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Abstract—To achieve high-performance control of modern dc-
dc converters, using direct digital design techniques, an accurate
discrete model of the converter is necessary. In this paper, a new
parametric system identification method, based on a Kalman filter
(KF) approach is introduced to estimate the discrete model of a
synchronous dc—dc buck converter. To improve the tracking per-
formance of the proposed KF, an adaptive tuning technique is pro-
posed. Unlike many other published schemes, this approach offers
the unique advantage of updating the parameter vector coefficients
at different rates. The proposed KF estimation technique is experi-
mentally verified using a Texas Instruments TMS320F28335 micro-
controller platform and synchronous step-down dc—dc converter.
Results demonstrate a robust and reliable real-time estimator. The
proposed method can accurately identify the discrete coefficients
of the dc—dc converter. This paper also validates the performance
of the identification algorithm with time-varying parameters, such
as an abrupt load change. The proposed method demonstrates ro-
bust estimation with and without an excitation signal, which makes
it very well suited for real-time power electronic control applica-
tions. Furthermore, the estimator convergence time is significantly
shorter compared to many other schemes, such as the classical
exponentially weighted recursive least-squares method.

Index Terms—DC-DC converter, Kalman filter (KF), parameter
estimation, recursive least-squares (RLS) method, system
identification.

1. INTRODUCTION

WITCH-MODE dc—dc power converters are widely used
S in a variety of applications, ranging from dc motor drives,
personal computers, home appliances, and portable electronic
devices [1], [2]. All of these applications require efficien and
cost-effective dynamic and steady-state voltage or power regu-
lation over a wide range of operating conditions. Traditionally,
predesigned PID controllers are applied to achieve the required
dynamic performance in these systems. However, poor knowl-
edge of the power converter parameters may cause inaccuracies
in the controller design. Moreover, unpredicted behaviors such
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as sudden load variations, components aging, noise, and unpre-
dictable changes in operating mode may degrade the controller
performance and can lead to instability within the entire system
[3], [4]. For these reasons, adaptive and autotuning controllers,
based on the system identificatio of the converter parameters,
are now gaining more attention.

Recently, several techniques for the system identificatio
of de—dc converters have been proposed. Two main classes
of system identificatio are commonly employed: parametric
and nonparametric techniques. In nonparametric identificatio
methods, the system frequency response is determined directly,
with no prior knowledge of the system model [5], [6]. The
proposed strategies include correlation analysis [7], [8], tran-
sient response analysis [9], [10], Fourier, and spectral analysis
[11], [12]. Typically, nonparametric system identificatio
approaches assume steady-state operation and the system
identificatio process is carried out, while the control loop is
open to inject the excitation signal. In addition, the frequency
response measurements are usually performed offlin on a
host PC or a field-programmabl gate array, which increases
the complexity and hence the cost of the implementation
[6]. Also, by incorporating these techniques in real-time
applications such as de—dc power converters, abrupt changes
in the parameters can potentially yield unpredicted behavior
or even an unstable output response. The second paradigm,
parametric system identification assumes a known model
structure with prespecifie order and number of coefficient
to be estimated [5]. According to the literature, conventional
least squares [5], [13] and its recursive version, recursive least
squares (RLS) [4], [14], [15], are the most commonly used
algorithms for parameter estimation of dc—dc converters. In
[4], the classical RLS algorithm is reviewed and tested in
real time on an open-loop buck converter. It is confirme that
the classical RLS algorithm can result in accurate parameter
estimation for systems with fi ed, or slow varying, loads
while operating at sampling frequency much lower than the
switching frequency. However, the algorithm fails to track
fast parameter changes. In order to overcome this problem,
the exponentially weighted RLS (ERLS) algorithm is often
applied to estimate abrupt changes in converter parameters. An
offlin parameter estimation approach is presented in [14] using
the biogeography-based optimization method. Due to the low
sampling rate used in this approach, the estimation process takes
around 100 ms to converge to its fina values. In addition, the
proposed method has a considerably higher computational cost
compared to ERLS. A low computational complexity ERLS
identificatio technique, based on a dichotomous coordinate



