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Abstract

In this paper a novel generalised fully probabilistic controller design for the minimisation of the

Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed

loop control system, and an ideal joint pdf is presented for a linear Gaussian uncertain class of stochastic

systems. A single layer neural network is used to approximate the probability density function of the

system dynamics. The generalised probabilistic control law is obtained by solving the recurrence equation

of dynamic programming to the fully probabilistic design control problem while taking into consideration

the dependency of the parameters of the estimated probability density function of the system dynamics

on the input values. It is shown to be of the class of cautious type controllers which accurately minimises

the value of the Kullback-Leibler divergence without disregarding the variance of the model prediction

as an element to be minimised. Comparison of theoretical and numerical results obtained from the F-16

fighter aircraft application with existing state-of-the-art demonstrates the effectiveness of the proposed

method.

Keywords

Generalised fully probabilistic controller design, cautious controller, functional uncertainty, gener-

alised Riccati equation.

I. INTRODUCTION

This paper considers the currently unsolved design problem of randomised controllers for

linear dynamic discrete time stochastic systems characterised by functional uncertainties and

nonstationary and input dependent noise. Many engineering problems are fraught with several

sources of uncertainties including the aforementioned. Other examples include model based

control design methods where further uncertainty is introduced through model discrepancy as

a result of the lack of knowledge of the underlying physics that describes how a real system

behaves [11]. Many practical applications, also, are stochastic with the statistics of the external

noises affecting their dynamical behavior being unknown exactly, hence introducing models’

uncertainty [9]. Another example is where the wind disturbance which affects the way an

aircraft lands in an aircraft autolander system is a function of the altitude of the aircraft [20].

For these systems, better control algorithms can be devised by taking the uncertainties of the

stochastic system into consideration when calculating optimal control inputs. Consequently, the

development of such control algorithms has become an attractive research area in the past few



years. In the following we mention a few approaches. Papers which provide information on the

theoretical development can be found in [3], [19], [25], and the references therein. A stochastic

H2/H∞ control design is developed in [6] for systems with state dependent noise. The H2/H∞ is

also considered in [29] for Itô-type nonlinear stochastic differential equation with state dependent

noise and cross-coupled Hamilton-Jacobi equations are obtained. The research in [21] studied

partially observed linear quadratic Gaussian (LQG) models where the stochastic disturbances

depend on both the states and the controls, and the measurements are bilinear in the noise and

the states/controls. The infinite horizon discrete time LQ control with state and control-dependent

white noise is considered in [15] and a discussion of the properties of the obtained generalised

algebraic Riccati equation is also provided.

The design and development of control laws that consider systems’ uncertainty and input

dependent noise are the main objectives of this paper. However, in contrast to earlier discussed

approaches the design process in this article will be based on the minimisation of the Kullback–

Leibler divergence distance between the joint distribution of the system dynamics and a pre-

defined ideal joint distribution. This method of control is known as Fully Probabilistic Design

(FPD) [16]. The objective of FPD is to determine the pdf of a randomised optimal control

law, c(ut | xt−1) that minimises the following explicit performance function derived from the

Kullback–Leibler divergence,

D
(
f|| If

)
≡
∫
f(x(H), u(H)) ln

(
f(x(H), u(H))
If(x(H), u(H))

)
dx(H)du(H), (1)

where x(H) = {x1, . . . , xH} is the sequence of measured states of the system, u(H) = {u1, . . . , uH}

is the sequence of measured inputs, H ≤∞ is a given control horizon, and where f(x(H), u(H))

and If(x(H), u(H)) represent the joint and ideal distributions of the system dynamics respec-

tively.

Remark 1: The randomised controllers obtained by FPD method are optimal controllers that

shape the joint pdf describing the closed loop behaviour of the system dynamics. Randomisation

makes the controllers explorative where ideally actions should be sampled from their pdfs [17].

Remark 2: The ideal joint pdf of the closed loop system behaviour, If(x(H), u(H)) specifies

the preferred form for the joint distribution of the system behaviour, f(x(H), u(H)). It assigns a

high probability-mass to highly desirable realisations of the closed loop signals. For an axiomatic

justification of the FPD, and the role of the ideal distribution the reader is referred to [17].



