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Abstract: Optical “rogue” waves are rare and very high intensity pulses of light that occur in
optical devices such as communication fibers. They appear suddenly and can cause transmission
errors and damage in optical communication systems. Indeed, the physics governing their
dynamics is very similar to “monster” or “freak” waves on the Earth’s oceans, which are known
to harm shipping. It is therefore important to characterize rogue wave generation, dynamics and,
if possible, predictability. Here we demonstrate a simple cascade mechanism that drives the
formation and emergence of rogue waves in the generalized non-linear Schrödinger equation
with third-order dispersion. This generation mechanism is based on inelastic collisions of quasi-
solitons and is well described by a resonant-like scattering behaviour for the energy transfer in
pair-wise quasi-soliton collisions. Our theoretical and numerical results demonstrate a threshold
for rogue wave emergence and the existence of a period of reduced amplitudes — a “calm before
the storm” — preceding the arrival of a rogue wave event. Comparing with ultra-long time
window simulations of 3.865 × 106ps we observe the statistics of rogue waves in optical fibres
with an unprecedented level of detail and accuracy, unambiguously establishing the long-ranged
character of the rogue wave power-distribution function over seven orders of magnitude.
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1. Introduction

Historically, reports of "monster" or "freak" waves [1–3] on the earth’s oceans have been
seen largely as sea men’s tales [4, 5]. However, the recent availability of reliable experimental
observations [4, 6] has proved their existence and shown that these "rogues" are indeed rare
events [7], governed by long tails in their probability distribution function (PDF) [8], and hence
concurrent with very large wave amplitudes [9, 10]. As both deep water waves in the oceans
and optical waves in fibres can be described by similar generalized non-linear Schrödinger
equations (gNLSE) they both show rogue waves (RW) and long-tail statistics [8, 11, 12].
The case of RW generation in optical fibres during super-continuum generation has been
observed experimentally [13–16]. Recently, experimental data of long tails in the PDF have been
collected [17, 18], as well as time correlations in various wave phenomena with RW occurrence
studied [19]. RWs and long-tailed PDFs have also been found during high power femtosecond
pulse filamentation in air [20], in non-linear optical cavities [21] and in the output intensity
of optically injected semiconductors laser [22], mode-locked fiber lasers [23], Raman fiber
lasers [24] and fiber Raman amplifiers [25]. However, it still remains largely unknown how RWs
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emerge [26–28] and theoretical explanations range from high-lighting the importance of the
non-linearity [9, 29–31] to those based on short-lived linear superpositions of quasi-solitons
during collisions [32, 33].
Here we will show that there is also a process to generate rogue waves through an energy-

exchange mechanism when collisions become inelastic in the presence of a third-order dispersion
(TOD) term [34,35]. Energy-exchange in NLSEs has indeed been observed experimentally [36,37]
and numerically [38–41] although no quantitative description of the process has been given. Recent
studies confirmed experimentally and numerically that the presence of TOD in optical fibers turns
the system convectively unstable and generates extraordinary optical intensities [7, 42]. Energy
exchange mechanisms have also been observed in the context of optical waves turbulence [43–45].
We derive a cascade model that simulates the RW generation process directly without the
need for a full numerical integration of the gNLSE. The model is validated using a massively
parallel simulation [46], allowing us to achieve an unprecedented level of detail through the
concurrent use of tens of thousands of CPU cores. Based on statistics from more than 17 × 106

interacting quasi-solitons, find that the results of the full gNLSE integration and the cascade
model exhibit the same quantitative, long-tail PDF. This agreement highlights the importance
of (i) a resonance-like two-soliton scattering coupled with (ii) quasi-soliton energy exchange in
giving rise to RWs. We furthermore find that the cascade model and the full gNLSE integration
exhibit a "calm-before-the-storm" effect of reduced amplitudes prior to the arrival of the RW,
hence hinting towards the possibility of RW prediction. Last, we demonstrate that there is a sharp
threshold for TOD to be strong enough to lead to the emergence of RWs.

2. Rogue waves as cascades of interacting solitons

Analytical soliton solutions for the generalized non-linear Schrödinger equation

∂zu +
iβ2
2
∂2
t u − β3

6
∂3
t u − iγ |u|2u = 0 (1)

are only known for β3 = 0. Here u(z, t) describes a slowly varying pulse envelope, γ the non-linear
coefficient, β2 (< 0) the normal group velocity dispersion and β3 the TOD [47]. We shall, due to
the relatively short distances of only a few kilometers in a super-continuum experiment, neglect
the effects of absorption and the shock term [11]; we find that the effects of the delayed Raman
response are similar to TOD and will be commented at the end. Our aim hence is not the most
accurate microscopic description possible, but the most simplistic numerical model that is still
capable of generating RWs.