descent algorithm, is introduced in [2]. However, according
to simulation and initial experimental results, the proposed
method is tested offlin showing a slow convergence time for
zero coefficient with modest fluctuatio due to measurement
noise. In addition, the performance of the proposed algorithm
is not investigated during abrupt load changes. Regardless of
the improvement introduced by ERLS in terms of estimating
abrupt changes, it is reported that a compromise must be
made between noise sensitivity and dynamic tracking perfor-
mance [15]. Typically, this technique applies equal weight
to all parameters during the estimation process. As a result,
if the rate of variation of one of the estimated parameters is
greater than the other parameters, the same adaptation gain cor-
rection is applied to all parameters irrespectively which greatly
affects the estimator output [16]. The estimation of coefficient

with small values will suffer from slow convergence speed
and higher estimation error. Practically, the measurement noise
may increase this deviation, which impacts on the reliability of
the estimation results when used in fault detection applications
or controller design on the fl . This scenario is illustrated
in parameter estimation of dc—dc converters, where sluggish
convergence of the zero coefficient is observed and their fina
value is highly affected by the measurement noise [2]. Another
drawback of the ERLS implementation is the requirement of
superimposing the input signal with a frequency-rich signal
[such as those generated by a pseudorandom binary sequence
(PRBS)] to enhance the estimation accuracy and prevent
estimator wind up due to an exponential growth of the adap-
tation gain matrix [16]. This necessitates keeping the output
voltage perturbed for long periods or resetting the estimator
periodically, which can lead to some abrupt changes not being
observed. To overcome this, the error covariance matrix can
be updated using a different approach to add more freedom
to the adaptive algorithm when calculating the adaption gain.
In this paper, a state-of-the-art Kalman filte (KF) algorithm is
proposed for real-time parameter estimation of a switch-mode
power converter (SMPC). The proposed technique has the
advantage of providing an independent strategy for adaptation
of each individual parameter. Compared to existing system
identificatio approaches, the proposed algorithm can be readily
implemented online and is well suited for real-time dynamic
applications. Furthermore, unlike classical RLS approaches, the
effects of the excitation signal and parameter uncertainty can
be factored into the proposed algorithm. This results in greater
precision parameter estimation and much faster convergence
speed. The effectiveness of the proposed technique is experi-
mentally verifie on a synchronous buck converter operating in
continuous conduction mode (CCM); however, it can be easily
transferred to other converter topologies. Results also confir

the ability of the proposed KF algorithm to produce improved
performance compared to commonly applied ERLS schemes.

II. PARAMETER ESTIMATION OF SMPC

A. Discrete Time Modeling

Generally, in parametric paradigms, the candidate model
of the unknown system should be known in advance. In this
research, a synchronous dc—dc buck converter is considered
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Fig. 1. Synchronous buck converter.

(see Fig. 1). The analytical model of this converter is well un-
derstood and define in the literature [2], [14]; consequently, the
validated result will be used directly in this paper. Furthermore,
the derivation of the average model for the buck converter is well
reported [17], and hence, it is not shown in detail. Therefore,
starting here from the state-space model, the transfer function
relating the output voltage (voy¢) to input duty cycle (d) of the
buck converter can be expressed as follows:

Vout (S
G (5) = d/t(s()) -
‘/in (CRCS + 1)
SQLC(%) T S(RCC + C(R§>O+R13LL) T Ro JLrl’?,L) +1
(1)

In (1), Vi, is the input voltage, R is the load resistance, L is
the inductance with dc resistance Ry,, and C is the output capac-
itance with equivalent series resistance R¢. In Fig 1, the para-
sitic elements are included to improve the model accuracy and
to demonstrate the importance of considering non-ideal com-
ponents for system identificatio in applications such as power
electronic converters. For instance, in the buck converter, the
equivalent series resistor R¢ cannot be ignored because it adds
a zero to the transfer function (1), which has a negative impact
on the dynamic behaviour of the converter [18]. In addition, its
value may be used as a diagnostic indicator of capacitor aging
[14]. In real-time applications, it is typical to use discrete anal-
ysis; hence, the digital equivalent transfer function is preferred
[5], [14]. The transfer function parameters rely on the actual
component values including the parasitic elements (such as Ry,
R¢, and the conduction losses of the switch); therefore, a more
accurate digital controller can be designed when the converter
losses are considered. In this paper, a zero-order-hold mapping
technique is applied to compute the equivalent discrete transfer
function as follows:

blz_l + b22_2
14+a1z7' + agz=2"

G = 2

Here, the values of coefficient a and b are dependent on the
Laplace transfer function coefficient define in (1), and on the
digital sampling time, 7 [2], [4].

