = 0, (11)

where L =

[
L1

L2

]
is the observer gain matrix with approximate dimensions.
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Now we feedback the state estimation via the state feedback controller

u(i, j) = Kξ(i, j). (12)

Note that when the state feedback controller K exists, it can be designed by employing

the method given in Theorem 3.3 of [25]. Therefore, it is reasonable to make the following

assumption.

Assumption 2.2 There exists a state feedback controller u(i, j) = Kx(i, j) such that the

closed-loop control system of discrete 2-D system (1) is FRS, where K = [K1,K2].

If such an observer gain L in (11) exists, the corresponding controller (11)-(12) is a dynamic

output feedback controller (7)-(8), where Ac = A+ BK + LC, Bc = −L, Cc = K and Dc = 0,

then the closed-loop state equations (9)-(10) become the following form

x+(i, j) = Ax(i, j) +BKξ(i, j), x0(i, j), (13)

ξ+(i, j) = −LCx(i, j) + (A+BK + LC)ξ(i, j), ξ0(i, j) = 0. (14)

Let the state estimation error be e(i, j) = x(i, j)− ξ(i, j), then the state equations (13)-(14)

can be translated into the form based on estimation error

x+(i, j) = (A+BK)x(i, j) −BKe(i, j), x0(i, j), (15)

with

e+(i, j) = (A+ LC)e(i, j), e0(i, j) = x0(i, j). (16)

Therefore, the system state evolution can be codetermined by the matrix A + BK and the

behavior of external input e(i, j). If e(i, j) = 0, it follows from Assumption 2.2 that the system

(15) is FRS. If e(i, j) 6= 0, there exists inaccurate state estimation, and the existence of a nonzero

estimation error may destroy the FRS of closed-loop system x+(i, j) = (A+BK)x(i, j) obtained

by the state feedback controller. In this case, we need to study the FRB problem of system

(15), which treats error-term system (16) as external perturbations. Note that if the error-term

system (16) is FRS in given finite-region I0, then for given two constants c1, d, with c1 < d,

a positive definite matrix R, and the initial condition xT0 (i, j)Rx0(i, j) ≤ c1, the error e(i, j)

satisfies eT (i, j)Re(i, j) < d.

Based on the above discussion, our goal is to design an observer gain L in (11) such that

the system (15) is FRB for all admissible estimation error (16). To summarize, Problem 2.1 can

boil down to the following problem.

Problem 2.2 When there exists a finite-region stabilizable system (1) via state feedback, we

find an observer gain L such that system (15) is FRB with respect to (c1, c2, I0, R, d).

3 Main results

The following theorems give the sufficient conditions for the solvability of Problem 2.2.

Theorem 3.1. Given system (15)-(16) and three positive scalars c1, c2, d, with c1 < c2, c1 < d,

there exist nonnegative scalars 0 < η < 1, αl, symmetric positive definite matrices Pl, Ql, and

symmetric matrices Ml, where l = 1, 2, such that
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i)



−α1P
− 0 0 A1

TP1 +KTB1
TP1

∗ −α1Q
− A1

TQ1 + CTM1 −KTB1
TP1

∗ ∗ −Q1 0

∗ ∗ ∗ −P1



< 0, (17)




−α2P− 0 0 A2
TP2 +KTB2

TP2

∗ −α2Q− A2
TQ2 + CTM2 −KTB2

TP2

∗ ∗ −Q2 0

∗ ∗ ∗ −P2



< 0, (18)

where A1 = [A11, A12], A2 = [A21, A22], P− =

[
P1 0

∗ 1
c2
P2

]
, Q− =

[
Q1 0

∗ 1
d
Q2

]
, P− =

[
1
c2
P1 0

∗ P2

]
and Q− =

[
1
d
Q1 0

∗ Q2

]
.

ii)

α0ηc1

(
λmax(

∼

P1) + λmax(
∼

Q1)

)
+ I1α0(1− η)

(
λmax(

∼

P2) + λmax(
∼

Q2)

)

λmin(
∼

P1)
< ηc2, (19)

α0(1− η)c1

(
λmax(

∼

P2) + λmax(
∼

Q2)

)
+ I2α0η

(
λmax(

∼

P1) + λmax(
∼

Q1)

)

λmin(
∼

P2)
< (1− η)c2, (20)

where α0 = max{1, α1
I1 , α2

I2},
∼

Pl = R
−

1

2

l PlR
−

1

2

l ,
∼

Ql = R
−

1

2

l QlR
−

1

2

l , l = 1, 2.