Without TOD β3, the model (1) can be solved analytically and a u(z, t) describing the celebrated
soliton solutions can be found [48]. Depending on the phase difference between two such solitons,
attracting or repulsing forces exist between them. This then leads to them either moving through
each other unchanged or swapping their positions. The solitons emerge unchanged with the
same energy as they had before the collision. This type of collision is elastic and it is the only
known type of collision for true analytic (integrable) solitons [26,49]. When we introduce β3,
the system can no longer be solved analytically and no closed-form solutions are known in
general. Numerical integration of Eq. (1) shows that stable pulses still exist and these propagate
individually much like solitons in the β3 = 0 case [50]. These quasi-solitons, and collisions
between them, are in many cases as elastic as they are for integrable solitons. However, when two
quasi-solitons have a matching phase, energy can be transferred between them leading to one
gaining and the other losing energy [34]. In addition, the emerging pulses have to shed energy
through dispersive waves until they have relaxed back to a stable quasi-soliton state [51].
Based on this observation we can now replace the full numerical integration of the gNLSE

with a phenomenological cascade model that tracks the collisions between quasi-solitons. Our
starting point are quasi-solitons with exponential power tails as found in a super-continuum
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system after the modulation instability has broken up the initial CW pump laser input into a
train of pulses [47,52,53]. We generate a list of such quasi-solitons as our initial condition by
randomly choosing the power levels Pq , phases φq and frequency shifts Ωq in accordance with
the statistics found in a real system at that point of the integration. The shape of a quasi-soliton is
approximated by

uq(z, t) =
√

Pq sech
[ (t − tq) + z/vq

Tq

]
exp

[
iφq

]
(2)

with effective period

Tq =

√
|β2 + β3Ωq |

γPq
(3)

and inverse velocity
v−1
q = β2Ωq +

β3
2
Ω

2
q +

β3

6T2
q

(4)

for each quasi-soliton labelled by q. Note that due to Eq. (3), the velocity vq of a quasi-soliton
depends on its power in addition to the frequency shift for β3 , 0. We calculate which quasi-
solitons will collide first, based on their known initial times tq and velocities vq . The phase
difference φq − φp between two quasi-solitons is drawn randomly from a uniform distribution in
the interval [0, 2π[. Then we calculate the energy transferred from the smaller quasi-soliton to
the larger via

∆E1
E2
=

εeff

|v−1
1 − v

−1
2 |

sin2
(
φ1 − φ2

2

)
, (5)

where ∆E1 is the energy gain for the higher energy quasi-soliton and E2 is the energy of the
second quasi-soliton involved in the collision. A detailed justification of Eq. (5) and a discussion
of the cross-section coefficient εeff will be given in the appendix. At this point we estimate the
next collision to occur from the set of updated vq and continue as described above until the
simulation has reached the desired distance z. Obviously, this procedure is much simpler than a
numerical integration of the gNLSE (1). The main strength of the model is a new qualitative and
quantitative understanding of RW emergence and dynamics.

3. Rare events with ultra-long tails in the PDF

To compare the results with the full numerical integration we generate a power-distribution
function (PDF) of the power levels at fixed distances ∆z from u(z, t) = ∑

q uq(z, t) using the full
quasi-soliton waveform (2). The PDF for the complete set of & 17 × 106 pulses propagating
over 1500m is shown in Fig. 1(a) and 1(b) for selected distances for cascade model and gNLSE,
respectively, using, for the gNLSE, a highly-optimised, massively parallel and linearly-scaling
numerical procedure [46]. After 100m, the PDF exhibits a roughly exponential distribution as
seen in Fig. 1(a). With β3 = 0 this exponential PDF remains stable from this point onwards
(cp. inset). However, with β3 , 0 the inelastic collision of the quasi-solitons leads to an ever
increasing number of high-energy RWs. After 500m, a clear deviation from the exponential
distribution of the β3 = 0 case has emerged and beyond 1000m, the characteristic L-shape of
a fully-developed RW PDF has formed. The PDFs for both gNLSE and the cascade model in
Figs. 1(a) and 1(b) then continue to evolve towards higher peak powers with some quasi-solitons
becoming larger and larger. We remark that while fits descriptions of the PDF with Weibull,
Pareto and stretched exponential are possible, no such fit is convincing across the full range
0-1000 W (see Figs. 1 (a) and 1(b) and Appendix C). In the inset of Fig. 1(b), we compare the
long tail behaviour of both PDFs directly. We see that the agreement for PDFs is excellent taking
into account that we have reduced the full integration of the gNLSE to only discrete collision
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Fig. 1. (a) PDFs of the intensity |u|2 from the gNLSE (1) at β3 = 2.64 × 10−42s3m−1 using
a large time window of ∆t = 3.865 × 106ps. The PDFs have been computed at distances
z = 100m, 200m, 500m, 1000m and 1500m. The left vertical axis denotes the values of
the normalized PDF while the right vertical axis gives the event count per bin. The PDFs
have been fitted using the Weibull function (full black lines). The brown points represnt
the PDF calculate for a small time window of 200ps at 1500m. The inset shows results for
β3 = 0. (b) PDFs of the intensity |u|2 from the cascade model for the same distances as
in (a), using the same symbol and axes conventions. The PDFs have been fitted using the
Weibull function (full black lines). The inset shows a comparison between the results from
the gNLSE (colored lines) and the cascade model (black lines and symbol outlines) for
z = 500m, 1000m and 1500m. Only every 50th symbol is shown.