B. ERLS for Parameter Estimation

In this paper, we apply the conventional ERLS scheme as
a testbed for assessing the performance of the proposed KF



TABLE 1
ERLS ADAPTIVE ALGORITHM

TABLE II
KF CONFIGURED FOR PARAMETER ESTIMATION

Step Formula

Step Formula

Py=g *I,and(jo = 0,where [ isan N x N
identity matrix, g is large number usually

Initialization

Do fork > 1
1- Prediction error calculation er =yr —@! p 0k 1
Py _ .
2-Calculate Kalman gain Ky = k1Pk

A+ @T  Pro1k)
O = 0py + Ky, (y; —%%ékq)
Pp=1 [P —Kro'y ]

3-Update the parameter vector 6

4-Update the covariance matrix P

algorithm. To estimate the parameters in (2), the relation be-
tween the input and output signals can be rewritten as follows:

Y + a1Y—1 + a2 = biux_1+byux_ (3)

where y; and u; denote the output voltage and the duty cycle
control signal, respectively, at sampling instant k. For system
identificatio purposes, the difference equation in (3) is rewritten
in linear regression form

Y = ¢ 10k (4)

By comparing (2) with (4), the unknown coefficient [a; a
by by ] are lumped in a vector 6, € RN, while the data vector Dk
(regression vector) contains the sampled input and output mea-
surements. It is important to emphasize that minimizing the
weighted sum of the quadratic error in (5) yields an accurate
estimation of 6 [2], [16]

n

Buin = »_A"F (yk - @Tkék)Q ®)

k=1

where (1) € [0,1] is the forgetting factor, and n is the number
of available samples to date. The estimated parameter vector
0, = a1 Gy by bo] isupdated at every sampling instant through
simple modificatio of ék_l. For conciseness, details of the
algorithm are depicted in Table 1[16]. In Table I, P, € RV >N
is the error covariance matrix, K, € R" is the adaptation gain
vector or Kalman gain, and N is the number of parameters to be
estimated. The initial choices of the system parameters 6, and
covariance matrix I are selected by the designer, and the role
of experience and intuition is paramount [19].

C. KF Configu ed for Parameter Estimation

The KF is a mathematical method widely used to estimate
unmeasured states using the measured input and output [20].
In this paper, the classical KF recursive algorithm is applied to
estimate the set of unknown parameters 6, instead of the states.
This offers reduced convergence time, tracking performance,
and estimation accuracy compared to other recursive algorithms
[21]. As a result, one can consider a parameter variation model
and a linear regression equation described by

Y = @Tkgk + v

6
0 = 0,1 + w. ©)

P(0)=g=1I,andA(0) = 0, where I isan N x N
identity matrix, ¢ is large number, r is scalar > 0,

Q is diag [QH,QQQ,H.QNN]
Dofork > 1

K = Pl ol [er PE ol + 1]
Op = 01 + Ky, [?/k *sﬁkékq}
Py =PF  (I-Krei)

Initialization

-1
‘1-Kalman gain

2-Parameters estimate

3-Estimate dispersion
update

4-Covariance matrix P;r = P, +Q
project ahead

Here, the parameter changes are driven by random vector wy,
with covariance matrix Q € RV *Y | and v}, is the observation
noise with variance r € R [22].

Table II demonstrates the implementation sequence of the
KF as a parameter estimator [22]. As shown in Table II, at
the prediction step, the error covariance matrix is computed by
the additional inclusion of a diagonal matrix @) to account for
time-varying parameters. The size of the diagonal elements is
conducive to the corresponding parameter variation in a random
walk. Thus, the adaptation gain is adjusted for each parameter
individually. This yields improved estimation accuracy for all
elements in the vector 6 with comparable convergence time and
more fl xibility in tuning. In contrast to the ERLS illustrated in
Table I, a linear growth of the covariance matrix P is observed
in the KF. As a result, the estimator may work for longer periods
without any significan output perturbation and yet continues to
exhibit operational responsiveness. This makes the KF approach
an excellent option for real-time applications such as de—dc con-
verters where long periods of perturbation in the output voltage
are highly undesirable.