In this case, the discrete system (15) is FRB with respect to (c1, c2, I0, R, d), and the dynamic

output feedback controller which makes the system (1)-(2) FRS has the structure (11)-(12) with

L = Q−1M , where L =

[
L1

L2

]
, Q =

[
Q1 0

∗ Q2

]
, and M =

[
M1

M2

]
.

Proof. First, using Schur complement lemma, we produce an equivalent form of (17) and (18).

By Schur complement lemma [29], the condition (17) is equivalent to




(A1 +B1K)TP1(A1 +B1K)− α1P
− −(A1 +B1K)TP1B1K 0

∗ (B1K)TP1B1K − α1Q
− (Q1A1 +M1C)T

∗ ∗ −Q1


 < 0.

(21)

Re-applying Schur complement lemma [29] to (21) produces
[

(A1 +B1K)TP1(A1 +B1K)− α1P
−

−(B1K)TP1(A1 +B1K)

−(A1 +B1K)TP1B1K

(B1K)TP1B1K + (Q1A1 +M1C)TQ1
−1(Q1A1 +M1C)− α1Q

−

]
< 0. (22)

6



Similarly, applying Schur complement lemma [29] twice to the condition (18) yields

[
(A2 +B2K)TP2(A2 +B2K)− α2P−

−(B2K)TP2(A2 +B2K)

−(A2 +B2K)TP2B2K

(B2K)TP2B2K + (Q2A2 +M2C)TQ2
−1(Q2A2 +M2C)− α2Q−

]
< 0. (23)

Let M1 = Q1L1 and M2 = Q2L2, the conditions (22)-(23) can be rewritten as

[
(A1 +B1K)TP1(A1 +B1K)− α1P

−

−(B1K)TP1(A1 +B1K)

−(A1 +B1K)TP1B1K

(B1K)TP1B1K + (A1 + L1C)TQ1(A1 + L1C)− α1Q
−

]
< 0, (24)

[
(A2 +B2K)TP2(A2 +B2K)− α2P−

−(B2K)TP2(A2 +B2K)

−(A2 +B2K)TP2B2K

(B2K)TP2B2K + (A2 + L2C)TQ2(A2 + L2C)− α2Q−

]
< 0. (25)

Second, we derive the recursive relations of the weights of state variables.

For simplicity, let z+(i, j) =

[
x+(i, j)

e+(i, j)

]
, z(i, j) =

[
x(i, j)

e(i, j)

]
, and z0(i, j) =

[
x0(i, j)

x0(i, j)

]
.

Then, the system (15)-(16) reduces to

z+(i, j) =

[
A+BK −BK

0 A+ LC

]
z(i, j), z0(i, j). (26)

Next, we define the Lyapunov functions of system (26) as follows

V1(z
h(i, j)) = zh

T
(i, j)

[
P1 0

∗ Q1

]
zh(i, j),

V2 (z
v(i, j)) = zvT (i, j)

[
P2 0

∗ Q2

]
zv(i, j),
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where zh(i, j) =

[
xh(i, j)

eh(i, j)

]
, zv(i, j) =

[
xv(i, j)

ev(i, j)

]
. Then it follows that

V1(z
h(i+ 1, j)) − α1V1(z

h(i, j)) − α1z
vT (i, j)

[
1
c2
P2 0

∗ 1
d
Q2

]
zv(i, j)

=zh
T
(i+ 1, j)

[
P1 0

∗ Q1

]
zh(i+ 1, j) − α1z

hT (i, j)

[
P1 0

∗ Q1

]
zh(i, j) − α1z

vT (i, j)

[
1
c2
P2 0

∗ 1
d
Q2

]
zv(i, j)

=zT (i, j)

[
(A1 +B1K)T 0

−KTB1
T (A1 + L1C)T

][
P1 0

∗ Q1

] [
A1 +B1K −B1K

0 A1 + L1C

]
z(i, j)

− zT (i, j)

[
α1P

− 0

∗ α1Q
−

]
z(i, j)

=zT (i, j)

[
(A1 +B1K)TP1(A1 +B1K)− α1P

−

−KTB1
TP1(A1 +B1K)

−(A1 +B1K)TP1B1K

(B1K)TP1B1K + (A1 + L1C)TQ1(A1 + L1C)− α1Q
−

]
z(i, j), (27)

where A1 = [A11, A12], P
− =

[
P1 0

∗ 1
c2
P2

]
, Q− =

[
Q1 0

∗ 1
d
Q2

]
.