events between quasi-solitons. Thus, we find that the essence of the emergence of RWs in this
system is very well captured by a process due to inelastic collisions.

4. Mechanisms of the cascade

In Fig. 2, we show a representative example for the propagation of u(z, t), in the full gNLSE and the
cascademodel, in a short 15ps time range out of the full 3.865×106 pswith β2 = −2.6×10−28s2m−1

and γ = 0.01 W−1m−1. A small initial noise leads to differences in the pulse powers and velocities
and hence to eventual collisions of neighbouring pulses. In the enlarged trajectory plots Figs. 2(b)
and 2(c), we see that for β3 = 0 the solitons interact elastically and propagate on average with
the group velocity of the frame. However, for finite β3 in Fig. 2(c), most collisions are inelastic
and one quasi-soliton, with higher energy, moves through the frame from left to right due to its
higher energy and group velocity mismatch compared to the frame. It collides in rapid succession
with the other quasi-solitons travelling, on average, at the frame velocity. From Fig. 2(b), we see
that our cascade model, in which we have replaced the intricate dynamics of the collission by an
effective process, similarly shows quasi-solitons starting to collide inelastically, some emerging
with higher energies and exhibiting a reduced group velocity. Note that in the cascade model we
use an initial pulse power distribution that mimics the PDF of the gNLSE at 100m, and thus only
generate data from 100m onwards (cp. appendix).
The main ingredient of the cascade model, the energy exchange, is obvious in the gNLSE

results: in almost all cases, energy is transferred from the quasi-soliton with less energy to
the one with more energy leading to the cascade of incremental gains for the more powerful
quasi-soliton. This pattern is visible throughout Fig. 2(a) where initial differences in energy of
quasi-solitons become exacerbated over time and larger and larger quasi-solitons emerge. These
accumulate the energy of the smaller ones to the point that the smaller ones eventually vanish
into the background. In addition, the group velocity of a quasi-soliton with TOD is dependent on
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(b)

(c) (d)

Fig. 2. (a) Intensity |u(z, t)|2 for β3 = 2.64 × 10−42s3m−1 of the gNLSE Eq. (1) as function
of the time t and distance z in a selected time frame of ∆t = 15ps and distance range
∆z = 1.5km. (b) |u|2 with β3 = 0 for a zoomed-in distance and time region, (c) |u|2 with β3
value as in (a) for a region of (a) with ∆t and ∆z chosen identical to (b). (d) Intensities |u|2
as computed from the effective cascade model using the same shading/color scale as in (a).
Note that we start the effective model at z0 = 100m to mimic the effects of the modulation
instability in (a).
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Fig. 3. (a+b) Intensities |u(z, t)|2 of the scattering between two quasi-solitons. The phase
difference φ was chosen to correspond to (a) the minimum and (b) the maximum of
∆E1/E2(φ). (c) ∆E1/E2(φ) for various choices of initial speeds. The data points represents
results of the gNLSE (1) while the lines denote the fit (5). (d) ε values have been obtained
comparing the PDF from the gNLSE and the cascade model at short distance using a
Kolmogorov-Smirnov-like (KS) test and minimizing the variance (cf. appendix B). A KS
significance measure is also shown [60].

the power of the quasi-soliton [47]. Thus, the emerging powerful quasi-solitons feature a growing
group velocity difference to their peers and this increases their collision rate leading to even
stronger growth. This can clearly be seen from Fig. 2(a) where larger-energy quasi-solitons start
to move sideways as their velocity no longer matches the group velocity of the frame after they
have acquired energy from other quasi-solitons due to inelastic collisions. Indeed, the relatively
few remaining, soliton-like pulses at 1500m can have peak powers exceeding 1000W. They are
truly self-sustaining rogues that have increased their power values by successive interactions and
energy exchange with less powerful pulses.