D. KF Tuning

The tracking capability of the KF relies entirely on the value
of O, which has to be determined by the designer using offlin
tuning, until the desired filte output response is attained [19],
[23]. However, this is a major challenge when using the KF
for real-time state or parameter estimation. In this paper, an
adaptive tuning method for determining Q is introduced. This
approach was initially suggested for KF-based state estimation
in [24]. However, here, a modifie version of this tuning scheme
is applied; each diagonal element in the matrix )} is calculated
based on its related innovation term and Kalman gain. There-
fore, individual parameters with different rates of variation can
potentially be tracked more accurately. This is fundamentally
different to many existing schemes. Referring to Table II, in
step 2, the parameter variation can be estimated from

W =0 — O = Ky, [yk - QOké\k} . (7

As a result, a different variance estimate is obtained for each
element in the vector ;. as follows:

Qii (k) = [@; (). (8)



The deduced model error covariance in (9) is used to improve
the tracking capability of the filte in the event of any sudden
change in system parameters, such as abrupt load change in
dc—dc converters

Q. = diagl[@y (k)P; [@2 (k)P [@s (k) [@a(k)*). 9)

Using this matrix in step 4, each diagonal element in the error
covariance matrix P will be updated according to the corre-
sponding innovation term; hence, the components of parameter
vector ék will have a different variance estimate due to the as-
signed adaptation gain. This new tuning approach overcomes
the difficultie faced in ERLS in estimating small parameters
from noisy real-time data. Therefore, the estimation accuracy
and the tracking performance can be improved significantl for
all transfer function coefficients

III. SIMULATION RESULTS

In order to verify the performance of the proposed iden-
tificatio algorithm, a voltage-controlled synchronous dc—dc
buck SMPC circuit is implemented in MATLAB/Simulink.
The component values for the converter depicted in Fig. 1 are:
Vi =10V, Rp =5Q, L=220puH, C = 330uF,
Ro = 25m{), Ry = 63m{2, Rpg(on) = 18 mS), the switching
frequency and sampling rate are 20 kHz, and the sensing gain
is 0.5. The output voltage is regulated at 3.3 V using digital
PID controller (10), designed based on the pole placement
technique

4.672 —7.539 271 +3.184 272
(1—2z1(1+ 0374 271)

In the early stages of the estimation process, no preliminary
knowledge of the converter parameters is assumed. The same
initial values of covariance matrix and parameter vector for both
ERLS and KF are selected to be P(0) = 100007, and § (0) = 0.
A 9-bit PRBS signal (a rich frequency excitation signal) is in-
jected into the control signal to enhance the parameter estimation
performance. To justify the identificatio results, the discrete
transfer function of the average model in (11) is calculated in
advance, at a sampling time of 50 us. In line with many other
sources of literature, convergence time and accuracy are con-
sidered to be the important metrics in evaluating the adaptive
algorithm performance [2], [4]

0.2262 + 0.1119 22 an
1—-1913 21 4 0.946 22~

For the ERLS, the forgetting factor A = 0.95 is carefully cho-
sen to facilitate a compromise between estimator sensitivity and
convergence speed. Unlike the preliminarily simulation results
presented by the authors in [19], the modifie tuning method
in (9) is adopted in this paper to mitigate the disadvantages
of using a trial-and-error procedure in the KF tuning and the
measurement noise variance 7 is set to 0.095. Fig. 2 shows the
parameter estimation results obtained using the ERLS identi-
ficatio algorithm and KF identificatio algorithm during the
steady-state operation. As depicted in Fig. 2, both estimation al-
gorithms rapidly identify the transfer function coefficient with
fina estimation values very close to the average model in (11).
However, the KF estimation convergence to steady state is less
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Fig. 2. Online parameter estimation results using ERLS and KEF.
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Fig. 4. Estimator win-up effect on ERLS and KF.
than 0.5 ms, while the ERLS estimator takes around 1.5 ms to
converge to the fina values.