The main advantage of the FPD is that it provides an explicit form of the randomised

optimal controller. However, since the evaluation of the randomised optimal controller involves

multivariate integration steps, as can be seen from (1), which need to be computed by backward

recursion the problem renders to be nontrivial and computationally very intensive. To overcome

the difficulties arising in the FPD, a probabilistic Dual Heuristic Programming (DHP) adaptive

critic method was proposed in [12], [14]. The DHP adaptive critic method uses a critic network to

circumvent the need for explicitly evaluating the optimal value function, therefore, dramatically

reducing computational requirements.

At present, most of the proposed FPD control and DHP adaptive critic control laws are

obtained based on the assumptions that all required pdfs of the stochastic system are measurable

and can be approximated from process data. However, these methods have only considered the

noise to be global and independent of the input variables. On the other hand, as discussed earlier

many engineering systems and systems with unknown dynamics are known to have functional

uncertainties and are affected by input dependent noise. This means that input dependent noise

should be considered and contribute to the derivation of the optimal control law.

The methodology of this paper is to introduce the more general solution of fully probabilistic

control for stochastic linear Gaussian systems where the dynamics of the system is unknown

and where the uncertainty introduced by the model discrepancy is estimated as a function of

the system inputs. It will be seen that the proposed solution yields a cautious type controller

which takes into consideration model uncertainty when calculating the optimal control law.

Cautious type controllers apply caution but lack probing [8]. The approach followed in this

paper is pragmatic and fully probabilistic. It is radically different to the state of the art control

design methods [1], [4], [7], [13], [22], [26], [28] which are concerned with the minimisation

of objective functions that are confined to be either the mean value or variance of the stochastic

output.

Analogous to the standard solution of the fully probabilistic control problem, it will be shown

that the optimal control law for uncertain systems with input dependent noise is again linear in

the state of the system, x but is now rather critically dependent on the parameters of the estimated

noise. This is in accordance with the generalised Riccati solutions that take into account the effect

of uncertainties in the control design of linear uncertain systems with quadratic cost functions [2],

[5], [18], [27].



To summarise, this paper provides three novel contributions: Firstly, we use the Kulback-

Leibler distance between the closed loop system and an ideal pdf as the cost function within the

previously discussed context where noise and models’ uncertainty are dependent on the input

values. This will lead to cautious control design that applies caution under highly uncertain

situations, hence yielding better control characteristics; Secondly, we use advanced neural net-

work methods to estimate the corresponding pdfs that are required in the FPD method such that

their parameters are dependent on the input values. This allows us to characterise and estimate

model discrepancy and functional uncertainty in the system dynamics; Thirdly, having obtained

these pdfs, it allows us to obtain a generalised solution to the FPD control problem such that

model uncertainty is explicitly taken into consideration in the derivation of the optimal control

law. This generalised solution to the FPD control problem is referred to as Generalised Fully

Probabilistic Control Design (GFPCD) and leads to higher order terms in the analysis and more

accurate predictions in the numerical example shown later.

To emphasise, the GFPCD method proposed in this article elicits optimal control laws that

are dependent on the parameters of the estimated system uncertainty. This characterisation and

consideration of systems’ uncertainty in the derivation of the optimal control law, allow elicitation

of cautious controllers that apply caution under highly uncertain situations. This desirable caution

feature of the elicited control inputs improves the performance of the controlled system and

minimises regulation errors. This is particularly significant in the transient period of the control

process where the discrepancy between the estimated model and actual system is large. The

consideration of system uncertainty in the derivation of the optimal control laws represents the

main novelty of the new generalised solution to the FPD control problem proposed in this paper

and it leads to more robust, accurate estimates of control signals than current approaches.

II. PRELIMINARIES

A. Model Description

Discrete linear time invariant stochastic dynamical systems play an essential role in modern

control theory. In this paper linear discrete time stochastic dynamical systems described by the

following state space model are considered:

xt = Ãxt−1 + B̃ut + ε̃t, (2)



where x ∈ Rn is the measured state vector, u ∈ Rr is the control input vector, Ã ∈ Rn×n and

B̃ ∈ Rn×r are fixed state and control matrices respectively. Section II-C provides a discussion

on how these matrices can be determined. Also ε̃t ∈ Rn is a Gaussian vector noise process

of zero mean and fixed arbitrary covariance. Because of the noise input ε̃t the previous state

and present control do not completely specify the present state, but instead determine only the

probability distribution of these states, s(xt | ut, xt−1). In this paper, it is assumed that the noise

input ε̃t is unknown and hence the probability distribution of the states is unknown and needs

to be estimated.

