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A B S T R A C T

The structure of the brain is subject to very rapid developmental changes during early childhood. Pediatric
studies based on Magnetic Resonance Imaging (MRI) over this age range have recently become more frequent,
with the advantage of providing in vivo and non-invasive high-resolution images of the developing brain, toward
understanding typical and atypical trajectories. However, it has also been demonstrated that application of
currently standard MRI processing methods that have been developed with datasets from adults may not be
appropriate for use with pediatric datasets. In this review, we examine the approaches currently used in MRI
studies involving young children, including an overview of the rationale for new MRI processing methods that
have been designed specifically for pediatric investigations. These methods are mainly related to the use of age-
specific or 4D brain atlases, improved methods for quantifying and optimizing image quality, and provision for
registration of developmental data obtained with longitudinal designs. The overall goal is to raise awareness of
the existence of these methods and the possibilities for implementing them in developmental neuroimaging
studies.

1. Introduction

Neuroimaging has gained importance and achieved widespread use
in research on neurodevelopmental disorders during the past decade
(Dennis and Thompson, 2013). Neuroimaging studies have traditionally
focused on understanding the structure and the function of the (ab)
normal adult brain. At present, research designed to study typical and
atypical development also consists of investigating the brain before or
at the onset of the disorder and combines this with neurobehavioral
follow-up longitudinally. Although this approach is demanding, both in
terms of feasibility and time investment, this type of study is needed to
gain deeper insight in the underlying mechanisms of neurodevelop-
mental disorders. These studies can elucidate how the human brain
changes throughout typical and atypical development and how these
changes relate to cognitive, social and perceptual abilities. In the long-
term, these designs can enhance the early identification and remedia-
tion of neurodevelopmental disorders, toward improving quality of life
outcomes.

In contrast to electroencephalography (EEG) that has been applied
in young children for decades (Brown and Jernigan, 2012; Holmes and
Lombroso, 1993; Shaul, 2008; Vanhatalo and Kaila, 2006),

investigations based on Magnetic Resonance Imaging (MRI) have only
begun to increase in frequency. At present, MRI can be readily applied
for use with young children thanks to the development of child-friendly
protocols and technological advances that decrease the scanning time
needed to achieve acceptable signal-to-noise ratios (Greene et al., 2016;
Raschle et al., 2012; Vogel et al., 2016). The particular advantage of
MRI over other techniques is associated with its ability to localize
neurobiological deficits non-invasively and with high spatial precision,
thereby providing high-resolution images of the brain in vivo. Because
MRI does not apply ionizing radiation, repeated scans can typically be
made on the same individual, enabling visualization of longitudinal
changes in brain development and/or anomalies over time.

Given the importance of MRI research to investigations of children
and throughout the timecourse of development, we aim to provide a
review of MRI processing methods that have been developed for ana-
lyzing the young, developing brain. Previous review papers have fo-
cused on MRI acquisition in young children, and especially on child-
friendly protocols (Greene et al., 2016), but to date have not been
complemented by a similar synthesis on data processing in young chil-
dren (here, defined as children under 6 years of age). Here, we sum-
marize: 1. why child-adjusted MRI processing techniques are necessary
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(in Section 2); 2. which MRI processing approaches are currently ap-
plied in studies involving young children and which ones are particu-
larly problematic (in Section 3); and 3. which MRI processing techni-
ques may be best suited and adjusted to examine the pediatric brain (in
Sections 4–6). Through this review, we aim to raise the awareness of the
emergence of child-adjusted methods in the clinical and neuroscientific
community and to encourage the use of such methods to achieve more
accurate and reliable results in relevant studies.

2. The rationale behind child-adjusted MRI processing

2.1. Neuroanatomical specifics of children’s brains

A child’s brain is not simply a scaled-down version of an adult brain,
as it undergoes a series of non-linear changes throughout its develop-
ment (Wilke et al., 2003b). As illustrated in Fig. 1, anatomical changes
in the brain are cascaded over time and with trajectories of develop-
ment that differ substantially over each type of brain tissue.

The volume of the brain as a whole increases significantly between
early childhood (1–3 years old) and adolescence (12–15 years old)
when it reaches its maximum (Courchesne et al., 2000). The rate of
increase is particularly substantial from birth to two years old,
achieving 80% of its adult size at the age of 2 years and increasing to
95% at approximately 6 years of age (Knickmeyer et al., 2008; Lenroot
and Giedd, 2006). Subsequently, the whole brain volume remains
roughly stable from mid-adolescence until ages in the mid-thirties,
when it starts to decrease considerably (Hedman et al., 2012). This
volumetric stability between adolescence and mid-thirties suggests the
absence of morphological changes, but instead changes in gray and in
white matter tend to counterbalance each other, resulting in minimal
changes in whole brain volumes during this period (Lebel and Beaulieu,
2011). Despite these consistencies, the brain size and developmental
trajectories of brain structure are highly variable between persons, even
for those with similar age and the same gender (Aubert-Broche et al.,
2013; Dekaban and Sadowsky, 1978; Lenroot and Giedd, 2006).

Gray matter volume mainly increases from birth to later childhood
(6–9 years old), with a developmental trajectory across the lifespan that
follows an inverted U-shaped curve during the two first decades of the
lifespan, with regionally specific rate of changes (Brain Development
Cooperative Group, 2012a; Giedd et al., 2015), resulting in local

maxima that are reached at different time points (Lenroot and Giedd,
2006). For example, maturation of the gray matter is completed first in
primary sensorimotor and occipital visual areas and the latest in higher-
order association cortex (Deoni et al., 2015; Gogtay et al., 2004;
Westlye et al., 2010a). Previous studies have reported that cortical gray
matter volumes peak near the onset of puberty (Giedd et al., 1999;
Lenroot et al., 2007). However, more recent studies based on large
longitudinal datasets suggested that such gray matter volume reaches a
maximum during childhood and then decreases during adolescence and
adulthood beginning in the mid-twenties (Aubert-Broche et al., 2013;
Courchesne et al., 2000; Hedman et al., 2012; Mills et al., 2016; Mills
and Tamnes, 2014). The mechanism by which cortical gray matter is
reduced after childhood is linked to synaptic pruning (Petanjek et al.,
2011; Webster et al., 2011; Whitford et al., 2007), although a direct
causal relationship between synaptic anatomy and gray matter changes
from MRI measurements has not been verified (Mills et al., 2016; Mills
and Tamnes, 2014). Subcortical gray matter structures, such as in the
striatum and thalamus, appear to attain maximum volume later than do
cortical structures (Raznahan et al., 2014), and are substantially vari-
able in their developmental trajectories. Such variability is associated,
with hemisphere and gender effects, as well as puberty-related changes
(Goddings et al., 2014; Mills and Tamnes, 2014).

In contrast to gray matter, volumetric measures of white matter
increase at approximately 1–2% per year between childhood and ado-
lescence, only reaching asymptote in mid-adulthood (Giedd et al., 2015;
Mills and Tamnes, 2014). More recent longitudinal studies suggested
that white matter volume increases until 10–15 years old, then de-
creases in the early twenties, and increases again before the plateau in
the fourth decade (Hedman et al., 2012; Mills et al., 2016). Beyond this,
a fall off starts from the sixth decade onwards (Courchesne et al., 2000;
Westlye et al., 2010b). White matter maturation is mainly influenced by
myelination, the mechanism for which consists of the deposition of
fatty acid by Schwann cells around the axonal membrane. Myelination
is more active during development but continues during adulthood at a
slower rate. For example, the association cortices still myelinate during
the second and third decades (Yakovlev and Lecours, 1967). Synaptic
pruning acts to eliminate redundant neurons, so this process may also
influence measures of white matter maturation (Yeatman et al., 2012),
such as the decelerating increase in late childhood (6–9 years) when
pruning seems to be particularly active. The developmental trajectory

Fig. 1. Schematic developmental trajectories for mean volumes of brain
tissues in the normative population across age (adapted from Figs. 2–3 of
(Courchesne et al., 2000) and Figs. 2–3 of (Knickmeyer et al., 2008)).
Children’s brains are significantly different from the adult brain as the
organization and properties of brain structures change with age.
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for white matter is relatively consistent across the major lobes in cortex
(i.e. frontal, temporal and parietal lobes), but with some sub-regional
variability (Thompson et al., 2000). Maturation of white matter starts in
the proximal, sensory and projection pathways and initiates latest in
more distal, motor and association pathways (Volpe, 2000). Changes in
white matter organization is relatively complete by late adolescence for
projection and commissural tracts, yet continues after adolescence for
projection tracts (Lebel and Beaulieu, 2011; Westlye et al., 2010b).

As the mechanisms of myelination and pruning affect tissue prop-
erties (e.g. T1 and T2 relaxation time), measurements of gray matter
and white matter volume are likely to be impacted by these mechan-
isms (Grydeland et al., 2013; Sowell et al., 2001; Westlye et al., 2010b).
Consequently, the signal intensity values and thus, the contrast in MRI
scans, change with age. With unmyelinated white matter during the
first 6 months (Prastawa et al., 2005; Tau and Peterson, 2010), the
brain appears with inverted contrast on MRI scans compared to the
adult brain. By the age of two years, the contrast gradually becomes
adult-like, with the majority of white matter structures being myeli-
nated. Hence, MRI images from young children demonstrate smaller
gray to white matter contrast than do images from adults (see Fig. 1). A
lower contrast renders it more difficult to distinguish the boundaries
between tissues, which is prerequisite to further MRI-analysis steps,
particularly in segmentation (Murgasova et al., 2007; Prastawa et al.,
2005).

To summarize, very drastic changes in brain development take place
within the first six years, after which brain changes continue but at a
slower rate. Due to the more prominent changes in the brain early in
life, neuroimaging analyses on data collected from young children must
be carried out with special considerations regarding the different image
contrast and brain morphology compared to adults.