5. A threshold for RW emergence

We find that the emergence of RW behaviour relies on the presence of “enough” β3 , 0 TOD —
or similar additional terms in Eq. (1). Even then, the conditions for the cascade to start are subtle
as we show in Fig. 3 for two quasi-soliton collisions with β3 = 2.64 × 10−42s3m−1.
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The initial conditions for both collisions have been chosen to be identical apart from the relative
phase between the two quasi-solitons: an earlier quasi-soliton with initially large power (200W)
is met by a later, initially weak pulse (50W). Clearly, the collision of these two quasi-solitons as
shown in Fig. 3(a) is (nearly) elastic, they simply exchange their positions, while retaining their
individual power. This situation retains much of the dynamics from the β3 = 0 case. In contrast,
in Fig. 3(b), we see that after collision three pulses emerge: an early, much weaker quasi-soliton
(∼ 24W), a later very high power quasi-soliton (∼ 245W), and a final, very weak and dispersive
wave (∼ 0.002W) — the collision is highly inelastic. We note that this process is similar to what
was described in Refs. [54, 55] for other NLSE variants. Systematically studying many such
collisions, we find that the outcome can be modelled quite accurately using Eq. (5) which is
similar as in a two-body resonance process. We emphasize that although the dispersive wave is
fundamental for the energy transfer, its peak power is 5 orders of magnitude smaller than the
solitons power, therefore negligible for the implementation of the effective model.

In Fig. 3(c), we show that agreement between Eq. (5) and the numerical simulations is indeed
remarkably good. Indeed, Eq. (5) was used to generate the cascade model results for Figs. 1 and
2. We have further verified the accuracy of Eq. (5) by simulating a large number of individual
collision processes with varying relative phases and varying initial quasi-soliton parameters. In Eq.
(5), εeff is an empirical cross-section coefficient (see the appendix for an analytical justification
assuming two-particle scattering). It depends on β3 as shown in Fig. 3(d). The transition from a
regime without RWs to a regime with well pronounced RWs appears rather abrupt. This indicates
that already small, perhaps only local changes in β3, and hence in the local composition of the
optical fibre itself [28, 56], can lead to dramatic changes for the emergence of RWs. Indeed, we
find that once a RW has established itself in the large-β3 region, it continues to retain much of its
amplitude when entering a β3 = 0 region.

6. Calm before the storm

Looking more closely at the temporal vicinity of waves with particularly large power values,
we find that these tend to be preceded by a time period of reduced power values. This “calm
before the storm” phenomenon [19] can be observed in Fig. 4. In Fig. 4(a) we can clearly see
an asymmetry in the normalized power |u(∆t)|2/〈|u(∆t)|2〉 relative to the RW event at ∆t = 0
(∆t < 0 denotes events before the RW). The average includes all RWs, defined here as large
power events above a threshold of 150W (thresholds 200 and 300W show similar behaviour) and
also two independent simulations of the gNLSE, both with parameters as in Fig. 2. The period of
calm in power before the RW occurs lasts about ∆t = 1.5ps at z = 200m. It broadens for larger
distances, but an asymmetry is retained even at 500m. Physically, this effect can be understood as
follows: a RW moves more slowly than the non-RW solitons. Upon interaction with a soliton,
the RW gains in energy, but due to Eq. (3) and Eq. (4), slows down even more (cp. Fig. 2); the
soliton, having overtaken the RW, has lost some of its energy, therefore leading to a reduction in
intensity before the RW.

This finding is further supported by Fig. 4(b), where we note that the “calm before the storm”,
already observed for the gNLSE, is even clearer and more pronounced for the cascade model. We
observe strong oscillations away from ∆t = 0. These describe the simple quasi-soliton pulses
which we used to model u(t) in the cascade model. For the gNLSE, these oscillations are much
less regular, although still visible. The time interval of the period of calm appears shorter in
the cascade model while the amplitude reduction is stronger. We note that the apparently more
regular oscillations in the cascade model at 200m is an artefact of our starting condition with
solitons chosen perfectly equidistant at z = 100m to reproduce the same density as in the gNLSE.

Vol. 25, No. 23 | 13 Nov 2017 | OPTICS EXPRESS 28093 



(a)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

∆t [ps]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

|u
(∆

t)
|2

 / 
  

〈 
|u

(∆
t)

|2
〉

NLSE 200m
CM 200m

(b)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

∆t [ps]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

|u
(∆

t)
|2

 / 
  

〈 
|u

(∆
t)

|2
〉

NLSE 500m
CM 500m

Fig. 4. Normalized averaged powers |u(∆t)|2/〈|u(∆t)|2〉 for times ∆t in the vicinity of a RW
event at ∆t = 0. Panel (a), (b) corresponds to 200 and 500m, respectively. Solid lines in
both panels indicate averaged results for two gNLSE runs (with parameters as in Fig. 2),
while dashed lines show the corresponding results for the cascade model. In both panels,
we identify RWs as corresponding to powers equal to or larger than 150W. The colours are
chosen to indicate distances compatible with a full set of results z = 150, . . . , 1500m given
in the appendix. Note that |u(0)|2/〈|u(0)|2〉 > 10 in both panels.