To further evaluate the performance of the propsed KF
algorithm, a sudden and significan load change is applied at
0.02 s. The simulation results, illustrated in Fig. 3, indicate that
after a sudden change in the load the KF identifie the transfer
function denominator coefficient accurately with a convergence
time less than 1 ms. In contrast, the ERLS estimation exhibits
under/over shoot before it settles to the fina values with a con-
vergence time more than 5 ms. The stability of both identifi
cation algorithms is evaluated during the absence of the PRBS
signal. The estimation results, shown in Fig. 4, demonstrate that
the KF estimator has the ability to produce a smooth and stable
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Fig. 5. Experimental setup of a synchronous buck converter for real-time
parameter estimation. (a) Block diagram. (b) Overview of test board.

estimation with no effect of the estimator wind up. In contrast,
the ERLS suffers from estimator the wind up phenomenon as
the adaptation gain value increases over time and yields a clear
offset in the fina estimation value.

IV. EXPERIMENTAL RESULTS

To validate the proposed algorithm, experimental verificatio
is conducted on a 5-W synchronous buck converter. Fig. 5 shows
the experimental setup for the proposed real-time parameter es-
timation algorithm. In order to compare the simulation and the
experimental results, the converter parameters are selected to be
the same as those outlined in Section I1I. In addition to the digital
controller described in (10), the entire identificatio process in-
cluding PRBS generation, filtering and the adaptive algorithm
is performed online on a Texas Instruments TMS320F28335
digital signal processor (DSP) platform to validate the pro-
posed structure in real time. This is accomplished using the
Embedded Coder Support package in MATLAB/Simulink to
generate C code for all related blocks in the Simulink model
and to run this model in “External Mode.” This feature enables
the user to tune and monitor the algorithm parameters in real
time without stopping the application. The obtained real-time
results are transferred to Simulink via a RS232 communica-
tion interface as shown in Fig. 5. To demonstrate the previously
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explained advantages of the KF over the ERLS algorithm, the
identificatio process is enabled for 20 ms, while the PRBS sig-
nal is injected into the duty cycle for 10 ms only as depicted in
Fig. 6. A small amplitude signal is selected for the excitation
signal to keep the perturbation within 5% of the nominal output
voltage during the identificatio procedure; it then reverts back
to normal operation as shown in Fig. 6. Before real-time im-
plementation, the proposed algorithm is tested offlin to inves-
tigate the suitability of the data being used, the selected model
structure, and the filte type. The logged output voltage and the
control signal are both sampled at 20 kHz and exported to MAT-
LAB. To accomplish a good estimation result, the measured
output voltage and the control signal must be filtere before
being applied to the estimation algorithm.

The filterin step is performed using a simple four tap mov-
ing average (MA) filte . These filtere signals are illustrated in
Fig. 7. In the filtere output voltage [see Fig. 7(a)], the ripple
content due to the excitation signal is approximately + 2.5%
with respect to the nominal dc output voltage. The achieved of-
flin estimation results confir that the presented model struc-
ture in (3) is suitable to describe the dynamics of the con-
verter. Furthermore, the simple four-tap MA filte is sufficien to
carry out the filterin task for a successful parameter estimation
process. Due to space limitations, only real-time results are pre-
sented here as they are of primary importance.
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A. ERLS Real-Time Results

Similar to the simulation procedure, the ERLS with forgetting
factor A = 0.95 is investigated. The online estimation results
of the unknown parameters of the dc—dc model in (12) are illus-
trated in Fig. 8. As shown in Fig. §, the ERLS requires around
fi e samples (0.25 ms, at sampling time 50 ps) to converge to a
steady-state value for the denominator coefficient (a;,as) with
accuracy range + 7%, while the numerator taps take a longer
time to converge (around 1 ms), and there is a clear offset in the
fina estimation. The limited accuracy of the ERLS estimator
during the excitation period can be clearly demonstrated via the
estimation error signal, as shown in Fig 9. Consequently, if the

estimated coefficient are used for health monitoring purposes,
as introduced in [14], inaccurate decisions may be taken in
terms of predicting the health or age of the circuit components.
In comparison with the simulation results presented earlier, the
estimation accuracy of the ERLS estimator is highly affected by
the measurement noise in the experimental implementation. To
study the impact of the excitation signal on the estimation re-
sults, the PRBS signal is actively disabled after 10 ms, as shown
in Fig. 6. Due to the scalar-forgetting factor used in ERLS, the
estimated parameters start to deviate from steady state, which
agrees with the simulation results in Fig. 4. This phenomenon
is known as estimator wind-up, where the error covariance ma-
trix grows exponentially and yields a high adaptation gain, as
applied in the correction step [9]. Therefore, the ERLS is not a
reliable estimator if a self-tuning controller is desired. Hence,
in direct digital control design, such as the pole placement ap-
proach, the estimation results are fed to the controller directly
and can potentially cause the system to be unstable since the
values of (by, by ) are not guaranteed to be accurate.