2.2. Quality of MRI data in children

Overcoming poor quality MRI data is another important issue for
the analysis of neuroimaging data obtained from pediatric populations.
The scanning environment provides a new and unusual experience for
most children, who may feel uncomfortable for a number of reasons
including, the confined space, fear of the unknown, difficulty for lying
still during a long period and the ambient noise produced by the
switching of gradients (Marshall et al., 1995). Hence, the risk of ob-
taining low quality images, particularly due to motion artifacts, is
higher in young children than in the older population (Brown et al.,
2010; Davidson et al., 2003; Wilke et al., 2003a). For example, Theys
et al. reported that 11 percent of scans obtained from young children
displayed extreme movement compared to 6 percent for adults, with
much higher motion displacement in children (Theys et al., 2014).

Motion artifacts occur as blurring and/or ghosting artifacts of the
image, hindering the identification of borders between brain structures
and tissue types. Typically, MRI data with obvious motion artifacts are
excluded from the analyses. With motion artifacts as the main reason
for data exclusion in non-sedated young children, the success rate for
data processing was reported to be 92% for participants between 5 and
19 years old (Castellanos et al., 2002), 58–82% for children between 5
and 11 years old (Bora et al., 2014; Sowell, 2004) and 60% for babies of
2–4 weeks (Knickmeyer et al., 2008). Moreover, a higher risk of failure
is expected when studying children with developmental neurocognitive
disorders, such as autism or attention deficit hyperactivity disorder
(ADHD), which may affect their ability to comply to the demands of a
particular scanning protocol (Castellanos et al., 2002).

Data acquisition is already difficult in cross-sectional studies in-
volving young children, and is even more difficult for longitudinal de-
signs which depend on data quality for the same participants across
multiple time points. In longitudinal designs, the willingness to parti-
cipate in several scanning sessions is not guaranteed and the number of
participants tends to decrease with the number of times that data are
collected (Castellanos et al., 2002; Choe et al., 2013; Knickmeyer et al.,

2008). Participant dropout might be more critical for longitudinal
studies on neurodevelopmental disorders for which children are re-
cruited before diagnosis and atypical groups start with a relatively
small number of participants, leading to statistical power issues (Clark
et al., 2014).

Solutions toward minimizing head motion and participant dropout
when scanning young children are used to ensure that age-appropriate
experimental designs and child-friendly protocols are employed when
possible (Greene et al., 2016; Raschle et al., 2012; Vogel et al., 2016).
However, even with these solutions, motion artifacts remain a problem
inherent to neuroimaging studies of pediatric populations. Even motion
that is not readily visible by visual inspection may lead to systematic
and regionally specific biases in structural measurements (Alexander-
Bloch et al., 2016; Blumenthal et al., 2002; Reuter et al., 2015). Motion
artifacts should therefore always be considered in analyses to avoid
spurious interpretation, such as genuine group differences that are
hidden, or conversely, observed group differences that are in fact not
actually present (Yendiki et al., 2014).

3. Current practice in developmental studies using MRI

In this section, we review the processing methods that are currently
the standard in developmental MRI-studies on typical and atypical
brain development in young children. We define “young children” as
children under 6 years of age because drastic structural changes in
brain take place until this age (see Section 2.1, Fig. 1).

3.1. Selection of MRI-studies on (a)typical brain development in young
children

For our review, we selected relevant MRI-studies of typical brain
development (see Table 1) and of developmental neurocognitive dis-
orders (see Table 2), namely autism, attention deficit/hyperactivity
disorder (ADHD) and dyslexia. These studies were first identified
through four review papers: in Dennis and Thompson (2013) regarding
typical development, autism and ADHD, in Hoogman et al. (2017) for
ADHD, in Ozernov-Palchik and Gaab (2016) and Vandermosten et al.
(2016) for dyslexia. We complemented them with recent studies (be-
tween 2007 and 2017) found in the search engine, PubMed, with the
combination of the following key words: (brain) and (development or
maturation or growth) and (pediatric or children or infant or neonate or
newborns) and (normal or typical or healthy)/(dyslexia or autism or at-
tention deficit hyperactivity disorder) and (MRI or magnetic resonance and
T1 or T2 or structural or morphometry or volume or surface area or cortical
thickness).

From this initial sample of studies, we selected the sample for re-
view using the following criteria for inclusion: (1) the studies contained
at least five children below 6 years old, (2) the studies includeed chil-
dren who were not sedated during scanning and (3) the studies de-
scribed processing methods of structural T1 or T2 MRI-analyses. These
processing methods are of specific interest on their own and are also
relevant- and often crucial- for co-registration and normalization of
other modalities, such as diffusion MRI and functional MRI. On the
other hand, studies were excluded when (1) the main focus was on
genetic or environmental influences on brain structures, when (2) the
paper comprised a review or meta-analysis or when (3) studies applied
diffusion MRI (to assess tissue microstructure) or functional MRI (to
assess activation patterns) as a primary focus.

3.2. Current practice of MRI data processing for pediatric samples

Following acquisition, there are a number of different options for
statistical analysis of the structural properties extracted from MRI
scans. First, published neurodevelopmental studies have typically
drawn associations between morphometric changes in brain and age
reported with graphical illustrations of developmental trajectory curves
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or through summary brain maps reflecting percent changes at different
spatial locations (Brain Development Cooperative Group, 2012a; Choe
et al., 2013; Gilmore et al., 2012; Holland et al., 2014; Knickmeyer
et al., 2008; Krogsrud et al., 2014; Lebel and Beaulieu, 2011; Lyall
et al., 2015). Secondly, studies of neurodevelopmental disorders have
generally compared results between control and clinical groups to
highlight disorder-specific differences, which are then correlated with
measures of cognitive ability that assess the degree of behavioral im-
pairment (Bora et al., 2014; Castellanos et al., 2002; Hazlett et al.,
2017; Nordahl et al., 2011; Raschle et al., 2011; Shen et al., 2013; Yang
et al., 2015). Third, analyses of regional or whole-brain networks have
been applied to investigate structural connectivity patterns, inferred
from correlations between brain regions based on MRI measures
(Hosseini et al., 2013; Im et al., 2016; Nie et al., 2013).

Prior to statistical analysis (e.g. group comparisons, correlations),
data processing is a pre-requisite step for obtaining relevant structural
measures such as brain volumes, cortical thickness or surface area. Data
processing for structural analysis generally consists of brain extraction,
segmentation and normalization. As manual measurement of structural
parameters is laborious, time-consuming and subject to rater-biases,
automated processing methods were developed to streamline these
processes. Software tools for automated processing are publicly avail-
able and many of them have been applied for analysis of data in pe-
diatric samples, as shown in Table 3.

Standard software tools for automated processing of MRI data such
as mni_autoreg (Collins et al., 1994), SPM (Ashburner and Friston,
1997), Freesurfer (Dale et al., 1999; Fischl et al., 1999) and FSL
(Jenkinson et al., 2012; Smith et al., 2004) use a brain template. These
templates have typically been created using data from adults, which is
not optimized for use with pediatric samples however. As reviewed in
Section 2.1, the morphology of the child brain can be significantly
different from that of adults with respect to a number of structural
parameters. Therefore, using an adult template within the pediatric
analysis risks introducing inaccuracies to the processing pipeline (Serag
et al., 2016; Shi et al., 2012; Wilke et al., 2003b). In this section, we will
discuss the most common approaches of processing MRI data used in
pediatric studies and illustrate the downsides of applying adult-based
approaches on young children data for the main processing steps used
in neuroimaging: preprocessing, brain extraction, brain segmentation
and normalization.

3.2.1. Quality control and preprocessing
Noise and artifacts degrade image quality, which can lead to biases

and inaccuracies in processing. Nevertheless, low image quality can
typically be identified with careful visual inspection and post-proces-
sing quality control, and handled using preprocessing for quality en-
hancement (Ducharme et al., 2016). In this manuscript, we refer
“preprocessing” as any manipulations used to enhance image quality
and whichoptimally prepares data for the processing pipeline, in con-
trast to “processing” that corresponds to any manipulations used to
extract MRI measures.

Following completion of data acquisition, visual inspection provides
a first stage of image quality screening toward determining whether or
not data should be included in a study, based on examination of the raw
data. Out of the 28 reviewed studies, three studies performed visual
inspection of the general data quality, such as the noise, contrast, in-
tensity inhomogeneity, distortion artifacts and motion artifacts, (Brain
Development Cooperative Group, 2012a; Hazlett et al., 2012). For
motion artifacts, three of the reviewed studies excluded images based
on experimenter ratings of severe motion (Krogsrud et al., 2014;
Vanderauwera et al., 2016; Yang et al., 2015). Blumenthal et al. sug-
gested to grade motion into four categories (Blumenthal et al., 2002):
“none” which corresponds to little or no visible motion artifacts, “mild”
to enough detectable motion shown as subtle ringing, “moderate” to
significant ringing and “severe” to extreme motion that makes the scan
unusable (see Fig. 2). Out of the reviewed studies, this grading scale
was used by Lyall et al. (2015) who included images with mild and
moderate motion artifacts in the analysis, and Shaw et al. (2009, 2007)
who included images with mild motion artifacts. However, mild and
moderate motion can already affect processing reliability, which can
lead, for example, to an underestimation of brain tissue volume
(Alexander-Bloch et al., 2016; Blumenthal et al., 2002)

Visual inspection can take place subsequent to the processing step as
post-processing quality control. This enables assessment of the impact
of systematic error introduced at the initial data processing stage. Out
of 28 reviewed pediatric studies, only six studies reported to have
performed post-processing quality control to strengthen the reliability
of their results (Bora et al., 2014; Castellanos et al., 2002; Hosseini
et al., 2013; Knickmeyer et al., 2008; Krogsrud et al., 2014; Li et al.,
2014b). In two studies, results obtained from this processing step were
compared with manual segmentations to assess their quality (Brown

Table 1
Studies contributing to the review of typical brain development of young children (under 6 years old).