Similarly, we can obtain the following equation

V2(z
v(i, j + 1))− α2V2(z

v(i, j)) − α2z
hT (i, j)

[
1
c2
P1 0

∗ 1
d
Q1

]
zh(i, j)

=zT (i, j)

[
(A2 +B2K)TP2(A2 +B2K)− α2P−

−KTB2
TP2(A2 +B2K)

−(A2 +B2K)TP2B2K

(B2K)TP2B2K + (A2 + L2C)TQ2(A2 + L2C)− α2Q−

]
z(i, j), (28)

where A2 = [A21, A22], P− =

[
1
c2
P1 0

∗ P2

]
and Q− =

[
1
d
Q1 0

∗ Q2

]
.

The condition (24) implies that, for all (i, j) ∈ I0 and eT (i, j)Re(i, j) < d, (27) < 0, that is

V1(z
h(i+ 1, j)) < α1V1(z

h(i, j)) + α1z
vT (i, j)

[
1
c2
P2 0

∗ 1
d
Q2

]
zv(i, j). (29)

Similarly, it follows from (25) and (28) that

V2(z
v(i, j + 1)) < α2V2(z

v(i, j)) + α2z
hT (i, j)

[
1
c2
P1 0

∗ 1
d
Q1

]
zh(i, j). (30)
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For (29) and (30) iterations, we have

V1(z
h(i, j)) <α1V1(z

h(i− 1, j)) + α1z
vT (i− 1, j)

[
1
c2
P2 0

∗ 1
d
Q2

]
zv(i− 1, j)

<α1
2V1(z

h(i− 2, j)) +

2∑

k=1

α1
kzvT (i− k, j)

[
1
c2
P2 0

∗ 1
d
Q2

]
zv(i− k, j)

<α1
iV1(z

h(0, j)) +

i∑

k=1

α1
kzvT (i− k, j)

[
1
c2
P2 0

∗ 1
d
Q2

]
zv(i− k, j)

=α1
izh

T
(0, j)

[
P1 0

∗ Q1

]
zh(0, j) +

i∑

k=1

α1
kzvT (i− k, j)

[
1
c2
P2 0

∗ 1
d
Q2

]
zv(i− k, j)

≤α1
i

(
λmax(

∼

P1) + λmax(
∼

Q1)

)
xh

T
(0, j)R1x

h(0, j) +
i∑

k=1

α1
k

(
1

c2
λmax(

∼

P2)

xvT (i− k, j)R2x
v(i− k, j) +

1

d
λmax(

∼

Q2)e
vT (i− k, j)R2e

v(i− k, j)

)
. (31)

Based on Theorem 3.2 in [25], we obtain that eh
T
(i, j)R1e

h(i, j) < ηd and evT (i, j)R2e
v(i, j) <

(1−η)d when initial condition xh(0, j) satisfies xh
T
(0, j)R1x

h(0, j) ≤ ηc1 < ηd, where 0 < η < 1.

Therefore, inequality (31) is translated into

V1(z
h(i, j)) <α0ηc1

(
λmax(

∼

P1) + λmax(
∼

Q1)

)
+ I1α0

(
1

c2
λmax(

∼

P2)x
vT (i− k, j)R2x

v(i− k, j)

+(1− η)λmax(
∼

Q2)

)
, (32)

where α0 = max{1, α1
I1 , α2

I2}.

On the other hand,

V1

(
zh(i, j)

)
≥ λmin(

∼

P1)x
hT (i, j)R1x

h(i, j) + λmin(
∼

Q1)e
hT (i, j)Q1e

h(i, j)

> λmin(
∼

P1)x
hT (i, j)R1x

h(i, j). (33)

From (32) and (33), we have

xh
T
(i, j)R1x

h(i, j) <

I1α0

(
1
c2
λmax(

∼

P2)x
vT (i− k, j)R2x

v(i− k, j) + (1 − η)λmax(
∼

Q2)

)

λmin(
∼

P1)

+

α0ηc1

(
λmax(

∼

P1) + λmax(
∼

Q1)

)