7. Methods

The numerical simulations of Eq. (1) were performed using the split-step Fourier method [47] in
the co-moving frame of reference. A massively parallel implementation based on the discard-
overlap/savemethod [60]was implemented to allow for simulationswith 231 intervals of∆t = 1.8fs
and hence long time windows up to 3.865×106ps with several kilometres in propagation distance.
We assume periodic boundary conditions in time and, as usual, a coordinate frame moving with
the group velocity. The code scales linearly up to 98k cores.

We start the simulations with a continuous wave of P0 = 10W power at λ0 = 1064nm. For the
fibre, we assume the parameters β2 = −2.6 × 10−28s2m−1, γ = 0.01 W−1m−1, and varying β3 up
to 1.7 × (2.64 × 10−42s3m−1), see Fig. 3. Due to the modulation instability, we observe, after
seeding with a small 10−3W Gaussian noise, a break-up into individual pulses within the first
100m of the simulation with a density of ∼ 5.88 pulses/ps. Throughout the simulation, we check
that the energy remains conserved. The PDF of |u|2 is computed as the simulation progresses. For
the two-quasi-soliton interaction study, we use the massively-parallel code as well as a simpler
serial implementation. The collision runs are started using pulses of the quasi-soliton shapes (2)
with added phase difference exp(iφ) in the advanced pulse.

The effective cascade model assumes an initial condition of quasi-solitons of the same density
of 5.88 quasi-solitons/ps. Their starting times are evenly distributed with separation ∆t ∼ 0.17ps
while their initial powers are chosen to mimic the distribution observed in the gNLSE at z ∼ 100m.
The time resolution is 2 × 10−3ps and we simulate the propagation in 1500 replicas of time
windows of 4000ps duration. This gives an effective duration of 6 × 106ps. For all such 30 × 106

quasi-soliton pulses, we compute their speeds, find the distance at which the next two-quasi-soliton
collision will occur and compute the quasi-soliton energy exchange via (5). The power of the
emerging two pulses is calculated from Eq = 2PqTq and the algorithm proceeds to find the next
collision. The PDF of |u|2 is computed assuming that the shape of each quasi-soliton is given by
(2).

8. Conclusions

Our results emphasize the crucial role played by quasi-soliton interactions in the energy exchange
underlying the formation of RWs via the proposed cascade mechanism. While interactions are
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known to play an important role in RW generation [37–41, 43–45, 57, 58], the elucidation of the
full cascade mechanism including its resonance-like quasi-soliton pair scattering and details such
as the "calm before the storm", might be essential ingredients of any attempt at RW predictions.
In addition, these features are quite different from linear focusing of wave superpositions [32,33]
and allow the experimental and observational distinction of both mechanisms.
RWs emerge when β3 is large enough as shown in Fig. 3. Their appearance is very rapid in a

short range 0.8 . β3/2.64 × 10−42s3m−1 . 1. This can be understood as follows: the dispersion
relation, in the moving frame, is β(ω) = β2(ω − ω0)2/2 + β3(ω − ω0)3/6. The anomalous
dispersion region of β(ω) < 0, with soliton-like excitations, ends at ωc − ω0 ≥ −3β2/β3 beyond
which β(ω) ≥ 0 and dispersive waves emerge. From (3), we can estimate the spectral width as
2(ωc − ω0) = 2π

√
γP/|β2 |. This leads to the condition

β3 ≥
3|β2 |
π

√
|β2 |
γP
≈ 0.9 × (2.64 × 10−42)s3m−1, (6)

which is in very good agreement with the numerical result of Fig. 3(c). In (6) the β3 threshold
that leads to fibres supporting RWs depends on the peak power P. In deriving the numerical
estimate in (6) we have used a typical P ∼ 50W as appropriate after about ∼ 100m (cp. Fig. 1
and also the movies in [59]). Once such initial, and still relatively weak RWs have emerged, the
condition (6) will remain fulfilled upon further increases in P due to quasi-soliton collisions,
indicating the stability of large-peak-power RWs. Our estimation of the effective energy-transfer
cross-section parameter εeff can of course be improved. However, we believe that Eq. (5) captures
the essential aspects of the quasi-soliton collisions already very well. We find that simulations of
Eq. (1) with β3 = 0 but including an added Raman term [47] also affirm the essential role of
quasi-soliton collisions [41] and are also well described by the cascade model [64]. Thus far, we
have ignored fibre attenuation. Clearly, this would cause energy dissipation and eventually lead
to a reduction in the growth of RWs and hence give rise to finite RW lifetimes. But as long as the
fibre contains colliding quasi-solitons of enough power, RWs will still be generated.
Up to now, we have used the term RW only loosely to denote high-energy quasi-solitons