The estimation method of the unknown probability density functions will be discussed in

Section II-C, but first we introduce the probabilistic control objective.

B. Probabilistic Control Objective

The control problem confronted here is to design a control strategy for the system in (2)

to control the state of the system to a predefined desired state value. However, since only the

probability distribution of the states can be determined, this control objective should be re-

defined in terms of the probabilistic control theory. Therefore, to achieve this control objective

we consider designing a probabilistic controller c(ut | xt−1) that shapes the joint pdf of the

closed loop system, f(xt, ut) and makes it as close as possible to a predefined desired pdf,
If(xt, ut). This design method was originally presented in [16] where the probabilistic controller

is obtained such that it minimises the Kullback–Leibler divergence distance defined in (1). The

minimum cost function resulting from minimisation of (1) with respect to admissible control

sequence ut, t ∈ {1, . . . , H}, with H being the control horizon, is then shown to be given by the

following recurrence equation [14],

− ln(γ(xt−1)) = min
c(ut|xt−1)

∫
s(xt|ut, xt−1)c(ut|xt−1)

×
[

ln
(
s(xt|ut, xt−1)c(ut|xt−1)
Is(xt|ut, xt−1) Ic(ut|xt−1)

)
︸ ︷︷ ︸
≡partial cost =⇒ U(xt, ut)

− ln(γ(xt))︸ ︷︷ ︸
optimal cost-to-go

]
d(xt, ut), (3)

where − ln(γ(xt−1)) is the expected minimum cost–to–go function and where

f(xt, ut) = s(xt|ut, xt−1)c(ut|xt−1), (4)



is the decomposition of the actual joint pdf by the chain rule [24], which represents the most

complete probabilistic description of the closed loop system. Here the pdf s(xt|ut, xt−1) describes

the dynamics of the observed state vector xt. Similarly

If(xt, ut) =
Is(xt|ut, xt−1)

Ic(ut|xt−1), (5)

is the decomposition of the ideal joint pdf of the closed loop system where, Is(xt|ut, xt−1) and
Ic(ut|xt−1) represent the pdfs of the desired dynamics of the observed state vector and ideal

controller respectively. Full derivation of (3) can be found in [14]. It constitutes the recurrence

equation of the dynamic programming solution to the FPD control problem.

The minimisation of the cost-to-go function (3) with respect to control law, c(ut | xt−1) is

shown in [12], [14] to be given by

c∗(ut|xt−1) =
Ic(ut|xt−1) exp[−β1(ut, xt−1) − β2(ut, xt−1)]

γ(xt−1)
,

γ(xt−1) =

∫
Ic(ut|xt−1) exp[−β1(ut, xt−1) − β2(ut, xt−1)]dut,

β1(ut, xt−1) =

∫
s(xt|ut, xt−1)

[
ln
s(xt|ut, xt−1)
Is(xt|ut, xt−1)

]
dxt,

β2(ut, xt−1) = −

∫
s(xt|ut, xt−1) ln(γ(xt))dxt. (6)

The solution of this probabilistic control problem to linear stochastic uncertain systems which

have probability density functions characterised by input dependent parameters will be intro-

duced soon. However, we first discuss the estimation of the probabilistic distributions of the

systems dynamics and hence model uncertainty which will be required for the derivation of the

probabilistic control solution.

C. pdf of the system dynamics

To estimate the probabilistic model of the linear stochastic system (2) we adopt the method

proposed in [11], where neural network models are used to provide a prediction for the condi-

tional expectation of the system state values and calculate the input dependent variance of its

residual error. For the class of linear systems (2) considered in this paper, a single layer neural

network known as a Generalised Linear Model (GLM) can be used to estimate the expected

values of the system state such that the inequality,

| xt −Nf(ut, xt−1) |≤ δ, (7)



holds, where δ > 0 is a known small number and Nf(ut, xt−1) = µt is a GLM approximation of

the state xt. Considering the linear transformation of previous state values and present control

inputs, Nf(ut, xt−1) = Axt−1 + But in which A and B are estimates of the state Ã and control

B̃ matrices respectively, the stochastic system (2) can be re-expressed as,

xt = Axt−1 + But + e(xt−1, ut). (8)

