Laser-sculpted hybrid photonic magnetometer with nanoscale magnetostrictive interaction

Abstract

We present a new photonic magnetic sensor that can yield information on the spatial angle of rotation of the sensor within a given static magnetic field that based upon an optical fiber platform that has a wavelength-encoded output and a demonstrated sensitivity of 543 pm/mT. This optical fiber magnetic field sensor combines a conventional, UV-laser inscribed long period grating (LPG) with a magnetostrictive material Terfenol-D that coats and fills 50-μm micro-slots running adjacent and parallel to the fiber central axis. The micro-slots are produced using a femtosecond laser and selective chemical etching. A detection limit for a static magnetic field strength of ±50μT is realized in low strength DC magnetic field (below 0.4 mT), this performance approaches the Earth’s magnetic field strength and thus, once optimized, has potential for navigation applications. Our method addresses the major drawback of conventional sensors, namely their inadequate sensitivity to low strength, static magnetic fields and their inability to provide information about the orientation and magnitude.

Publication DOI: https://doi.org/10.1016/j.sna.2017.12.021
Dataset DOI: https://doi.org/10.17036/researchdata.aston.ac.uk.00000310
Divisions: College of Engineering & Physical Sciences > Aston Institute of Photonics Technology (AIPT)
Aston University (General)
Additional Information: Crown Copyright © 2017 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funding: EPSRC grants EP/J010413 and EP/J010391.
Uncontrolled Keywords: Magnetostrictive material,Long period gratings,Optical sensing,Magnetic sensors
Publication ISSN: 1873-3069
Last Modified: 01 Jan 2025 08:27
Date Deposited: 12 Dec 2017 09:05
Full Text Link: http://linkingh ... 924424717306970
Related URLs:
PURE Output Type: Article
Published Date: 2017-12-12
Published Online Date: 2017-12-12
Accepted Date: 2017-12-11
Authors: Allsop, Thomas (ORCID Profile 0000-0001-8905-9014)
Lee, Graham B.
Wang, Changle
Neal, Ronald
Kalli, Kyriacos
Culverhouse, Philip
Webb, David J. (ORCID Profile 0000-0002-5495-1296)

Download

[img]

Version: Published Version

License: Creative Commons Attribution

| Preview

[img]

Version: Accepted Version

Access Restriction: Restricted to Repository staff only

License: Creative Commons Attribution Non-commercial No Derivatives


Export / Share Citation


Statistics

Additional statistics for this record