Study N Ages Measures Study type

Typical Brain development (TD)
Sowell, 2004 45 TD (22F) 5–12yo Cortical thickness Longitudinal
Knickmeyer et al., 2008 98 TD (49F) 0–2yo Brain volumes Longitudinal
Gilmore et al., 2012 72 TD 0–2yo Brain volumes Longitudinal
Lebel and Beaulieu, 2011 103 TD (52F) 5–30yo Brain volumes Longitudinal

Diffusion measures
Brain Development Cooperative Group, 2012a,b 325 TD 4.5–18yo Brain volumes Cross-sectional

Longitudinal
Brown et al., 2012 885 TD (423F) 3–20yo Brain volumes Cross-sectional

Cortical thickness
Surface area
Diffusion measures

Choe et al., 2013 27 TD 3–12mo Brain volumes Longitudinal
Hu et al., 2013 306 TD 4–18yo Brain volumes Cross-sectional
Nie et al., 2013 445 TD 3–20yo Cortical thickness Cross-sectional

Curvature
Connectivity

Holland et al., 2014 87 TD (48F) 0–3mo Brain volumes Cross-sectional
Krogsrud et al., 2014 244 (218F) 4–22yo Brain volumes Cross-sectional
Li et al., 2014b 73 TD 0–2yo Cortical gyrification Longitudinal
Lyall et al., 2015 71 TD 0–2yo Cortical thickness Longitudinal

Surface area

TD, typical development; F, female; yo, years old; mo, months
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et al., 2012; Hazlett et al., 2012).
In contrast to qualitative assessment of data quality that is rather

subjective, quantitative measures enable more objective assessment of
noise, motion or susceptibility artifacts contained in the image. The
main advantage of these quantitative measures is that the variance
introduced by subjective ratings from different observers is reduced,
which might lead to standardization of procedures across studies.
Although quantitative measures could help to assess quality more
precisely and to estimate the correction to be applied, these measures
are not widely used and were only reported in one pediatric study
(Brain Development Cooperative Group, 2012a).

To improve image quality before processing, most standard software
tools include preprocessing in their pipeline, such as Freesurfer, SPM
and Autoseg. Six of the reviewed studies applied preprocessing and
examples of preprocessing used were noise reduction, bias field cor-
rection and distortion correction (Brain Development Cooperative
Group, 2012a; Choe et al., 2013; Hazlett et al., 2017, 2012; Li et al.,
2014a; Nordahl et al., 2011; Shen et al., 2013).

3.2.2. Brain extraction
Brain extraction, or skull stripping, is the processing step where

non-neural tissue is removed from anatomical scans. Generally applied
to extract whole brain volumes, this step has also become a standard
procedure that improves the accuracy and efficiency in a number of
processing steps, including brain segmentation and normalization. For
this purpose, most standard software packages include brain extraction
as one of the initial steps in the processing pipeline (see Table 3). The
Brain Extraction Tool (BET) from FSL software is one of the most widely
adopted methods used for brain extraction, providing an intensity-
based approach that deforms a surface model to fit brain boundaries
(Smith, 2002). Five of the reviewed studies applied the BET procedure
on data of young children (Brain Development Cooperative Group,
2012b; Nie et al., 2013; Nordahl et al., 2011; Shaw et al., 2009; Shen
et al., 2013)

BET and similar approaches, such as 3DSkullStrip from AFNI toolkit
(Cox, 1996) and Brain Surface Extractor from Brainsuite (Shattuck
et al., 2001), are less accurate when applied in pediatric populations, as
they tend to remove brain tissue or including non-brain tissue erro-
neously (Serag et al., 2016; Shi et al., 2012). This type of inaccuracy is
illustrated in Fig. 3, where the BET procedure was applied on T1-
weighted brain images from 5-year-old children. A potential me-
chanism of these errors may be linked to the narrower boundary be-
tween brain and non-brain tissues compared to adults (Fennema-
Notestine et al., 2006; Lee et al., 2003; Ségonne et al., 2004).

The segmentation step of processing consists of the assignment of a
tissue type to each voxel of the MRI scan. As a starting point, the intra-
cranial space is generally segmented into one of the three main tissue
types, comprising the gray matter, the white matter and the cere-
brospinal fluid (CSF). For this purpose, computer learning-based ap-
proaches based on a priori anatomical information are usually used,
including atlas-based expectation-maximization segmentation (e.g. in
Autoseg, FAST and SPM), surface model-based segmentation (e.g. in
Freesurfer) or artificial neural network approaches (e.g. in INSECT).
Following the main tissue segmentation, the anatomical image is seg-
mented into smaller sub-regions, as is commonly applied for cortical
parcellation using label propagation methods (e.g. in Autoseg,
Freesurfer and CIVET).

Standard software tools based on adult brain templates, such as
Freesurfer and FSL, have been shown to provide inaccurate segmenta-
tion for pediatric brains (Schoemaker et al., 2016; Schumann et al.,
2010). Representative examples of the failure to achieve accurate seg-
mentation using Freesurfer without manual editing on scans from 5-
year-old children are illustrated in Fig. 4. In four of the pediatric studies
reviewed, manual or semi-automated methods were applied for the
segmentation of specific brain tissues of interest, for example, planum
temporale, lateral ventricles and caudate (Hazlett et al., 2012; Shen
et al., 2013; Sowell, 2004; Vanderauwera et al., 2016). The authors
argued that for these specific brain tissues, segmentation is particularly
difficult due to high variability in their shape among the same popu-
lation.

The main causes underlying failures of segmentation accuracy in
children stem from the low contrast between gray and white matter
(Schumann et al., 2010) and coupled with substantial differences in
shape, especially in subcortical regions such as the hippocampus and
amygdala (Schoemaker et al., 2016), between adults and children. For
segmentation of medial temporal lobe structures, including the hippo-
campus and amygdala, Hu et al. reported that an appearance-model

Table 2
Studies of developmental neurocognitive disorders including young children (under 6
years old, that contributed to the review.

Study N Ages Measures Study type

Autism Spectrum Disorder (ASD)
Nordahl et al., 2011 114 ASD

(22F)
2–4yo Brain volumes Cross-sectional

66 TD
(24F)

Shen et al., 2013 41 HR 6–36mo Brain volumes Longitudinal
23 LR

Hazlett et al., 2012 98 HR 6 mo Brain volumes Cross-sectional
36 LR

Hazlett et al., 2017 106 HR 6–24mo Brain volumes Longitudinal
42 LR Cortical

thickness
Surface area

Attention deficit hyperactivity disorder (ADHD)
Castellanos et al.,

2002
151 ADHD
(63F)

4.5–19yo Brain volumes Longitudinal

139 TD
(56F)

Shaw et al., 2007 223 ADHD 4–25yo Cortical
thickness

Longitudinal

223 TD
Shaw et al., 2009 218 ADHD 3–22yo Cortical

thickness
Longitudinal

358 TD
Bora et al., 2014 110

preterm
4–9yo Brain volumes Cross-sectional

113 full
term

Yang et al., 2015 25 ADHD 5–12yo Cortical
thickness

Cross-sectional

25 TD

Dyslexia (DYS)
Raschle et al., 2011 10 HR 5–6yo Brain volumes Cross-sectional

10 LR
Black et al., 2012 27 HR

(12F)
5–6yo Brain volumes Cross-sectional

24 LR
(10F)

Cortical
thickness
Surface area

Hosseini et al., 2013 22 HR (9F) 5–6yo Brain volumes Cross-sectional
20 LR
(11F)

Cortical
thickness
Surface area
Connectivity

Clark et al., 2014 11 DYS 5–11 yo Cortical
thickness

Longitudinal

16 TD
Im et al., 2016 15 HR 4–13 yo Sulcal graph Cross-sectional

16 LR
15 DYS
13 TD

Vanderauwera et al.,
2016

36 HR 5–6 yo Surface area Cross-sectional

35 LR

TD, typical development; F, female; ASD, autism spectrum disorder; ADHD, attention
deficit hyperactivity disorder; DYS, dyslexia; HR, high risk; LR, low risk; yo, years old;
mo, months
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based method, based on the use of young adult data as training samples,
was able to reliably segment pediatric MRI data (Hu et al., 2013, 2011).
However, there is currently a lack of validation to confirm the relia-
bility of these sub-regional segmentation methods (including Autoseg
and CIVET) for use with pediatric MRI data.

3.2.3. Spatial normalization
Spatial normalization acts to deform brain images to achieve spatial

correspondence between the same brain areas across a sample of par-
ticipants. As human brains differ substantially in size and shape, even
among the same age group, this processing step ensures that the same
anatomical structures are compared, thereby facilitating statistical
comparisons across groups of individuals. Spatial normalization de-
pends on the registration of each individual brain image to a common
reference with known spatial dimensions.

In three pediatric studies that performed spatial normalization
(Black et al., 2012; Brain Development Cooperative Group, 2012a;
Castellanos et al., 2002), data were aligned to a standardized

stereotaxic atlas such as compiled by Talairach, SPM96 (Statistical
Parametric Mapping 96), ICBM152 (International Consortium for Brain
Mapping) or the MNI305 (Montreal Neurological Institute) template.
However, when using these adult brain templates, the resulting regis-
tration of pediatric data was more variable and less robust than for
independent samples of adults (Ghosh et al., 2010; Hoeksma et al.,
2005; Machilsen et al., 2007; Muzik et al., 2000; Wilke et al., 2003b).
Poor spatial normalization in pediatric samples can increase the prob-
ability of observing group differences resulting from registration errors,
instead of true anatomical variation in the population of interest.