Here, e(xt−1, ut) represents the approximation error satisfying | e(xt−1, ut) |≤ δ. This means

that the resulting conditional distribution of the system dynamics s(xt | ut, xt−1) is Gaussian

distribution function with conditional expectation of the distribution being given by the GLM

approximation and an input dependent covariance given by [11],

Σ̃t = E ((xt − µt)(xt − µt)
′) , (9)

where E(.) denotes the expected value, and ′ means transpose. We emphasise here that Σ̃t is

input dependent and can be calculated for each input pattern. Following the procedure in [11]

another generalised linear model which has the same structure and same inputs as that of the

state model is then used to predict the covariance matrix, Σt of the error function e(xt−1, ut),

Σt = Dxt−1 +Gut, (10)

where D and G are partitioned matrices and are updated such that the error between the actual

covariance matrix and the estimated one is minimised. The architecture of this probabilistic

model estimation method is shown in figure 1.

xt

µ
t

Σ
t

Fig. 1. The architecture of the probabilistic model estimation method



III. SOLUTION TO THE PROBABILISTIC UNCERTAIN CONTROL PROBLEM

A. Basic Elements

In this section we discuss the basic elements of the linear stochastic system defined in (2) that

are required for the derivation of the generalised fully probabilistic control solution. For presen-

tational clarity and simplicity, the solution to this problem will be developed for a regulation

problem where the objective is to reach a zero state with a spread determined by a specified

covariance matrix. Generalisation to a state value that is different than zero can be obtained in a

straight forward manner by taking the mean of the the ideal probability density function of the

forward model of the system dynamics equal to the mean value of the desired state trajectory.

As discussed in Section II-C, the conditional distribution of the linear system (2) is estimated

as a Gaussian distribution described by,

xt = Axt−1 + But + e(xt−1, ut),

s(xt | ut, xt−1) Nxt(µt, Σt), (11)

where

µt = Axt−1 + But, (12)

Σt = Dxt−1 +Gut. (13)

For the considered regulation problem, the system is initially in state xt−1 and the aim is to

return the system state to the origin. Hence, the distribution of the ideal state of the system is

taken to be,
Is(xt|ut, xt−1) = Nxt(0, Σt), (14)

where here the desired mean value of the state is taken to be zero and where Σt specifies the

covariance of the innovation of the state values.

The distribution of the ideal controller is also assumed to be Gaussian

Ic(ut|xt−1) = Nut(0, Γ), (15)

where Γ determines the allowed range of optimal control inputs.

Remark 3: To re-emphasise, regulation control problems with the objective to reach zero states

that have a spread determined by a specified covariance matrix is considered. This objective is



reflected in our selection for Is(xt|ut, xt−1) and Ic(ut|xt−1) which are defined to have zero mean

and covariance matrices Σt and Γ respectively as can be seen from Equations (14) and (15).

Generalisation to servo control problems can be obtained in a straight forward manner by making

the mean of the ideal distribution of the system state, Is(xt|ut, xt−1) equal to the desired state

value. To be more specific, the desired output needs to be selected as usual in a model reference

control problem and then set to be equal to the mean of the desired output of the ideal distribution

of the system state. Other generalisations where for example alternative ideal joint pdfs with

different covariance matrices than that of the actual joint pdf are possible as well.

B. Generalised Probabilistic Control Law

In this section we derive the generalised fully probabilistic control solution of the regulation

control problem of stochastic linear systems with functional uncertainty that is discussed in

Section III-A. We show here that the obtained optimal control law and optimal performance

index from the proposed GFPCD are different to current theoretical approaches to this problem.

In particular we show that the optimal control law is a state feedback law which depends on

the parameters of the estimated input dependent uncertainty and that the optimal performance

index is quadratic in the state xt which is also dependent on the estimated uncertainty. The

derivation of optimal control laws depends on the evaluation of the optimal performance index,

ln(−γ(xt)). This in turn requires the calculation of β1(ut, xt−1), β2(ut, xt−1) and γ(xt1) as

defined by equation (6) and yields the optimal performance index specified in the following

theorem.