λmin(
∼

P1)
. (34)
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Using the same method for V2(z
v(i, j)), we have

xvT (i, j)R2x
v(i, j) <

I2α0

(
1
c2
λmax(

∼

P1)x
hT (i, j − l)R1x

h(i, j − l) + ηλmax(
∼

Q1)

)

λmin(
∼

P2)

+

α0(1− η)c1

(
λmax(

∼

P2) + λmax(
∼

Q2)

)

λmin(
∼

P2)
. (35)

Finally, we will use mathematical induction to prove the following conclusion: for given

j ∈ I2, if x
hT (0, j)R1x

h(0, j) ≤ ηc1 < ηc2, 0 < η < 1, there exist two inequalities

xh
T
(i, j)R1x

h(i, j) < ηc2, (36)

xvT (i, j)R2x
v(i, j) < (1− η)c2. (37)

Setting i = 0 in (35), we have

xvT (0, j)R2x
v(0, j)

<

I2α0η

(
λmax(

∼

P1) + λmax(
∼

Q1)

)
+ α0(1− η)c1

(
λmax(

∼

P2) + λmax(
∼

Q2)

)

λmin(
∼

P2)
. (38)

It follows from condition (20) that

xvT (0, j)R2x
v(0, j) < (1− η)c2. (39)

Setting i = 1 in (34) and using (39) and the condition (19), we have

xh
T
(1, j)R1x

h(1, j) <

I1α0(1− η)

(
λmax(

∼

P2) + λmax(
∼

Q2)

)
+ α0ηc1

(
λmax(

∼

P1) + λmax(
∼

Q1)

)

λmin(
∼

P1)

<ηc2. (40)

It is easy to obtain from both (40) and condition (19) that

xvT (1, j)R2x
v(1, j) < (1− η)c2. (41)

Suppose that the result (36) holds for 0 ≤ i ≤ I1 − 1. By direct calculation, we can obtain that

xvT (i, j)R2x
v(i, j) < (1 − η)c2 also holds for any 0 ≤ i ≤ I1 − 1. Next we only need to prove

that xh
T
(I1, j)R1x

h(I1, j) < ηc2 and xvT (I1, j)R2x
v(I1, j) < (1 − η)c2.
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For fixed i = I1, we have

xh
T
(I1, j)R1x

h(I1, j) <

I1α0

(
1
c2
λmax(

∼

P2)x
vT (I1 − k, j)R2x

v(I1 − k, j) + (1− η)λmax(
∼

Q2)

)

λmin(
∼

P1)

+

α0ηc1

(
λmax(

∼

P1) + λmax(
∼

Q1)

)

λmin(
∼

P1)

<

α0ηc1

(
λmax(

∼

P1) + λmax(
∼

Q1)

)
+ I1α0(1− η)

(
λmax(

∼

P2) + λmax(
∼

Q2)

)

λmin(
∼

P1)

<ηc2, (42)

and

xvT (I1, j)R2x
v(I1, j) < (1− η)c2.

Hence, for any (i, j) ∈ I0, the results (36) and (37) are satisfied.

Therefore,

xT (i, j)Rx(i, j) = xh
T
(i, j)R1x

h(i, j) + xvT (i, j)R2x
v(i, j) < c2

for all (i, j) ∈ I0. This implies that the discrete 2-D system (15) is FRB with respect to

(c1.c2, I0, R, d), and the proof is completed.

It should be pointed out that the conditions ii) in Theorem 3.1 are not LMIs conditions. To

use LMI toolbox of Matlab to find the feasible solution, we impose additional conditions on the

conditions ii) in Theorem 3.1, which produces the following LMIs based feasibility problems

λl1I < P̃l < λl2I, 0 < Q̃l < λl3I, l = 1, 2, (43)

α0ηc1 (λ12 + λ13) + I1α0(1− η) (λ22 + λ23) < ηc2λ11, (44)

α0(1− η)c1 (λ22 + λ23) + I2α0η (λ12 + λ13) < (1− η)c2λ21, (45)

where λl1, λl2, λl3 are positive numbers.

It is easy to verify LMIs conditions (43)-(45) can guarantee the conditions (19)-(20) hold.

Therefore, the FRB of 2-D system (15) can be obtained via the following theorem.