3.3. Current practice of MRI-processing in longitudinal studies

Longitudinal designs offer clear advantages for studies on develop-
ment compared to cross-sectional designs, because changes are mea-
sured at multiple time points in the same individuals rather than across
separate samples of individuals at different ages. When longitudinal
data are collected for modeling brain development, the trajectory

Table 3
Standard software tools for MRI processing and their application for pediatric data.

Software tool MRI processing Application in studies on young children

Autoseg (Wang et al., 2014) – https://www.
nitrc.org/projects/autoseg/

N4 bias field correction, noise reduction, rigid registration,
skull-stripping, intensity rescaling, multi-atlas segmentation

Group comparisons based on brain volumes (Hazlett et al.,
2017, 2012)

BrainVISA/Anatomist (Rivière et al., 2003) –
http://brainvisa.info

Data visualization, manual tissue labeling Segmentation of planum temporale (Vanderauwera et al.,
2016)

Freesurfer (Dale et al., 1999; Fischl et al., 1999)
– http://freesurfer.net/

Motion correction, brain extraction, volumetric segmentation,
surface extraction, cortical parcellation and reconstruction
longitudinal processing and analysis

Morphometric analysis (Brown et al., 2012) Graph theory
analysis based on structural correlation network (Hosseini
et al., 2013; Im et al., 2016)
Correlation between structural measures and risk factors
(Black et al., 2012)
Group comparisons based on cortical thickness (Clark et al.,
2014; Yang et al., 2015)
Hippocampus segmentation (Krogsrud et al., 2014)
Longitudinal volumetric analysis (Lebel and Beaulieu, 2011)

FSL (Jenkinson et al., 2012; Smith et al., 2004)
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

- BET (Smith, 2002) Brain extraction Brain masking (Brain Development Cooperative Group,
2012b; Nordahl et al., 2011; Shaw et al., 2009; Shen et al.,
2013)

- FAST (Zhang et al., 2001) Brain segmentation Structural correlation network based on cortical thickness
(Nie et al., 2013)

- SIENA (Smith et al., 2002) Cross-sectional and longitudinal analysis of brain changes Morphometric analysis (Clark et al., 2014)
ITK-SNAP (Yushkevich et al., 2006) – http://

www.itksnap.org/pmwiki/pmwiki.php
Manual and semi-automated brain segmentation Segmentation of lateral ventricles and caudate (Hazlett et al.,

2012; Knickmeyer et al., 2008)
The McConnell Brain Imaging Centre

software toolbox http://www.bic.mni.
mcgill.ca/software/

- ANIMAL (Collins et al., 1995, 1994) Anatomical labeling Morphometric analysis (Brain Development Cooperative
Group, 2012a; Castellanos et al., 2002; Hazlett et al., 2017)

- CIVET Analysis of cortical surfaces Group comparison based on cortical thickness (Shaw et al.,
2009, 2007)

- INSECT (Collins et al., 1999) Multi-modal tissue classification
- mni_autoreg (Collins et al., 1994) MRI linear registration
Statistical Parametric Mapping (SPM)

(Ashburner and Friston, 1997) – http://
www.fil.ion.ucl.ac.uk/spm/

Brain segmentation, bias correction, spatial normalization Voxel-based morphometry (Black et al., 2012; Raschle et al.,
2011)

Fig. 2. Examples of T1-weighted images with each
motion type (and their frequency) in a dataset of 72
children at 5–6 years of age (Theys et al., 2014): (A)
none (43%), (B) mild motion (24%), (C) moderate
motion (18%) and (D) severe motion (15%).
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curves are more meaningful in terms of changes in the brain structure
than when cross-sectional data would have been acquired, and inter-
and intra-subject variability is better assessed (Mills and Tamnes,
2014).

Few longitudinal MRI-studies have been carried out in young pe-
diatric populations, in contrast to those for older populations (Hedman
et al., 2012; Mills and Tamnes, 2014). Although longitudinal designs
are more difficult to implement than cross-sectional designs, the
number of longitudinal studies of young children has recently in-
creased, particularly in the context of studying structural changes be-
tween birth and 2 years of age (see Tables 1 and 2). Nevertheless, in-
volving young children in longitudinal studies can add challenges in the
implementation of processing and of analysis.

In 11 out of the 14 of the longitudinal studies reviewed, develop-
mental growth patterns of brain structures were estimated using mixed-
effects statistical modeling (Brain Development Cooperative Group,
2012a; Castellanos et al., 2002; Clark et al., 2014; Gilmore et al., 2012;
Hazlett et al., 2017; Holland et al., 2014; Knickmeyer et al., 2008; Lebel
and Beaulieu, 2011; Lyall et al., 2015; Shaw et al., 2007, 2009; Shen
et al., 2013). Mixed model analyses estimate the effects of a chosen
variable, typically the age, on a dependent measure of interest while
taking into account the dependence of the data within the subject
(Singer and Willett, 2009). These statistical analyses allow the model-
ling of data collected at uneven intervals and with unequal numbers of
data points (Mills and Tamnes, 2014).

However, already during the processing steps (i.e. prior to statistical

Fig. 3. Brain segmentation obtained with the Brain Extraction Tool (BET)
from the FSL 5.0.9. software packages, applied on MRI scans from 5-year-
old children (Theys et al., 2014). Systematic errors in brain extraction
occurred with brain tissue removed erroneously (red arrows) and with
non-brain tissue included (blue arrows) in both (A) good quality image
and (B) image with Brain segmentation. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Gray matter and white matter segmentation obtained using
Freesurfer software tools without manual editing and applied on MRI
scans obtained from 5-year-old children (Theys et al., 2014). Although
image quality was good (A), systematic errors were found in segmentation
near the pial surface (red arrows), in subcortical regions (orange arrows)
and in cerebellum (blue arrows). Segmentation in Freesurfer is highly
sensitive to motion as it is already degraded in images with mild motion
artifact (B). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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analyses), longitudinal data can be exploited to improve segmentation
and to extract growth patterns of targeted brain structures over time.
Concerning segmentation, longitudinal data can help to extract struc-
tural properties with more efficiency, by jointly segmenting scans at
different time points. It consists of propagating the tissue labels toward
each time point. For example, the longitudinal pipeline of Freesurfer
performs segmentation by building an unbiased template for each
subject using information across all time points so that longitudinal
consistency is respected. Assuming a fixed head over time, this pipeline
may fail in pediatric data for which head size is changing substantially.
Concerning growth patterns, longitudinal data processing enables us to
measure structural changes between scans at different time points and
to identify the location where the changes occur at the individual level.
The changes between different time points are compared by using ei-
ther, (1) methods based on the shift of the image intensity profile or (2)
methods based on the deformation field between scan pairs. An ex-
ample of methods based on the intensity profile is SIENA, the long-
itudinal pipeline of FSL (Smith et al., 2002). Displacement between two
time points is estimated by aligning the peaks of the spatial derivatives
of intensity profiles measured in both images. SIENA is mainly used to
assess gray matter atrophy, but it cannot take into account more than
two time points, in contrast to the longitudinal processing pipeline from
Freesurfer (Reuter et al., 2012). An example of methods based on de-
formation field is the deformation-based morphometry in SPM
(Ashburner and Friston, 2000). It consists of computing the non-linear
transformations from a scan at one time point towards the baseline
image. The brain growth is then quantified with the Jacobian (matrix of
all first-order partial derivatives) of this deformation. The Jacobian
determinants then represent the fractional volume expansion and con-
traction of each voxel needed to align the scans from different time
points. Out of the longitudinal studies that we reviewed, only the study
by Sowell et al. applied deformation-based morphometry to measure
the cortical thickness changes in children between the ages of 5–12
years (Sowell, 2004). Using longitudinal registration, a straightforward
application of deformation-based morphometry can lead to substantial
biases in the estimation of the changes, such as the inconsistency of
rigid registration, the interpolation asymmetry or the differential bias
field (Lewis and Fox, 2004; Reuter and Fischl, 2011; Yushkevich et al.,
2010).

Although processing pipelines for longitudinal data are proposed in
standard software tools, such as in Freesurfer and SIENA, they are ty-
pically used for segmentation and longitudinal analysis at the group
level but rarelyfor measuring within subject changes over time. For
example, a study by Clark et al. used both FSL and Freesurfer for seg-
mentation only, and analyzed longitudinal data from children with
dyslexia between 5 and 11 years with SPSS (Clark et al., 2014). Only
four longitudinal studies on young children have used processing
methods that make full use of longitudinal information to extract MRI
measures (Gilmore et al., 2012; Lebel and Beaulieu, 2011; Li et al.,
2014b; Lyall et al., 2015).

3.4. Conclusions on current practice

As reviewed in Section 2.2, image quality affects the reliability of
neuroimaging analyses at all subsequent processing stages. To fully
control the potential impact of data quality, pediatric studies have re-
ported to have performed either visual inspection (one tenth of the
reviewed studies), preprocessing (one tenth of the reviewed studies) or
post-processing quality control (one fifth of the reviewed studies).
However, these three steps were not systematically performed in all
studies, despite the fact that standard software tools have implemented
pipelines for quality control and preprocessing (motion correction,
distortion correction, bias correction). Therefore, we want to emphasize
the quantification and optimization of data quality toward improving
the data validity and the success rate of data processing (see Section 4).