Theorem 1: Using the elements defined in Equations (11), (12), (13), (14), and (15) in

Equation (6) yields the following optimal performance index

− ln(γ(xt)) = 0.5x ′tMtxt + 0.5Vtxt + 0.5ωt, (16)



where

Mt−1 = A ′
{
(Σ−1

t +Mt) − (Σ−1
t +Mt)B[Γ

−1 + B ′(Σ−1
t +Mt)B]

−1

× B ′(Σ−1
t +Mt)

}
A, (17)

Vt−1 =

{
VtA+ tr(DMt) − 2A

′(Σ−1
t +Mt)B

× [Γ−1 + B ′(Σ−1
t +Mt)B]

−1(0.5B ′Vt + 0.5tr(GMt))

}
, (18)

ωt−1 = ωt − {0.5VtB+ 0.5tr(GMt))}[Γ
−1 + B ′(Σ−1

t +Mt)B]
−1{0.5B ′Vt + 0.5tr(GMt))}

+ ln | I+ (BΓ 0.5) ′(Σ−1
t +Mt)(BΓ

0.5) | . (19)

Remark 4: Equation (17) is called the discrete time Riccati equation. It is similar to that

obtained for probabilistic controller with input independent noise. The derivation of Equation (18)

is a key modification to the original standard FPD. The manifestation of this equation is due to

the consideration of input dependent noise. It provides cautiousness to the optimal probabilistic

quadratic controller, therefore will be referred to as the equation of cautiousness. It can also be

seen that the solution of Equation (18) depends on the solution of the Riccati equation (17).

Proof: The claimed form of − ln(γ(xt)) can be verified subsequently by backward induction.

We start the proof by evaluating β1(ut, xt−1) as defined by Equation (6). It can be easily evaluated

to give

β1(ut, xt−1) =

∫
s(xt|ut, xt−1) ln

s(xt|ut, xt−1)
Is(xt|ut, xt−1)

dxt,

=

∫
Nxt(µt, Σt)[µ ′tΣ−1

t xt −
1

2
µ ′tΣ

−1
t µt]dxt,

=
1

2
(Axt−1 + But)

′Σ−1
t (Axt−1 + But), (20)

where s(xt|ut, xt−1)  Nxt(µt, Σt) as specified by Equation (11), Is(xt|ut, xt−1) = Nxt(0, Σt)

as specified by Equation (14), and where ln s(xt|ut,xt−1)
Is(xt|ut,xt−1)

= [µ ′tΣ
−1
t xt−

1
2
µ ′tΣ

−1
t µt]. The evaluation

of β2(ut, xt−1) is based on the assumed form for − ln(γ(xt)) as specified in Equation (16). It



can be evaluated as follows

β2(ut, xt−1) = −

∫
s(xt|ut, xt−1) ln(γ(xt))dxt,

=

∫
Nxt(µt, Σt)

[
0.5

(
x ′tMtxt + Vtxt +ωt

)]
,

= 0.5

{
(Axt−1 + But)

′Mt(Axt−1 + But) + tr(MtΣt) +ωt

+ Vt(Axt−1 + But)

}
. (21)

The integrals in Equations (20) and (21) are special cases of the general multiple integral given

in Theorem (10.5.1) in [10]. Hence for more details on their evaluation the interested reader is

referred to [10]. Now according to Equation (6) the function γ(xt−1) has to satisfy the following

identity,

γ(xt−1) =

∫
Ic(ut|xt−1) exp[−β1(ut, xt−1) − β2(ut, xt−1)]dut,

=

∫
Nut(0, Γt) exp

[
− 0.5

{
(Axt−1 + But)

′(Σ−1
t +Mt)(Axt−1 + But)

+ Vt(Axt−1 + But) + tr(MtΣt) +ωt

}]
dut,

= exp
[
− 0.5

(
x ′t−1A

′(Σ−1
t +Mt)Axt−1 + VtAxt−1 + tr(DMt)xt−1 +ωt

)]
×
∫

exp
[
− 0.5

{
u ′t[Γ

−1 + B ′(Σ−1
t +Mt)B]ut + 2u

′
t

(
B ′(Σ−1

t +Mt)Axt−1

+ 0.5B ′Vt + 0.5tr(GMt)

)}]
dut.