Theorem 3.2. Given the system (15)-(16) and (c1, c2, I0, R, d), fix αl > 0, 0 < η < 1, and

find symmetric positive definite matrices Pl, Ql, symmetric matrices Ml and positive scalars

λl1, λl2, λl3 satisfying the LMIs (17), (18), (43), (44) and (45), where l = 1, 2. If the problem is

feasible, the discrete system (15) is FRB with respect to (c1, c2, I0, R, d), and the dynamic output

feedback controller (11)-(12) with L = Q−1M solves the FRS problem of system (1)-(2).
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Example 3.1. In [30], Marszalek pointed out that some dynamical processes in gas absorption,

water stream heating and air drying can be described by the Darboux equation:

∂2s(x, t)

∂x∂t
= a1

∂s(x, t)

∂t
+ a2

∂s(x, t)

∂x
+ a0s(x, t) + bf(x, t), (46)

where s(x, t) is an unknown function at x (space) ∈ [0, xf ], and t (time) ∈ [0,∞], a0, a1, a2 and

b are real coefficients, and f(x, t) is the input function.

In [31] the partial differential equation (PDE) model (46) was converted into a 2-D Roesser

model of the form (1)-(2), where

A =

[
1 + a1∆x (a1a2 + a0)∆x

∆t 1 + a2∆t

]
, B =

[
b∆x

0

]
,

and C = [C1, C2]. Now let a0 = 37.9, a1 = 2.7, a2 = −12, b = −20, ∆x = 0.2, ∆t = 0.05,

C1 = 10, C2 = 15, then

A =

[
1.54 1.1

0.05 0.4

]
, B =

[
−4

0

]
, C = [10, 15].

Suppose that R = I, I0 = I1×I2 = [0, 5]× [0, 5], c1 = 0.7, c2 = 20, d = 1 and xh(0, j) = 0.76,

xv(i, 0) = 0.26.

When control input u(i, j) = 0, it is easy to check that the weighted-state xT (i, j)Ix(i, j) >

20, see Figure 1, then open-loop system is not FRS with (0.7, 20, [0, 5]× [0, 5], I) with the initial

condition xh(0, j) = 0.76, xv(i, 0) = 0.26.

In the following, we design a dynamic output feedback controller such that the closed-loop

system is FRS.

First, we devise a state feedback controller K, which ensures the system x+(i, j) = (A +

BK)x(i, j) FRS.

According to Theorem 3.3 in [25], let c
′

1 = 0.58, c
′

2 = 0.07, with c
′

1 + c
′

2 < c1 = 0.7,

c
′

= c2 = 20, η = 0.9, using LMI toolbox of Matlab, the conditions are feasible with α
′

1 = 1.05,

α
′

2 = 1.10, β
′

1 = 35.5, β
′

2 = 3.45, and the state feedback controller is

K = [0.3850, 0.2750]. (47)

Next, we design an observer gain L to guarantee the system (15) FRB.

By employing LMI control toolbox and Theorem 3.2, a feasible solution of the LMIs (17)-(18),

(43)-(45) with η = 0.9, α1 = 1.05, α2 = 1.06 can be derived as follows

P =

[
7.1720 0

∗ 105.5938

]
, Q =

[
22.2962 0

∗ 32.3899

]
, M =

[
−2.6483

−0.5877

]
.

Thus, we can obtain

L = Q−1M =

[
−0.1188

−0.0181

]
, (48)
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Figure 1: Weighted-state before stabilization
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Figure 2: Weighted-state after stabilization

Hence the dynamic output feedback controller that stabilizes the system (1)-(2) in finite-

region can be obtained as (7)-(8) with

Ac =

[
−1.1880 −1.7820

−0.1310 0.1285

]
, Bc =

[
0.1188

0.0181

]
, Cc = [0.3850, 0.2750], Dc = 0.

Figure 2 shows the weighted-state xT (i, j)Rx(i, j) of closed-loop system with the initial

condition xh(0, j) = 0.76, xv(i, 0) = 0.26.

4 Conclusions

In this paper, the problem of finite-region stabilization for discrete 2-D Roesser models via

dynamic output feedback has been studied. By designing a dynamic output feedback controller

having a state feedback-observer structure, we get a closed-loop system that treats the state

estimation errors as external perturbations. Then, the problem is translated into the problem

for designing an observer to guarantee the closed-loop system FRB. Finally, we give two sufficient

conditions for the existence of such a dynamic output feedback controller that guarantees the

closed-loop system to be FRS. Further, this problem can also be studied in a similar way for

other models of discrete 2-D systems.
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