In Section 2.1, we highlighted the principle that organization of

brain structure is constantly changing with age and with the presence of
variable trajectories of development across different brain regions
during maturation. As a consequence, the brain of a young child cannot
successfully be modeled using a version of adult brain that is simply
scaled to size. Most of standard software tools (e.g. Freesurfer) that
have been deployed in samples of young children have nevertheless
based their analyses on an adult atlas, which necessitated post-proces-
sing correction of inaccuracies that needed to be implemented manually
(Choe et al., 2013; Li et al., 2014a). In contrast, studies of infants (i.e.
under 2 years of age) have generally adopted bespoke methods to cir-
cumvent the limitations of standard software tools for use with this
population (Bora et al., 2014; Gilmore et al., 2012; Holland et al., 2014;
Knickmeyer et al., 2008; Li et al., 2014b; Lyall et al., 2015; Nordahl
et al., 2011; Shen et al., 2013). We suggest that it is crucial to adopt
child-adjusted methods for children up to at least 6 years of age (cor-
responding to the age until which drastic structural changes take place).
We explain in more detail the possible child-adjusted techniques in
Section 5.

Longitudinal processing and analysis in young children requires
attention on two main aspects. Firstly, longitudinal registration helps in
measuring brain growth pattern by computing the transformations
between different time points but also introduce substantial biases in
the estimation of the changes, owing to inconsistency of rigid regis-
tration, the interpolation asymmetry or the differential bias field.
Therefore, additional processing steps should be performed to avoid
biases and are explained in more detailed in Section 6.1. Secondly,
early brain development might require more complex modeling due to
the drastic structural changes that occur during early life. Therefore,
additional considerations and challenges might be introduced in the
analysis of longitudinal data of young children and are discussed in
Section 6.2.

4. Quantification and optimization of data quality

Data from young children are typically of lower contrast- and of
reduced signal-to-noise ratio compared to adult data. It is therefore
important to quantify and optimize data quality to improve the amount
of usable data, as well as their validity and reproducibility. The fol-
lowing sections review neuroimaging preprocessing methods that,
while not specific to pediatric protocols, deserve particular attention
due to the increased presence of noise and artifact in pediatric data.

4.1. Quality quantification

As a first step, quality inspection of data is an essential procedure
because processing may be substantially affected by low image quality.
Visual inspection is the most common method used to check for data
quality of structural MRI-scans, but quantitative measures might be
more useful since they enable more precise grading of image quality.

Typical quantitative measures include evaluation of the signal-to-
noise ratio (SNR)- the amount of signal-of-interest compared to the
noise, and the contrast-to-noise ratio (CNR)- the differences in signal
between different regions-of-interest relative to the noise. For anato-
mical brain MRI, Gedamu et al. proposed to define SNR as the mean
signal intensity distribution (measured in white matter for T1-weighted
images and in CSF for T2-weighted images) divided by the standard
deviation of the noise intensity distribution (measured in the back-
ground) (Gedamu et al., 2008). In brain MRI, the contrast should be
high enough to distinguish gray matter from white matter. Magnotta
et al. proposed to define CNR as the difference in intensity distribution
between gray matter and white matter divided by the standard devia-
tion of the noise intensity distribution (Magnotta et al., 2006). The
higher the SNR and CNR, the better is the image quality.

By quantifying motion, a threshold can be set to define the accep-
table level of motion in the study (Theys et al., 2014). However, this
quantification is not straightforward for anatomical MRI. Generally,
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only one image is acquired, and therefore motion across multiple
images cannot be calculated. In anatomical MRI, motion can be quan-
tified through the artifacts caused by it, for example through ringing/
ghosting artifacts that generally appear in phase encode direction and
that also cause non-uniform intensities in the brain and in the sur-
rounding background. Gedamu et al. proposed using a ghosting ratio
based on the standard deviation of noise in anterior-posterior regions of
the head divided by the standard deviation of noise in lateral regions
next to the head (Gedamu et al., 2008). A ghosting ratio around 1
corresponds to an image without ghosting artifacts, under 1 to ghosting
artifacts in lateral directions, and above 1 to ghosting artifacts in
anterior-posterior direction.

Quantitative measures for image quality (SNR, CNR and ghosting
ratio) are often based on the image intensity that is generally not nor-
malized to the same values. As a consequence, the minimum threshold
to determine whether the image is of good or low quality is study-de-
pendent and should be validated to the performance of processing
methods.

4.2. Motion correction

Motion correction is a preprocessing step that reduces motion arti-
facts in the image. In diffusion and functional MRI, these techniques
correct for motion artifacts by comparing volumes acquired in different
directions and at different time points respectively (Dubois et al., 2014;
Liu et al., 2015; Rohde et al., 2004; Smith et al., 2004). For anatomical
MRI modalities, such as T1-weighted images, motion correction is less
applicable because multiple volumes are rarely acquired for this pur-
pose and the comparison of these high resolution images is computa-
tionally intensive (Kochunov et al., 2006).

Although total scanning time would be extended, an advantage of
acquiring several T1-weighted images (e.g. test-retest scans) is the op-
portunity to select the best quality scan or, alternatively, to average
scans following registration, in order to improve image quality.
Included in standard software tools such as Freesurfer and FSL, aver-
aging several T1-weighted images has become a common preprocessing
step that increases the SNR, which can lead to improved segmentation.
However, it might also reduce the contrast and fail to eliminate motion
if one of the scans is affected by significant artifact (Han et al., 2006;
Jovicich et al., 2006). Moreover, it might be problematic to mix aver-
aged and single acquisitions when comparing across individuals or time
points. In most cases when only one anatomical image is available, head
motion remains an unsolved issue where few solutions are proposed
once the scan is already acquired. Therefore, it is important to correct
motion artifacts with methods that are applied during the scanning
session, so called 'prospective motion correction' (Maclaren et al.,
2013).

Prospective motion correction methods account for motion artifacts
by updating the pulse sequence, depending on the head motion mea-
sured with sensors. Some examples include the orbital navigator echoes
(Fu et al., 1995), BLADE/PROPELLER MRI (Pipe, 1999), radial imaging
(McLeish et al., 2004) or PROMO (White et al., 2010). It has been

demonstrated that prospective motion correction such as BLADE and
PROMO improves accuracy of measurements in T1-weighted images
acquired on pediatric populations, with an acceptable additional
scanning time (around 10 s, depending on the motion degree) for
clinical practice (Alibek et al., 2008; Brown et al., 2010; Kuperman
et al., 2011). More recently, pediatric studies have started to use pro-
spective motion correction that is integrated in the conventional multi-
echo MPRAGE sequence used to acquire T1-weighted images (Silk
et al., 2016; Wang et al., 2016). Although prospective motion correc-
tion methods are currently made available by most vendors, these
methods are not yet well disseminated in current practice, with only
one of the reviewed studies having applied prospective motion cor-
rection (Brown et al., 2012). Given the advantage that it enables
without significantly extending scanning time, motion correction at the
source will likely become an important and standardly applied tool for
future studies.

4.3. Distortion correction

Distortion artifacts associated with scanner hardware or head pla-
cement can be corrected using the 3D image distortion map acquired
with a calibration phantom to ensure accuracy in the measurement
(Evans, 2006; Nordahl et al., 2011; Shen et al., 2013). When the 3D
distortion map is not available, an alternative solution is to use gradient
non-linearity distortion correction methods to provide distortion cor-
rection based on the knowledge of the spherical harmonic coefficients
from the imaging gradients (Jovicich et al., 2006). This information can
be obtained from the scanner’s vendor and enables estimation of the
displacement and intensity correction to be applied. For images ac-
quired with Echo Planar Imaging (EPI) sequences, spatial distortion
displacement can be estimated with a fast nonlinear registration of
scans acquired with opposite phase encoding polarities (Holland et al.,
2010). Distortion correction methods are often included in standard
software packages, such as the gradient unwarping in Freesurfer or the
Fieldmap toolbox of SPM, and can be applied as long as the information
on distortion is known (e.g. field maps, spherical harmonic coefficients,
etc.).

4.4. Bias field correction

Bias field correction consists of removing intensity inhomogeneities
resulting from non-uniformity in the field coils or due to magnetic
susceptibility changes at the boundaries between brain tissue and air
(see Fig. 5). At present, bias field correction is performed at the same
time as the segmentation step, such as in the FAST segmentation
method from FSL (Zhang et al., 2001), in recent versions of SPM
(Ashburner and Friston, 2005) or in similar techniques (Jain et al.,
2015; Van Leemput et al., 1999). The bias field should first be estimated
from the scans before it can be removed. In these methods, the bias field
is estimated both from scans and from a model of the brain tissues that
is improved by segmentation. Bias field correction has been demon-
strated to result in more accurate brain segmentation (Gousias et al.,

Fig. 5. Effect of bias field correction on (A) MR scan with intensity in-
homogeneity (higher intensity in the center than at the top of the head)
compared with (B) the bias corrected image after skull-stripping.
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2013; Van Leemput et al., 1999) and more robust measurement of the
deformation of brain structures (Leow et al., 2006). Because bias field
correction is integrated within the segmentation algorithm, the quality
of the correction and segmentation depends mainly on the model used
to represent brain tissues (i.e. the brain atlas). The choice of model is
especially important for work with young children as reviewed in
Section 5.

5. Brain MRI processing adjusted to children with age-specific
atlases

Neuroimaging processing methods need to be adapted for use with
pediatric populations. Accurate image registration and segmentation of
the pediatric brains is driven by the age range of the subjects used to
construct the brain template. The use of an age-specific atlas has been
shown to increase reliability in the processing of pediatric data, vali-
dating their utility (Li et al., 2015; Murgasova et al., 2007; Shi et al.,
2011; Yoon et al., 2009). This section explains how data processing has
been adapted for use with young children, including the provision of
age-specific brain atlases and spatio-temporal atlases (more specific to
infants). We demonstrate their use within standard software tools,
comment on the improvements conferred by child-adjusted approaches
compared to standard methods and review the challenges in creating/
selecting age-specific atlases.