Completing the square over ut in the above equation gives,

γ(xt−1) = exp
(
− 0.5x ′t−1A

′
{
(Σ−1

t +Mt) − (Σ−1
t +Mt)B[Γ

−1 + B ′(Σ−1
t +Mt)B]

−1

× B ′(Σ−1
t +Mt)

}
Axt−1 − 0.5

{
VtA+ tr(DMt) − 2(0.5VtB+ 0.5tr(GMt))

× [Γ−1 + B ′(Σ−1
t +Mt)B]

−1B ′(Σ−1
t +Mt)A

}
xt−1 − 0.5

{
ωt

− {0.5VtB+ 0.5tr(GMt)}[Γ
−1 + B ′(Σ−1

t +Mt)B]
−1{0.5B ′Vt + 0.5tr(GMt)}

}
+ ln | I+ (BΓ 0.5) ′(Σ−1

t +Mt)(BΓ
0.5) |

)
. (22)



Noting that − ln(γ(xt−1)) = 0.5x ′t−1Mt−1xt−1 + 0.5Vt−1xt−1 + 0.5ωt−1, it can be seen that

the identity is satisfied for Mt−1, Vt−1 and ωt−1 as defined in Equations (17), (18), and (19)

respectively. Hence the claimed quadratic nature of the performance function is proved.

Now it is straight forward to calculate the optimal control law. This can be done through the

exploitation of Equation (16) in Equation (6) which leads to the optimal control law specified

in the following theorem.

Theorem 2: The optimal control law minimising the Kulback-Leibler distance defined in

Equation (3) is given by

u∗t = −Ktxt−1 − Zt, (23)

where

Kt = Γt[B
′(Σ−1

t +Mt)A], (24)

Zt = Γt
1

2
[tr(GMt) + VtB], (25)

and where

Γt = [B ′(Σ−1
t +Mt)B+ Γ−1]−1. (26)

Proof: The optimal control law of the fully probabilistic control problem is defined in Equa-

tion (6), repeated here

c∗(ut|xt−1) =
Ic(ut|xt−1) exp[−β1(ut, xt−1) − β2(ut, xt−1)]

γ(xt−1)
(27)

For the system defined in Equation (11), and the elements in Equations (12), (13), (14), and (15),

the numerator of Equation (27) evaluates to,

Ic(ut|xt−1) exp[−β1(ut, xt−1) − β2(ut, xt−1)] = exp
{
− 0.5

[
u ′tΓ

−1ut + (Axt−1 + But)
′(Σ−1

t +Mt)

×(Axt−1 + But) + tr(DMt)xt−1 + tr(GMt)ut +ωt + Vt(Axt−1 + But)

]}
= exp

{
− 0.5

[
x ′t−1A

′(Σ−1
t +Mt)Axt−1 + tr(DMt)xt−1 +ωt + VtAxt−1

]}
× exp

{
− 0.5

[
u ′t(Γ

−1 + B ′(Σ−1
t +Mt)B)ut + 2u

′
t

{
B ′(Σ−1

t +Mt)Axt−1 + 0.5B
′Vt

+0.5tr(GMt)

}]
. (28)



The denominator of Equation (27) is evaluated in Equation (22). It can be rewritten as follows,

γ(xt−1) = exp
[
− 0.5

(
x ′t−1A

′(Σ−1
t +Mt)Axt−1 + VtAxt−1 + tr(DMt)xt−1 +ωt

)
× exp

{
0.5

[
x ′t−1A

′(Σ−1
t +Mt)B[Γ

−1 + B ′(Σ−1
t +Mt)B]

−1B ′(Σ−1
t +Mt)Axt−1

+ 2(0.5VtB+ 0.5tr(GMt))[Γ
−1 + B ′(Σ−1

t +Mt)B]
−1B ′(Σ−1

t +Mt)Axt−1

+ {0.5VtB+ 0.5tr(GMt)}[Γ
−1 + B ′(Σ−1

t +Mt)B]
−1{0.5B ′Vt + 0.5tr(GMt)}

]
+ ln | I+ (BΓ 0.5) ′(Σ−1

t +Mt)(BΓ
0.5)

}
. (29)

Using Equations (28) and (29) in Equation (27) yields

c∗(ut|xt−1) = exp
{
− 0.5

[
u ′t(Γ

−1 + B ′(Σ−1
t +Mt)B)ut + 2u

′
t

(
B ′(Σ−1

t +Mt)Axt−1 + 0.5B
′Vt

+0.5tr(GMt)