as shown in Figs. 2 and 1. Indeed, a strict definition of a RW is still an open question and
qualitative definitions such as a pulse whose amplitude (or energy or power) is much higher
than surrounding pulses are common [28]. Our results now suggest, in agreement with recent
work [28], a quantifiable operational definition at least for normalwaves in optical fibres described
by the gNLSE: a large amplitude wave is not a RW if it occurs as frequently as expected for the
PDF at β3 = 0 (cp. Fig. 1). We emphasise that both high spatial and temporal resolution are
required to obtain reliable statistics for RWs in optical fibres for reliable predictions of the PDF.
A small time window in the simulation can severely distort the tails of the PDF, and hence their
correct interpretation.

We find that RWs are preceded by short periods of reduced wave amplitues. This “calm before
the storm” has been observed previously [19] in ocean and in optical multifilament RWs, but
not yet in studies of optical fibres. We remark that we first noticed the effect in our cascade
model, before investigating it in the gNLSE as well. This highlights the usefulness of the cascade
model for qualitatively new insights into RW dynamics. More results are needed to ascertain if
the periods of calm can be used as reliable predictors for RW occurrence, i.e., reducing false
positives. Last, we emphasise that the underlying cause for the RW emergence due to TOD or
Raman terms is of course the absence of integrability. Our results suggest that, e.g., a suitable
dispersion engineering for Eq. (1) even without TOD (or Raman term) could destabilize the
solitons and lead eventually to the formation of RWs.
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Fig. 5. (a) Normalized peak power distribution PDF(P) for β3 = 0 at 1.5 km. The data
points denotes (blue squares) denote the data while the solid (red) line shows the fit with
Eq. (7). The dashed black line is at the fitted value P0 = 31.4 W (b)Relative variance r
(filled squares) and largest difference D (open circles) calculated for different values of εeff
at β3 = 2.64 × 10−42s3m−1. Parabolic fits to the data are shown as lines. The vertical dotted
line denotes the estimated εeff = (1.23 ± 0.05)fs/m at which D is minimal, the grey region
indicates the error of that estimate. The vertical dashed-dotted line denotes the estimate
εeff = (1.32 ± 0.05)fs/m from r .

A. Further details of the cascade model

Choice of initial PDF

As initial condition for the cascade model we compute the PDF of the soliton peak power, Pq , in
the NLSE case β3 = 0. We select a distance of z = 1500m such that PDF(|u|2) has stabilized. We
find that the resulting PDF(Pq) can be described as

ρ(Pq) =
b

P0

(
Pq

P0

)b−1
exp

[
−

(
Pq

P0

)b]
, (7)

where P0 = 31.4±0.6Wand b = 1.69±0.04. The PDF(Pq) and its fit are shown in Fig. 5(a) (the fit
has been performed taking the log of the data and the log of the fitting function). The value P0 can
alternatively be estimated using energy conservation.We start with a continuous wave (CW) power
of PCW = 10W.From the autocorrelation, wemeasure the average time between two peaks as∆T =
0.170 ± 0.008 ps. Hence the initial energy contained in the time window ∆T is Einit = PCW∆T =
1.70 pJ. At distances when quasi-solitons have been created the average energy contained in ∆T ,
using Eq. (3) and Eq. (7), is Efinal =

∫ ∞
0 2PqTq(Pq)ρ(Pq)dPq ' 1.796

√
|β2 |P0/γ. From energy

conservation, Efinal = Einit, we find P0 ' γ (PCW∆T/1.796)2 /|β2 | = 34 ± 3W.

Derivation of the effective quasi-soliton description

In section 2, we argued that the shape of a β3 , 0 quasi-soliton can be approximated by Eq. (2).
The argument follows Ref. [47]. The solution of Eq. (1) can be approximated as a soliton-like
pulse

u(z, t) =
√

Psech
[
t − q (z)

T

]
× exp

{
−iΩ[t − q(z)] − iC

[t − q(z)]2
2T2

}
, (8)

where P, T and C represent the amplitude, duration and chirp. The other two parameters are
the temporal shift q of the pulse envelope and the frequency shift Ω of the pulse spectrum. The
distance-dependence of the parameters can be obtained using the momentum method [47,62,63].
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This gives

dT
dz
= (β2 + β3Ω)

C
T
,

dC
dz
=

(
4
π2 + C2

)
(β2 + β3Ω)

T2 +
4γP
π2 ,

dq
dz
=β2Ω +

β3
2
Ω

2 +
β3

6T2

(
1 +

π2

4
C2

)
,

dΩ
dz
=0.