B. KF Real-Time Results

In this section, the proposed KF algorithm is evaluated. Sim-
ilar to ERLS, the poles and zeroes parameters in (11) are com-
pared with the average model parameters at a resistive load
equal to 5 €. In Fig. 9, the parameters a; and as converge to
steady-state values in less than 0.15 ms, which is faster than the
ERLS method with less over/undershoot and 0.3% estimation
error. This confirm the simulation result depicted in Fig. 2. In
comparison with ERLS, the parameters b; and b, are estimated
within a similar period of time, but with enhanced accuracy.
Importantly, the execution time of the proposed KF, measured
in real time using Code Composer Studio, is only 3 us longer
than the ERLS. Similarly, to ERLS, the stability of the KF is
examined when the PRBS signal is disabled. As shown in Fig.
10, KF has the ability to produce a smooth and stable estima-
tion with no effect of the estimator wind up. Therefore, the
obtained results can provide a stable self-tuning compensator
since the zero coefficient do not fluctuat and stay very close
to the pre-calculated ones. In addition, the observed prediction
error illustrated in Figs. 10 and 11 confirm the advantages
of the KF over the ERLS in terms of accuracy and improved
convergence speed for transfer function estimation. The results
obtained for both investigated algorithms are summarized in
Table III, which demonstrates that the KF outperforms ERLS
in terms of accuracy and convergence time. Only a very small
amount of additional execution time is required, due to the tun-
ing step introduced in (9). In Table III, the achieved real-time
results show that the KF approach outperforms the classical
ERLS in terms of accuracy of all transfer function coefficients
as well as the minimal convergence time required to reach the
steady state. Importantly, in comparison to similar tests intro-
duced in [2] and [14], in this paper, all system identificatio
steps, including filterin and the adaptive algorithm implemen-
tation, are performed online without interrupting the normal
system operation.

Here, the sampling frequency is set similar to the converter
switching frequency to take one sample of the output voltage
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Fig. 11. Estimation error for KF during steady-state operation.
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TABLE III
STEADY-STATE PARAMETER ESTIMATION COMPARISON BETWEEN ERLS
AND KF

Parameter KF ERLS MODEL
al —1.922 —1.822 —1.913
a2 0.946 0.842 0.946
b1 0.161 0.087 0.2259
b2 0.0991 —0.00573 0.1119
Convergence time 0.15 ms 0.25 ms
Computational time per iteration 37 ps 33 ps
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Fig. 12.  Output voltage recorded on the DSP during a step load change from
Stolat0.015s.

and the control signal every switching period, while in [14],
a slow sampling rate is selected, which leads to a very slow
convergence time. Furthermore, the impact of the excitation
signal on the estimator behavior is examined here and confirm

that the KF approach does not require long perturbation periods
to achieve accurate and robust estimation results. Therefore, if
a similar mapping method to that presented in [14] is applied
on KF estimation, the values of the converter components such
as L, C can be easily and accurately extracted online. Even
though low computational effort is required in the estimation
algorithm proposed in [2], the same shortcoming of the ERLS
is observed where the numerator parameters are highly effected
by measurement noise hence the fina estimation cannot be used
for health monitoring or self-tuning controller design.

C. Parameter Estimation During Abrupt Load Change

In SMPC, it is well recognized that the mode of operation can
potentially be diverted from CCM to discontinuous conducting
mode if a wide load variation is applied; as a result, loop stability
margins are decreased and the converter may exhibit instability
upon the mode transition [25]. Traditionally, this phenomenon
is treated by designing a conservative controller (effectively a
worst-case design) to cope with any abrupt changes and ensure
the system stability.