)
+ x ′t−1A

′(Σ−1
t +Mt)B[Γ

−1 + B ′(Σ−1 +Mt)B]
−1B ′(Σ−1

t +Mt)Axt−1

+ 2(0.5VtB+ 0.5tr(GMt))[Γ
−1 + B ′(Σ−1

t +Mt)B]
−1B ′(Σ−1

t +Mt)Axt−1

+ {0.5VtB+ 0.5tr(GMt)}[Γ
−1 + B ′(Σ−1

t +Mt)B]
−1{0.5B ′Vt + 0.5tr(GMt)}

]
+ ln | I+ (BΓ 0.5) ′(Σ−1

t +Mt)(BΓ
0.5)

}
. (30)

Completing the square in Equation (30) for ut gives

c∗(ut|xt−1) = Nut(−Ktxt−1 − Zt, Γt), (31)

with Kt and Zt as defined in Equations (24) and (25) respectively. The covariance matrix is

given by

Γt = [Γ−1 + B ′(Σ−1
t +Mt)B]

−1. (32)

Hence the generalised probabilistic optimal control law (23) is proved.

Remark 5: Compared to the standard randomised controller in FPD [16], the mean of the

derived randomised controller of the GFPCD method is shifted by Zt as can be seen from

Equation (31). The introduction of this shift is the consequence of the consideration of input

dependent noise. As can be seen from (25), the introduced shift Zt is dependent on the parameters

of the noise model (13) and the equation of cautiousness (18), adding the desirable caution

feature to obtained control inputs. Although the derived probabilistic controller for the assumed

probability distributions maintains the standard form of linear quadratic controllers, it is more



exploratory due to its probabilistic nature. Ideally control inputs should be sampled from the

obtained pdf of the randomised controller. This however results in slightly worse control quality,

but randomisation makes the controller more explorative.

The steady state solution of the derived generalised probabilistic optimal control law can be

obtained using standard methods discussed in [23]. Here Kt, Zt,Mt, and Vt become constant

and defined as follows,

K = [BTMB+ BTΣ−1B+ Γ−1]−1[BTΣ−1A+ BTMA], (33)

Z = [BTMB+ BTΣ−1B+ Γ−1]−1
1

2
[tr[GM] + VB], (34)

M = ATΣ−1A+ATMA

− [BTΣ−1A+ BTMA]T [BTMB+ BTΣ−1B+ Γ−1]−1[BTΣ−1A+ BTMA], (35)

V = tr[DM] + VA

− [tr[GM] + VB][BTMB+ BTΣ−1B+ Γ−1]−1[BTΣ−1A+ BTMA]. (36)

The probabilistic uncertain optimal controller derived in this paper, is based on the solution

of the Riccati equation as well as the solution of the equation of cautiousness, leading to the

extra terms in the GFPCD compared to conventional FPD. To obtain the solution of the Riccati

equation of the probabilistic uncertain controller (35), standard methods proposed in [23] can be

implemented. The steady state solution of the cautiousness equation (36) can be obtained from

the non–steady state equation of cautiousness (18), repeated here

Vt−1 = tr[DMt] + VtA− [tr[GMt] + VtB]Γt[B
TΣ−1

t A+ BTMtA]. (37)

By substituting the steady state matrix M and reversing the direction of time, Equation (37) can

be modified to read,

Vt = tr[DM] + Vt−1A

− [tr[GM] + Vt−1B][B
TMB+ BTΣ−1B+ Γ−1]−1[BTΣ−1A+ BTMA]. (38)

Then by starting the solution with V0 = 0, Equation (38) is iterated until a stationary solution

is obtained.



IV. CAUTIOUS PROBABILISTIC CONTROL ALGORITHM

The generalised fully probabilistic control law derived in Section III-B minimises the Kullback–

Leibler divergence between the actual joint probability density function of the closed loop system

and an ideal joint probability density function and at the same time minimises the variance of the

estimated probabilistic model of the system dynamics. This allows considering model uncertainty

in the derivation of the optimal control law. The description below is appropriate for direct

application to uncertain linear stochastic control problems of the form stated in Section III-A.

1) Estimate the pdf of the stochastic model described by (11) as discussed in Section II-C.

2) Specify the ideal density functions of both the state and control inputs.

3) Obtain the steady state solution of the Riccati equation (35).