(9)

The equations can be solved for C = 0, resulting in Eq. (2) with φ = −Ω(t − v−1z), while T and
v−1 have been given in Eq. (3) and Eq. (4).

B. Determining the energy gain

Deriving the energy gain formula

In Fig. 3 we observe an energy transfer due to inelastic scattering. This energy gain of quasi-soliton
1 from quasi-soliton 2, can be written as ∆E1 =

∫
G(P1,Ω1, P2,Ω2; z, t, φ)dzdt [61], where G is

an energy density and φ is the phase difference between the two quasi-solitons. It is convenient to
change variables s = t − z/v1, w = t − z/v2. Such that

∆E1 =
1

| v−1
1 − v

−1
2 |

∫
G (P1,Ω1, P2,Ω2; s,w, φ) dsdw. (10)

Eq. (10) shows that a large difference between the (inverses of the) vq results in a reduced energy
gain for the larger quasi-soliton in agreement with the results in the main paper. Fourier-expanding
Eq. (10), we can write

∆E1
E2
=

1
| v−1

1 − v
−1
2 |

∞∑
n=0

εP1,Ω1,P2,Ω2 (n) cos [n(φ − φ0)] , (11)

where ε(n) are Fourier coefficients (we suppress the Pq and Ωq indices for a moment) and φ0 is
the phase difference for which the gain has a maximum. We approximate the above formula with
just the first two coefficients. These two coefficients are related; indeed the larger quasi-soliton
always gains energy (∆E1 > 0), hence ε(0) ≥ |ε(1)| and because for a certain φ the energy gain
is zero, we have ε(0) = −ε(1). Thus we can write

∆E1
E2
'
εP1,Ω1,P2,Ω2

|v−1
1 − v

−1
2 |

sin2
(
φ − φo

2

)
, (12)

where we have used 1 − cos (φ) = 2 sin2
(
φ
2

)
and defined ε = 2ε(0). The value of ε is yet

undetermined while the dependence on the group velocities and the phase difference is clear. As
shown in Fig. 3(c), Eq. (12) provides an excellent description of the energy gain in pair-wise
quasi-soliton collisions. In order to determine the energy transfer we estimate the individual
pulse energies in the gNLSE via

∫
∆t
|u(z, t)|2dt with ∆t = 1ps symmetric w.r.t. the maximum

peak power. In the cascade model, we use Eq = 2PqTq . In principle, a collision can shift the
soliton frequency Ω→ Ω + ∆Ω and hence the dispersion via β2 + β3∆Ω. The relative correction
is ∼ (β3/β2)∆Ω ∝ 10−2∆Ω THz−1. In the gNLSE simulations, we observe at most ∆Ω ≤ 3THz,
and the relative variation will be ≤ 3%. We thus ignore the effect and only consider the change in
energy due to the peak power variation.

Effective coupling constant εeff

We want to model a system of many colliding quasi-solitons as shown in Fig. 2(a). The parameter
εP1,Ω1,P2,Ω2 depends on the individual power and frequency shift of each quasi-soliton pair. In
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order to devise a tractable model, we have to find an effective εeff that describes the average
properties of the u-amplitudes well. We therefore choose a distance z = 500, where from Fig. 2(a)
we see that well-developed quasi-soliton pulses exist, while the situation is not yet RW dominated
as shown in Fig. 1(a). We use a constant trial value for εeff and apply Eq. (5) to all quasi-soliton
collisions in the cascade model computing data similar to Fig. 2(d) and Fig. 1(b). We repeat
the calculation with another trial εeff . For different εeff , we compare the PDF created from the
cascade model with the PDF obtained from the gNLSE and choose εeff such that the agreement is
best (see below). We note that this process was followed for the εeff values shown in Fig. 3(d) for
the different β3 values. Furthermore, we have checked that similar results can be obtained by
using z = 300 as the starting point of the analysis. Once εeff is determined, we use it to compute
the results for the cascade model, starting at z = 100m and "propagating" all the way to 1500m
as described in section 7. We emphasize the good agreement of the PDFs for z , 500m.