Therefore, it is a great benefi if the load value is estimated
and the controller is tuned to meet the desired bandwidth and
stability margins. For this reason, a wide and abrupt load change
is applied to further investigate the performance of the proposed
self-tuned KF. Fig. 12 shows the dynamic response of the out-
put voltage when the load is changed from 5to 1 2 at 0.015 s.
As previously confirmed the KF provide excellent estimation
performance without any perturbation in the observed data. This
can be seen clearly in the recorded output voltage in Fig. 12,
where no excitation signal is injected. This scenario is delib-
erately applied, because in the case of ERLS, the estimated
parameters deviate immediately once the PRBS is disabled, so
if the load changes after this instant, the ERLS is unable to detect
the new variation and another perturbation period is required to
perform the estimation process. Therefore, a PRBS signal is
injected before the step change applied to investigate the per-
formance of ERLS during load variation. On the other hand,
the KF estimator stays alert to the situation for a longer period;
hence, no perturbation is required to detect the load change.
Fig. 13(a) shows the KF estimation results, with the transfer



1 s
2
o Model a
2 0¢ % 4
5 — Model a,
= e & o a,
Z-lr - ——KFa,
=]
= P
2F e
0.014 0.0145 0.015 0.0155 0.016
(a)
1E - |
5 Model a ;
2 0r
g Model a
£ 2
A |l s ERLS a,
3 -1f :
s 1 e ERLS a
s ) 2
2F . A . I
0.014 0.0145 0.015 0.0155 0.016

(b)

Fig. 13. Real-time parameters estimation during a step load change from 5 to
12 at0.015s. (a) KF. (b) ERLS.

function poles accurately estimated before and after the load
change with convergence time less than 1 ms. In contrast, the
ERLS estimation has a clear offset during steady state, which
improves after the load change as illustrated in Fig. 13(b). This
behavior confirm that the ERLS estimator requires a large per-
turbation signal to provide accurate and reliable estimation. It
is worth noting that, the numerator parameters are not illus-
trated here due to the small effect of the load change that can be
ignored according to the computed transfer function

0.2243 2! +0.1062 2z
1—1.814271 4 0.8437 272"

Gvd - (12)

To demonstrate the advantages of using the proposed tuning
method, the related adaptation gains of a; and as are recorded
in steady state and during the load change as illustrated in
Fig. 14(a). As stated in (11), each element in the matrix Q
is tuned accordingly to the contribution of the related parameter
vector component in the estimator output (¢x6y). Therefore,
the assigned Kalman gain elements for K; for a;, and K> for
as, vary with different rates in the correction step. This yields
improved overall tracking performance to the newly applied
load. This variation is confirme by referring to (12) and (13),
where parameter @; decreases by 5.5% and ay simultaneously
decreases by 1% when the load abruptly reduces from 5 to 1 €2.
Therefore, the impact of load change varies between one coef-
ficien and another in the discrete transfer function. In contrast,
the ERLS algorithm react to the load change by applying sim-
ilar magnitude with different directions for both @; and a5 in
the correction step, due to the single forgetting factor scheme
as shown in Fig. 14(b). Thus, the KF approach is considered to
be the ideal candidate in this case to provide reliable estimation
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Fig. 14. Kalman gains. (a) KF. (b) ERLS.

for time-varying parameters; such as load change which is a
common scenario in power converter applications.

V. CONCLUSION

This paper presents a new real-time parameter estimation
technique for dc—dc converter systems, based on a self-tuned
KF approach. The proposed technique has the potential for use
in real-time system identificatio and adaptive control systems
for power electronic applications, such as switch mode power
supplies. The mathematical description of the proposed algo-
rithm is presented, and the algorithm is fully validated using a
digitally controlled buck power converter. In this paper, unlike
a significan proportion of existing literature, the entire system
identificatio and closed-loop control process is seamlessly im-
plemented in real-time hardware, without any remote intermedi-
ate post processing analysis. Experimental results show that the
proposed KF provides accurate and fast estimation of the dis-
crete transfer function. The performance of the KF is also tested
without a perturbation signal, and the results obtained prove
that the covariance matrix update scheme keeps the estimator
stable and responsive for longer periods of time. Furthermore,
and important from a practical perspective, the effect of esti-
mator wind up is reduced. Additionally, a new state-of-the-art
tuning method for the process covariance matrix has been intro-
duced to optimize convergence speed and allow the estimator to
track time-varying parameters. The advantage of this has been
successfully validated via an abrupt step change in load.
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