4) Obtain the steady state solution of the equation of cautiousness (36).

5) Use Equations (33) and (34) in Equation (23) to calculate the optimal control law.



V. AN APPLICATION ON A LINEARISED F-16 FIGHTER AIRCRAFT

In this section a discrete-time reduced linear model of F-16 fighter aircraft without actuator

dynamics [30] will be used to demonstrate the proposed GFPCD method. This model simulates

the linearised dynamics of a real F-16 aircraft based on the following description, αt+1
qt+1

 =

 0.9935 0.0093

−0.0156 0.9912

 αt
qt

+

 −1.8861e−5

−0.0011

ut + ε̃t, (39)

where

E[ε̃tε̃
′
t] =

 0.000001 0

0 0.000001

 , (40)

and where α the angle of attack and q the pitch rate are the two longitudinal states of the aircraft.

In this example only the elevator deflection angle is used as a control input, u to stabilise the

aircraft and maintain the wings-level flight condition. The study in [30] has not considered

external disturbance, i.e ε̃t = 0, however, we have explicitly added and considered the external

noise in our simulation.

For purposes of comparison, the solution to this control problem is obtained using both

the classical probabilistic control method [16] and the generalised control method proposed

in Section III-B and summarised in Section IV. For both methods, two GLMs were used to

estimate the Gaussian pdf of the stochastic model described by Equation (39). For the generalised

probabilistic control method the input dependent covariance of the pdf of the system states, Σt

is obtained using another GLM as discussed in Section II-C. The aircraft is initially in states,

α(0) = 0.2 and q(0) = 0.1 and the objective is to regulate the aircraft to achieve zero state

values. Hence, the ideal pdf of the system state is assumed to be normal with zero mean and Σt

covariance as estimated by the generalised linear model. The distribution of the ideal controller is

also taken to be normal with zero mean and a variance of 0.01 which specifies the allowed range

of optimal control inputs. The optimisation problem of the two methods starts with initialisation

of the parameters of the generalised linear models. The generalised linear models were then

estimated online and never subjected to an initial off line training phase. Both experiments start

from the same initial state values and same noise sequence as defined in Equation (40).

Figure 2 shows the evolution of the states of the aircraft as obtained from both methods.

It can be seen that the consideration of the input dependent noise and model uncertainty in



the proposed GFPCD method yields to better control results in the transient period where the

parameters of the estimated models are still not converged. In particular, the proposed GFPCD

controller can be seen from Figure 2 to apply conservative control which acts to dampen the

initial large transients, compared to the existing FPD approach where the transients persist with

much larger amplitude. This can be clearly seen from the magnified figures in figure 2.

VI. CONCLUSION

In this paper, an optimal probabilistic control framework is considered for linear stochastic

uncertain systems with Gaussian random inputs that are dependent on the input and state values.

A Kullback–Leibler divergence between the actual joint probability density function of the system

dynamics and an ideal probability density function is used as a performance measure rather than

the mean variance. Recursive optimal control laws are developed using dynamic programming

such that the conditional output pdfs of the closed–loop systems can be made to follow the

desired one. The uncertainty of estimated models is assumed to be input dependent and taken

into consideration in the derivation of the optimal control law. Compared with previous works,

the main results in this paper have the following distinct features: our generalised framework

which incorporates input-dependent noise leads to additional terms in the control equations which

depend on the parameters of the estimated uncertainty in the model dynamics; the existence of

these extra terms collectively provide a more conservative control model damping out transients

due to initial conditions and to model uncertainty, which is also borne out by the numerical

simulation based on a real control problem in Section V. As a result, the control algorithm de-

veloped in this paper has a potential application for practical stochastic and deterministic systems

with unknown dynamics. The F-16 fighter aircraft application demonstrated the effectiveness and

feasibility of the proposed generalised probabilistic control, and showed the difference the extra

control terms make on reducing transient fluctuations of the conventional approach.
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Fig. 2. Controlled linearised F-16 fighter aircraft: (a) Angle of attack, α from the standard and generalised control methods. (b)

Pitch rate, q from the standard and generalised control methods. In comparison to the standard FPD control model where the

transients persist with much larger amplitude, the magnified figures show that the proposed GFPCD provides a more conservative

control model damping out transients due to initial conditions and to the uncertainty in the parameters of the estimated state

models.
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