Estimating εeff

We are interested in determining εeff such that the PDFs of the gNLSE and the cascade model
(CM) agree at z = 500m. Since we are interested in RWs we want that agreement to be good in
the tail region of |u|2 > 150W. We therefore define the relative variance

r(εeff) =
∑

i

[
log PDFgNLSE(|ui |2) − log PDFCM(|ui |2, εeff)

]2∑
i

[
log PDFgNLSE(|ui |2)

]2 (13)

and minimize it with respect to εeff as shown in Fig. 5. The εeff at minimum is our estimate with
accuracy εeff

√
r(εeff). The results for εeff calculated using this variance minimization are shown

in Fig. 3(d) (red line).
As a second test, we perform a Kolmogorov-Smirnov (KS)-like two-sample test [60] between

log PDFgNLSE(|ui |2) and log PDFCM(|ui |2, εeff). We need to renormalize the data count as Ñi =

log(1+Ni)with each j denoting a |ui |2 bin and overall Ñ =
∑Nbins

j=1 log(1+Ni). Hence the effective
number of data is given by Ñe = (ÑgNLSEÑCM)/(ÑgNLSE + ÑCM). Following the KS prescription,
we then define the difference D = max

i∈[1,Nbins]

��CDFgNLSE(i) − CDFCM(i)
�� and minimize it with

respect to εeff as shown in Fig. 5 (b). As usual, with λ = (
√

Ñe + 0.12 + 0.11/
√

Ñe)D, a KS-like
accuracy can be given as QKS(λ) = 2

∑∞
j=1(−1)j−1e−2j2λ2 , although it should no longer be

interpreted probabilistically. The results for εeff calculated using this KS-like test are also shown
in Fig. 3(d) with QKS given for each β3 value. It is important to note that QKS remains roughly
constant for all β3 values, indicating a comparable level of similarity between PDFCM and
PDFgNLSE across the full β3 range. In Fig. 5 (b), we show the εeff dependence of the test.

C. Fitting the PDFs

The PDFs of Fig. 1 have been fitted using the Weibull function

W(|u|2) = ba−b(|u|2)b−1 exp

[
−

(
|u|2
a

)b]
(14)

The fits are shown in Fig. 1. Every fit has been performed taking the log of the PDF(|u|2) and
W(|u|2), the resulting coefficients are in Table 1. Our results suggest that while a Weibull fit [19]
is indeed possible for the tails, a systematic and consistent variation of the fitting parameters
with distance travelled is not obvious. While, e.g., the PDF for 200, 500 and 1500m as shown
in Fig. 1(a) appears sub-exponential in the tails, we find that the tail of the PDF for 1000m is
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Table 1. Values of the coefficients a , b and F0 needed to fit the various PDF(|u|2) distributions
from Fig. 1 at three representative distances z = 500 m, 1000 m and 1500 m, using (W) the
Weibull function of Eq. (14), (F) the stretched exponential of Eq. (15) and (P) the Pareto
function as in Eq. (16). The reduced χ2 value is also displayed.

Distance Model Fit a b/10−1 F0/10−3 χ2

500 m
gNLSE W 4.0 ± 0.5 4.94 ± 0.15 1

F 9 ± 21 6 ± 3 8 ± 30 50
P 2.8 ± 0.2 150 ± 3 3700

cascasde model W 3.0 ± 0.5 4.60 ± 0.16 9
F 12 ± 3 6.3 ± 3 6 ± 2 1060
P 2.6 ± 0.2 130 ± 30 560

1000 m
gNLSE W 0.9 ± 0.4 3.2 ± 0.2 4

F 8 ± 10 47 ± 10 4 ± 5 136
P 1.57 ± 0.15 55 ± 20 160

cascasde model W 0.7 ± 0.2 3.04 ± 0.14 11
F 11 ± 5 4.9 ± 0.4 2 ± 1 3400
P 1.51 ± 0.12 46 ± 15 660

1500 m
gNLSE W 0.07 ± 0.03 2.1 ± 0.1 15

F 0.006 ± 0.001 2.1 ± 0.4 50 ± 70 240
P 1.00 ± 0.05 10 ± 2 64

cascasde model W 0.04 ± 0.01 1.94 ± 0.05 22
F 0.008 ± 0.016 2.1 ± 0.3 120 ± 140 490
P 0.87 ± 0.05 5.5 ± 1.6 6

super-exponential for z & 600m. We also fitted the tails of PDF(|u|2) with a stretched exponential

F(|u|2) = F0 exp

[
−

(
|u|2
a

)b]
, (15)

and, following Ref. [40], with a Pareto function

Q(|u|2) = aba

|u|2(a+1) . (16)

The resulting coefficients are given in Table 1. For all fits, the results are not convincing as
documented by the rather large χ2 values found. This hints towards a continuing development of
the shape of the PDF as the propagation continues.
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