5.1. Age-specific brain atlases

Age-specific brain atlases are built from averaging (in intensity and
shape) brain images of children in the targeted age-range (Fonov et al.,
2009; Kuklisova-Murgasova et al., 2011; Richards et al., 2016; Sanchez
et al., 2012). A brain atlas refers to a brain template (i.e. grayscale
average image) combined with maps of the brain anatomy (e.g. ana-
tomical parcellation maps or tissue probability maps).

Anatomical labeling of the atlas assigns a specific tissue type to each
voxel of the atlas and is mainly applied for the delineation of non-
overlapping regions-of-interests. Anatomical parcellation maps are
usually obtained by manual delineation of a single-subject atlas. This
might not represent all population variability but has the advantage of
segmenting the brain into any number of structures. If the subject's
anatomy is close to that represented by the atlas, label propagation is
one of the easiest and fastest ways to segment the brain. However, re-
gistration errors are larger if differences between the subject and the
atlas are important (Cabezas et al., 2011). To construct anatomical
parcellation maps specific to young children, a strategy used was to
propagate manual parcellation maps from adults to infant brain scans
and to fuse them to create the atlas (Fillmore et al., 2015; Gousias et al.,
2008; Oishi et al., 2008). In contrast, Gousias et al. manually segmented
brain images from neonates into 50 regions-of-interest, prior to label
propagation and fusion, to create the atlas (Gousias et al., 2013). The
results for anatomical labeling obtained with both methods (maps from
adults vs. maps from neonates) were similar, leading to the possible
conclusion that methods for label propagation and fusion contribute
more to the improvements to greater extent than do the input maps to
be propagated.

Tissue probability maps represent the frequency of each voxel that
belongs to a specific structure in a population and are generally built for
segmentation of main brain tissues (i.e. gray matter, white matter and
cerebrospinal fluid). If manual segmentations are available for each
scan contributing to the atlas, tissue probability maps can be obtained
with the same averaging procedure as used to build the brain template.
However, there is a noted lack of manual segmentations available from
young children and obtaining a sufficient number of manual segmen-
tations is extremely laborious and time-consuming. Therefore, other
strategies were implemented to build age-specific tissue probability
maps including: (1) averaging of segmentations that are first obtained
by manually segmenting one child and then propagating the

segmentation to others (Murgasova et al., 2007), (2) using adult prior
information with spatial constraints (Altaye et al., 2008) or (3) using
unsupervised tissue classification based on intensity (Fonov et al., 2009;
Kuklisova-Murgasova et al., 2011; Shi et al., 2011).

5.2. Four-dimensional spatio-temporal brain atlases

For analysis of infant brains, significant challenges arise owing to
the rapid changes in T1 and T2 contrasts during early development. To
overcome these issues, four-dimensional (4D) spatio-temporal brain
atlases have been implemented and consist of a series of age-dependent
averaged brain references (3D atlases) that summarize the age-specific
details of the brain structures (Kuklisova-Murgasova et al., 2011;
Makropoulos et al., 2016; Serag et al., 2012a). The difference in 4D
solutions compared to 3D age-specific atlases is that the brain images
are averaged not only over intensity and shape but also over time.
There are two types of 4D atlases that have been constructed for pe-
diatric datasets: longitudinal atlases and dynamic probabilistic atlases.

Longitudinal atlases are constructed by performing the segmenta-
tion at one time point and subsequently propagating this segmentation
to the other time points with longitudinal deformation fields. For ex-
ample, Shi et al. propagated first the adult parcellation maps to the 2-
year-old child atlas before propagating to the neonatal atlas, instead of
a direct propagation (Shi et al., 2011). This indirect propagation
minimized registration errors by taking into account the longitudinal
correspondence between time points and resulted in more accurate
brain segmentation.

Dynamic probabilistic atlases are obtained by constructing the
template from the average transformation, weighted by age with a
Gaussian kernel (Kuklisova-Murgasova et al., 2011; Makropoulos et al.,
2016; Serag et al., 2012a). The brain images acquired at similar age to
the time point of interest contributed more in the average transforma-
tion, which is used to warp all images in the same space where they
were averaged to form the age-dependent template anatomy.

5.3. Use of young pediatric brain atlases in practice

Publicly available brain atlases specifically for use with pediatric
datasets are listed in Table 4, and include both 3D and 4D atlases. In the
processing workflow, these atlases should be used as reference in place
of the standard adult atlas.

Other than using existing brain atlases, there are also automatic
tools for building population-specific atlases. The “Template-O-matix”
toolbox creates intensity average template that is specific to a given
study population with linear registration (Wilke et al., 2008). However,
the template might contain blurred anatomical details, because linear
registration alone cannot handle high variability in brain regions
(Fonov et al., 2011). In contrast, ANTs Template Creation and Labeling
pipeline uses diffeomorphic transformations for registration and en-
ables a labeled brain template to be constructed in a common space to
which the smallest (affine and non-rigid) transformations are required
to warp the data from every subject (Avants et al., 2011). The
IDEAgroup (UNC School of Medicine) has also distributed freely
available software packages for atlas construction, including long-
itudinal atlases (http://www.med.unc.edu/bric/ideagroup/free-
softwares). Hence, ANTS and IDEAgroup software packages, in parti-
cular, may find utility in building pediatric brain atlases in order to
adjust data processing for children.

Following selection of the appropriate brain atlas, the issue turns to
decisions about how to integrate the age-specific brain atlas within the
current processing pipeline. In the standard software tools listed in
Table 5, it is possible to integrate an age-specific brain atlas in the
processing. For example, a specific atlas can be specified in SPM during
the normalization step in voxel-based analyses. In addition, a specific
type of atlas (probabilistic atlas or labeled atlas) may be required de-
pending on the processing algorithm used in the software tools. For
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example, labeled atlases can be used if there is a registration pipeline
available in the software packages (e.g. ANTs, NiftyReg, SPM, FSL).
Conversely, probabilistic atlases are preferable if the segmentation pi-
peline is based on a expectation-maximization algorithm (e.g. NiftySeg,
SPM). Unfortunately, most of standard software tools cannot accom-
modate 4D spatio-temporal atlases at present.

5.4. Multi-atlas based methods for processing

Instead of selecting only one model-based, average representation,
multi-atlas based methods automatically select the best-matching at-
lases for the subject (Iglesias and Sabuncu, 2015). Following atlas se-
lection, a tissue type is assigned to each voxel by the fusion of seg-
mentations from the selected atlases. Multi-atlas based methods enable

anatomical variation to be better captured and circumvents inter-rater
segmentation variability and registration errors obtained from single
atlas. In this way, higher segmentation accuracy is generally obtained,
compared to the accuracy obtained when using a single atlas. Examples
of multi-atlas based methods applied on young children are LABEL (Shi
et al., 2012) included in iBEAT software (Dai et al., 2013), and ALFA
(Serag et al., 2016), with both performing brain extraction for neonatal
brains. Serag et al. demonstrated a higher overlap with manual seg-
mentation of 14–19% for LABEL and ALFA compared to results ob-
tained with BET for brain extraction in T2-weighted images (Serag
et al., 2016).

Although learning-based methods are promising and tend to be best
options in terms of performance, those methods are more difficult to
implement and the processing is more computationally demanding. To

Table 4
Publicly available brain atlases.

Research group Age range Subjects Modality Brain regions

Brain-development.org http://brain-development.org/
(Gousias et al., 2008) 2 yo 33 TD T1w, T2w 83 brain regions
(Kuklisova-Murgasova et al., 2011) 29–44 gw 142 TD T2w cortex, WM, subcortical GM, brainstem and cerebellum
(Serag et al., 2012a) 28–44 gw 204 Preterms T1w cortex, WM, subcortical GM, brainstem and cerebellum
(Gousias et al., 2013) 24–45 gw 5 TD T1w 50 brain regions

15 Preterms

(Makropoulos et al., 2016) 27–44 gw 40 TD T2w 82 brain regions
380 Preterms

Cincinnati children’s hospital medical center https://irc.cchmc.org/index.php
(Wilke et al., 2003b) 5–18 yo 200 TD T1w GM, WM, CSF
(Altaye et al., 2008) 9–15 mo 76 TD T1w GM. WM, CSF

IDEAgroup http://bric.unc.edu/ideagroup/free-softwares
(Shi et al., 2011) 0–2 yo 95 TD T1w, T2w GM, WM, CSF and 90 brain regions

Johns Hopkins University http://lbam.med.jhmi.edu/
(Oishi et al., 2011) 37–41 gw 25 TD T1w, T2w, dMRI 122 brain regions

NeuroImaging & Surgical Technologies lab http://nist.mni.mcgill.ca/
(Fonov et al., 2009) 0–4.5 yo 108 TD T1w, T2w, and PDw Only brain template
(Fonov et al., 2011) 4.5–18.5 yo (including: 4.5–8.5yo) 324 TD T1w, T2 w and PDw GM, WM, CSF

Neurodevelopmental MRI database by John E. Richards http://jerlab.psych.sc.edu/neurodevelopmentalmridatabase/
(Sanchez et al., 2012) 2w–4 yo 6–32 TD T1w, T2w Only brain template
(Fillmore et al., 2015) 3–12 mo 11–36 TD T1w 14 brain regions

TD, typical developmentd, gestional weeks; mo, months; yo, years old; T1w, T1-weighted images; T2w, T2-weighted images; PDw: proton density weighted images; dMRI: diffusion MRI;
dMRI, diffusion Magneitc Resonance Imaging; GM, gray matter; WM, white matter; CSF, cerebrospinal fluid.

Table 5
A non-exhaustive list of commonly used software tools for MRI processing using atlas based methods.

Software Atlas building pipeline Atlas-based processing Type of atlas accepted in the
processing

ANTs (Avants et al., 2011) – http://stnava.github.io/ANTs/ Template Creation and
Labeling pipeline

Brain extraction: ✓ Labeled and probabilistic atlas

Normalization: ✓
Brain segmentation: ✓

NiftyReg/NiftySeg (Cardoso et al., 2013a; Ourselin et al., 2000) –
http://cmictig.cs.ucl.ac.uk/wiki/index.php/Main_Page

Niftyreg Groupwise Normalization: ✓ Labeled, probabilistic and 4D
atlas

Brain segmentation: ✓

Freesurfer (Dale et al., 1999; Fischl et al., 1999) – http://freesurfer.net/ FsAverage (only intensity
average)

Cortical and subcortical
segmentation: −

Labeled and probabilistic atlas

FSL (Jenkinson et al., 2012; Smith et al., 2004) / Brain extraction: – Brain template
Normalization: ✓
Brain segmentation: −

Statistical Parametric Mapping (SPM) (Ashburner and Friston, 1997) –
http://www.fil.ion.ucl.ac.uk/spm/

/ Normalization: ✓ Labeled and probabilistic atlas

Brain segmentation: ✓ Probabilistic atlas

Brain atlas non-specific to the software can be integrated (✓) or not (−).
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segment one subject, each atlas needs to be registered towards the
subject image, and is particularly intensive when non-rigid registration
is involved. In the same way as building a population-based atlas, sig-
nificant resource should be spent in the creation and optimization of the
multi-atlas library, and high memory cost is required if the library
contains a large number of atlases. Moreover, the settings of these
methods are more complex, such as, choosing the similarity metric,
number of selected atlases and fusion algorithm. Further validations are
needed to determine the best setting to adjust brain segmentation
methods to young children brain.

5.5. Impact of using age-specific atlases in pediatric studies

A first important impact of age-specific atlases is more efficient
processing of data from young children, because the atlases are more
representative of this population. To illustrate this, Fonov et al. built
unbiased pediatric brain templates for relevant age groups in the de-
velopment and fewer deformations were required when the data of
subjects (5–7 years old) were normalized to the age-matching template,
indicating smaller bias in the estimation of tissue growth or shrinkage
(Fonov et al., 2011, 2009).

Secondly, when age-specific atlases were used, more accurate seg-
mentation of brain structures has been demonstrated, in terms of im-
proved overlap with the manual segmentation (considered the gold
standard). Murgasova et al. reported a 2 percent higher overlap in gray
and white matter segmentation, and 22 percent higher for thalamus
segmentation, by using an age-specific atlas (validated on four 2-years
old subjects), compared to results using an adult atlas (Murgasova et al.,
2007). Validated in infants between 3 and 12 months from the NIHPD
dataset, Fillmore et al. reported improvements after using age-appro-
priate atlases (mean overlap of 85.1%) compared with using a 2-years
old atlas (mean overlap of 81,2%) in the segmentation of cerebellum,
brainstem, thalamus, frontal lobe, occipital lobe and temporal lobe
(Fillmore et al., 2015).

Even better results appear to be obtained with 4D spatio-temporal
atlases. Longitudinal 4D infant atlases improved accuracy for spatial
normalization and segmentation across individual infants. Using a
longitudinal 4D atlas, Shi et al. showed 2–5% higher overlap with
manual segmentation for gray matter, 1–4% for white matter and
2–13% for CSF, in comparison with results obtained with standard
adult- and infant- atlases without longitudinal consistency (Shi et al.,
2011). Li et al. measured higher overlap ratios for sulcal and gyral re-
gions for the 4D infant surface atlas (mean overlap of 69.7–73.2%) than
both independent infant surface atlases (mean overlap of 69–72,1%)
and adult atlases from Freesurfer (mean overlap of 67.4–71,2%) (Li
et al., 2015).

4D dynamic probabilistic atlases improve atlas-based segmentation
in the studies of newborns by matching the age-corresponding template
and tissue probability maps (Serag et al., 2012b). Using 4D anatomical
neonatal priors (Kuklisova-Murgasova et al., 2011) and an iterative
relaxation strategy, AdAPT provides an expectation-maximization seg-
mentation algorithm adapted to the preterm brain. Validated on pa-
thological and normal neonates, the AdAPT method showed higher
overlap with manual segmentation for gray matter (mean higher
overlap of 15%), cerebellum (14%), white matter (23%) and ventricular
volumes (55%) than the widely-used expectation-maximization seg-
mentation (Cardoso et al., 2013b).

Improved results from using age-specific atlases might affect the
analysis, notably on the developmental trajectory curves obtained from
MRI measures. Developmental trajectory curves observed in prior stu-
dies might be biased, as failed segmentation generally leads to in-
accurate estimation of brain properties (volume, cortical thickness,
surface area). By using child-adjusted methods, the shape of develop-
mental trajectory curves, as well as the percent change per year, might
differ. Future studies should further investigate the impact of age-spe-
cific atlas in the analysis of typical and atypical brain development,

especially for older and broader pediatric age ranges (between 2 and 6
years old).

5.6. Considerations and challenges in creating and using age-specific atlases

There are several considerations and challenges in creating and
selecting an age-specific atlas. The specificity of the atlas should be
considered owing to the age, the type of population, and the regions-of-
interest in brain. As a general rule, we recommend using the atlas that is
the most similar to the study population (e.g. similar age, same mod-
ality, same disease).

Although the utility of age-specific atlases has been demonstrated, it
is not clear how specific the atlas should be with respect to age.
Defining the age range represented by the atlas is therefore an im-
portant consideration because changes with age are typically non-
linear. The age-range should be specific enough to follow age-related
changes and thus, should correspond to a period in which the expected
changes occur. In infant populations, the atlas age range was set in
weeks for neonates (Kuklisova-Murgasova et al., 2011; Oishi et al.,
2011; Serag et al., 2012b), in months for children under 1 year old
(Altaye et al., 2008; Li et al., 2015), and in years between 1 and 2 years
old (Shi et al., 2011). Even though a restricted age range clearly showed
an association with more accurate results in infant populations, the
benefit of restricted age range has not been well studied in older pe-
diatric populations. For cross-sectional studies covering a wide age
range and longitudinal studies with a long period of follow-up, it is
currently unknown whether it is best to use one atlas covering the
whole period or several age-specific atlases. Using several age-specific
atlases might introduce bias in the comparison across subjects that have
been analyzed with different atlases.

Other than the consideration of age, it is also uncertain how specific
the atlas should be to the population or the studied group in order to
account for differences between pathological and control cases. In the
same way as applied to age-specific atlases, disease-specific atlases
seem to improve data processing in populations with pathologies for
which the anatomical structures significantly differ from the normative
population. Thompson et al. demonstrated that for subjects with
Alzheimer’s disease that a disease-specific population-based atlas was
necessary for accurate brain segmentation. As the disease can be very
heterogeneous in presentation (e.g. different forms or grades), they
recommended building the atlas based on constituent homogeneous
groups to ensure more accurate data processing (Thompson et al.,
2004). To the best of our knowledge, group-specific atlases have not
been extensively validated on pediatric populations.

The choice on the type of atlas (probabilistic or labeled) is mainly
determined by the regions-of-interest to be segmented. Murgasova et al.
reported that expectation-maximization methods using prior prob-
ability maps performed better for small complex structures in the
cortex, with label propagation methods achieving better results for the
central brain structures (Murgasova et al., 2007). Therefore, an atlas
combined with both probabilistic and parcellation maps, such as pro-
posed by Shi et al. (2011), might find more utility in building seg-
mentation accurately for all brain structures. If other modalities (for
example, T2-weighted images, diffusion and functional MRI) are
available, normalization and segmentation can also be guided by such
multi-modality information (Glasser et al., 2016). Oishi et al. reported
that multi-contrast neonatal brain atlases enable a segmentation of
neonatal brains into 122 regions with the same accuracy as manual
segmentation (Oishi et al., 2011).

Because of all the possibilities to build age-, disease- and group-specific
population-based atlas, concordance between these different atlases might
therefore decrease. As standard adult atlases already have demonstrated
substantial variability (Bohland et al., 2009), this might even be increased
in age/disease/group-specific atlases, potentially leading to reduced re-
producibility across sites or studies. As a result, interpretations and con-
clusions might be more difficult to generalize across studies.

T.V. Phan et al. Developmental Cognitive Neuroscience xxx (xxxx) xxx–xxx

12



6. Longitudinal data processing in young children

Whereas the advantages of longitudinal designs are well-known in
statistical analyses (e.g. improved assessment of inter- and intra-subject
variability), longitudinal data processing is less highlighted as good
practice for measuring brain growth, particularly with appropriate
longitudinal registration. Moreover, there are additional considerations
for modeling the brain from longitudinal data when young children are
involved in the study.

6.1. Longitudinal registration for measuring brain growth

In order to compare scans of the same subject at different time
points, the scans need to be registered in the same space. An initial step
toward removing differences due to the head position and orientation in
the scanner is to apply a rigid transformation or an affine transforma-
tion that additionally compensates for geometric distortions. Bias may
be introduced by the inverse inconsistency, which means that the in-
verse transform from the baseline scan (generally the first-time point)
toward a follow-up scan does not yield the same result as applying the
direct transform from the follow-up scan to the baseline scan. To avoid
this type of bias, it is important to use a robust symmetric rigid regis-
tration (Reuter and Fischl, 2011).

When scans at multiple time points are available, the follow-up
scans are generally registered with the baseline scan considered as the
reference. However, this might introduce bias resulting from the in-
terpolation asymmetry because the first-time point is treated differently
than subsequent time points. To avoid this asymmetry effect, all time
points should be treated identically, either by using an intermediate
within-subject template space (Yushkevich et al., 2010) or by per-
forming registrations in both directions (Smeets et al., 2016). The re-
gistration inconsistency and the interpolation asymmetry are taken into
account in the longitudinal processing pipeline of Freesurfer (Reuter
et al., 2012) and in icobrain (Smeets et al., 2016).

Once all time points are rigidly aligned, they are then non-rigidly
warped toward each other. Non-rigid registration can be affected by
differences in the bias field across time points, which results in un-
realistic deformations and consequently, in inaccurate quantification of
growth/shrinkage. To correct for this bias, a solution is to perform an
intensity normalization that ensures that the corresponding tissues in
both scans have the same intensity. After it is estimated, the differential
bias field between scan pairs is corrected with the appropriate filter
(Lewis and Fox, 2004).

Although these registration steps enable an unbiased evaluation of
age-related changes in individuals, they assume that the head size does
not change across time. This assumption might be true in adult and
elderly populations, but not for pediatric populations. It has not yet
been well studied how an unbiased template can be developed to assess
changes over time when head size is also changing.

6.2. Considerations for brain modeling based on longitudinal data of young
children

As discussed in Mills and Tamnes’s review paper, there are some
important considerations for brain modeling based on longitudinal
data, including: (1) the growth model should be selected with con-
sideration of the physiological plausibility within a certain age range;
(2) any relevant group comparisons can be difficult because the de-
velopmental trajectories of brain structures are mainly non-linear and
differences between groups might not be constant over time; (3) the
impact of correcting brain measures for brain size in longitudinal data is
still an open question, as little has been studied on the impact of such
correction (Mills and Tamnes, 2014).

Applying correction for brain size may depend more on the research
questions. If the questions focus on size-related changes, raw measures
are generally used. Alternatively, if they are about differences that are

largely invariant with brain size, corrected measures are used in pre-
ference. Mills et al. observed that correcting for the overall brain size
could change the shape of the developmental curve of regional brain
volumes but they could not conclude if this correction is suggested or
not. They have also shown that the interpretation and consequently, the
understanding of brain development (e.g. in the case of sexual di-
morphism), might be driven by methodological differences (Mills et al.,
2016). Therefore, it is important to be aware of this caveat and to un-
derstand how the overall brain size is related to the brain regions-of-
interest to decide if corrected measures should be used or not.

Involving young children in longitudinal studies might raise further
considerations, the first of which concerns the follow up frequency and
whether it should be in weeks, months or years, given that the changes
occur more rapidly in early development. Before starting longitudinal
data collection, it might be useful to establish a priori when the different
time points are acquired. This is mainly determined by the time inter-
vals in which structural changes are expected to be assessed (e.g. in an
infant population, significant structural changes might occur after
weeks or months, and in older pediatric populations after years). This
also depends on the feasibility of the data collection at these different
sampling intervals. Large numbers of repeated scans help to improve
estimates of average developmental trajectories and in capturing more
subtle changes associated with development. However, acquiring a high
number of samples also over-represents some individuals in the popu-
lation and accommodation of numerous follow up scans at different
time points is not always feasible in practice, with time and resources
constraints.

Another consideration concerns the choice of transformations used
for measuring brain growth. Considering the drastic changes that occur
at early ages, it is possible that current methods for image registration
are not effective in registering with the morphological changes that
occur during this period of development. Diffeomorphic transforma-
tions are generally used in deformation-based morphometry for evalu-
ating the deformation field, but it is still unknown if this type of
transformation is sufficient for estimating the brain changes that occur
in young children.

7. Limitations and future perspectives for young pediatric MRI

With the increasing number of studies focusing on young children, it
became necessary to adapt the analysis methods because most of the
existing standard software tools were not appropriate for the analysis of
the pediatric brain. Child-adjusted methods offer elegant solutions that
provide more accurate and less biased quantitative measures for MRI
analysis. This field is still in its infancy, however, leaving room for
additional advancement. This section lists the current limitations and
future perspective for improvement of structural MRI analyses of the
young pediatric brain.

7.1. Validations of novel child-adjusted methods

Novel methods are being continuously developed to overcome the
limitations of current methods. For example, deep learning has recently
become one of the trending methods in the field toward achieving brain
segmentation. It consists of deep and recurrent networks using multiple
processing layers to extract features, with backpropagation of errors to
optimize the process to be learned (LeCun et al., 2015). Deep learning
has been shown to outperform other segmentation methods applied for
the analysis of brain aging (Chen et al., 2016; Mendrik et al., 2015) and
this has been also demonstrated for brain segmentation in the infant
population (Zhang et al., 2015). However, novel child-adjusted
methods have yet to be extensively validated on pediatric data before
being applied to clinical research questions.

Publicly available pediatric MRI-databases have been assembled by
several research groups, including that from the National Institutes of
Health (NIH) (Evans, 2006), from Nathan Kline Institute (https://www.
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nki.rfmh.org/), from Imperial College London (http://brain-
development.org/), from the Pediatric Imaging, Neurocognition, and
Genetics (PING) Study database (http://pingstudy.ucsd.edu/), and the
Human Connectome Project Lifespan pilot imaging data (http://
lifespan.humanconnectome.org/). In order to validate novel analysis
methods, these databases can be used as common data source for
benchmarking the performance of different methods or as a training
dataset for learning-based algorithms. However, most MRI measures
(e.g. tissue segmentation, volumes, etc.) are currently obtained via
manual delineations that are subject to inter- and intra-rater variability.
As a consequence, quality of results and method performance are more
difficult to assess.

Validation enables the assessment of the performance of methods
based on several criteria. Generally, the accuracy or the measurement
error (i.e. the closeness or difference between the computed values and
the “true” values) is the main criterion to assess performance. In studies
of brain development, the measurement error should be smaller than
the expected changes over time or of group differences, in order to
consider the method reliable. Another important criterion is the re-
producibility (i.e. agreement between measurements) that is assessed
from test-retest scans for which all measures should be the same.
Therefore, reproducibility is not prone to the variability of the manual
delineations in contrast to the accuracy. In studies of brain develop-
ment, high reproducibility is important to measure the intra-subject
changes over time. This means that intrinsic variations due to methods
when measured at one time point should be smaller than expected
changes between different time points. Finally, processing time and
associated hardware and software costs are also important features that
should be considered for the analysis of large quantities of data, for
which fully automated methods are most applicable.

Future steps to improve the validity of new, child-adjusted methods
for MRI analyses might be to assess the correlation between different
anatomical measures and their biological determinants (e.g. symptoms,
cognitive functions, genetic and/or environmental factors). Measures
that are highly correlated with biological determinants are particularly
relevant for clinical applications, which can lead to improved brain
modeling and understanding of the factors that influence brain devel-
opment.

7.2. Integration in the analysis workflow

Once child-adjusted methods have been developed and validated,
challenges remain for their integration into existing processing work-
flows. At present, there are a wide variety of software package tools
available for MRI processing. However, few software tools are specific
for young children, such as iBEAT (Dai et al., 2013), and few offer
flexibility to adapt processing to different populations (e.g. ethnicity,
pathology, gender) and to include different processing tasks and file
formats, which renders the compatibility between different packages
more complicated. Tools such as Nipype or the Connectome Mapper
(Daducci et al., 2012) were developed to merge the different software
packages into one pipeline. Yet, to our knowledge, there are no similar
tools that provide such an interface with integrated child-adjusted
features (such as enabling the use or the creation of age-specific and 4D
brain atlases) in the processing pipeline (from preprocessing to the
statistical analysis).

7.3. Addressing conflation of developmental changes

With the development of novel methods to streamline the proces-
sing and analysis of pediatric data, results obtained from these methods
might become more study-specific, possibly leading to reduced re-
producibility across studies and thus, to inconsistencies in data inter-
pretation (e.g. different timing in maturation of brain regions-of-in-
terest).

Understanding the potential reasons for variance in findings across

studies aids the assessment of the reliability and validity of the methods
used, and ultimately in choosing the most plausible brain model. Main
causes of inconsistent findings could arise from either data-dependent
(sample heterogeneity and cohort effects) or method-dependent (curve
fitting method, MRI measures definition and computation) sources.

One method for addressing conflicting findings is to assess the
consistency of results across datasets by applying and replicating the
same method on different datasets from the same population (e.g. si-
milar age). By applying the same method and adjusting for overall brain
size, Mills et al. demonstrated convergence of findings for the devel-
opmental trajectories of intracranial and whole brain volumes between
four datasets (Mills et al., 2016).

Although datasets are necessarily heterogeneous across studies,
variations (for e.g, due to size, age, or gender) can be corrected with
normalized measures and with appropriate curve fitting methods. Thus,
residual differences in findings may result mainly from the methods
used to estimate brain anatomy and their developmental trajectories.
By measuring this divergence resulting from imaging methods,
Walhovd et al. encouraged multi-modal neuroimaging efforts to mea-
sure the same phenomenon, as well as data sharing to have independent
groups working on the same data sets (Walhovd et al., 2016). Applying
different methods on the same data enables quantification oftheir im-
pact on the results and comparing to existing data enables the de-
terminination of which methods are more likely to provide reliable
results.

8. Conclusion

Given that the brain undergoes extremely rapid changes in early
life, with non-linear and region-specific growth patterns, it is important
to implement revised tools for studying brain development over this
period. Substantial effort is currently being dedicated toward devel-
oping child-adjusted methods for MRI data processing, such as provi-
sion of age-specific brain atlases, 4D spatio-temporal atlases, as well as
methods for improving image quality and processing of longitudinal
data. These methods are still in their infancy however, and need to be
further tested and validated to achieve more accurate and unbiased
results.
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