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Guided modes in non-Hermitian optical waveguides2
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We study guided modes in non-Hermitian optical waveguides with dielectric layers having either gain or loss.
For the case of a three-layer waveguide, we describe stationary regimes for guided modes when gain and loss
compensate each other in the entire structure rather than in each layer. We demonstrate that, by adding a lossless
dielectric layer to a double-layer waveguide with the property of parity-time (PT ) symmetry, we can control a
ratio of gain and loss required to support propagating and nondecaying optical guided modes. This novel feature
becomes possible due to the modification of the mode structure, and it can allow using materials with a lower gain
to balance losses in various optical waveguiding structures. In addition, we find a non-PT -symmetric regime
when all guided modes of the system have their losses perfectly compensated.
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I. INTRODUCTION17

Quantum mechanics is based on the widely accepted18

postulate that all physical observables should correspond to19

real eigenvalues, and the use of Hermitian operators ensures20

that the system possesses an entirely real eigenvalue spectrum21

[1,2]. However, the Hermitian operators are not the only22

operators to possess real spectra. Some years ago, Bender23

and Boettcher [3,4] suggested that there exist other classes of24

non-Hermitian Hamiltonians that can possess real eigenvalue25

spectra, provided they possess the so-called parity-time (PT )26

symmetry. Moreover, there are a number of complex potentials27

that possess real spectrum, which are not PT symmetric [5].28

Due to a close analogy between the linear equations of29

quantum mechanics and the equations for slowly varying30

amplitudes in optics, similar PT -induced phenomena can31

be observed in optical systems with gain and loss, as was32

suggested theoretically and also verified in experiment with33

optical couplers [6–9]. To achieve a balance between gain and34

loss in optics, active and passive regions of an optical system35

should be placed symmetrically with respect to each other, and36

the refractive index of the system should satisfy the relation37

n(x) = n∗(−x).38

In a majority of the subsequent studies of PT -symmetric39

optical systems [10], researchers paid attention to two40

main features of such systems: real spectra of dissipative41

systems and the symmetry-breaking transition between the42

PT -symmetric regimes, when all eigenvalues are real, and43

PT -symmetry-broken regimes, when some of the eigenvalues44

become complex [11,12].45

Importantly, it was also shown that the PT -symmetry for46

non-Hermitian systems is neither a sufficient condition nor47

a necessary condition to realize a real spectrum [13]. Thus,48

the concept of pseudo-Hermiticity, a condition for real spectra49

of non-Hermitian systems, was introduced [13]. Recently, it50

was also shown that nonsymmetric waveguides with gain and51

loss can couple and provide loss compensation for at least one52

mode [14].53

In optics, the topic of PT symmetry is closely related to54

the studies of various structures with gain. For example, from55

the conventional point of view, it is reasonable to expect that56

by adding gain to the waveguiding structure one can control57

the characteristics of the propagating modes, as was shown in 58

Ref. [15]. In plasmonic structures, waveguiding is suppressed 59

by losses particularly strongly. There is a search in either 60

optimizing the geometry for these structures [16] or using 61

novel materials [17]. Clearly, such approaches try to minimize 62

losses, and one needs gain materials to compensate losses in 63

plasmonic structures (see, e.g., Refs. [18–21]). 64

Recently, Suchkov et al. [22] investigated pseudo- 65

Hermitian (PH) optical couplers and compared their properties 66

with those of PT -symmetric couplers. They revealed that 67

the mode spectrum can be entirely real even without PT 68

symmetry, provided the waveguides in a coupler are placed 69

in a special order. Being inspired by those findings, here we 70

study three-layer non-Hermitian dielectric waveguides with 71

gain and/or loss (e.g., those shown in Fig. 1). We choose 72

the three-layer structure since the additional parameters allow 73

one to achieve a wider range of regimes as compared to 74

two-layer structures, which were mostly studied up to now. 75

For the case of three-layer waveguides, we describe the 76

stationary regimes when gain and loss compensate each other 77

globally but not locally. We reveal that this system, even being 78

non-PT symmetric, supports different types of asymmetric 79

modes and allows additional functionalities and control of the 80

guided modes. We believe that our approach can be useful 81

for reducing the value of gain for balancing losses in optical 82

waveguides. 83

II. THREE-LAYER WAVEGUIDES 84

We consider a three-layer waveguide placed in a free space, 85

as shown schematically in Fig. 1. Each layer i has a thickness 86

di and can have an arbitrary complex index of refraction. In the 87

examples given below we assume that layers are of the same 88

thickness, di = d. We use the exp(−iωt) time convention, and 89

in this convention the positive imaginary part of the refractive 90

index describes lossy media, while negative values of this 91

quantity correspond to gain media. We look for TE-guided 92

modes, which have one nontrivial electric field component 93

(Ey) and two magnetic field components (Hx,Hz). Modes of 94

the structure have the form Ey = E(x) exp(iβz), where β is 95

the mode wave number, and the mode profile E is described 96
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FIG. 1. Schematics of a three-layer non-Hermitian waveguide.
Each layer can be either passive or exhibit gain or loss. For visual
identification, we use red tint to denote gain layers, blue to denote
loss layers, and grey to denote passive layers.

97by the equation 98

d2E

dx2
+ ω2

c2
[ε(x) − β2]E = 0. (1)

Following the standard procedure for the mode finding, 99

we write solutions in each layer and in the surrounding 100

vacuum, and in order to find the unknown constants we apply 101

the boundary conditions of the continuity of the tangential 102

components of the electric and magnetic fields. There are 103

eight unknown constants of integration and a set of eight linear 104

equations for these unknowns. The set of linear equations has 105

nontrivial solutions when the determinant of the matrix of the 106

coefficients of this set vanishes. We explicitly write this matrix 107

as 108

M̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 0 0 0 0 0
κ0 −ik1 ik1 0 0 0 0 0
0 eik1d1 e−ik1d1 −1 −1 0 0 0
0 k1e

ik1d1 −k1e
−ik1d1 −k2 k2 0 0 0

0 0 0 eik2d2 e−ik2d2 −1 −1 0
0 0 0 k2e

ik2d2 −k2e
−ik2d2 −k3 k3 0

0 0 0 0 0 eik3d3 e−ik3d3 −1
0 0 0 0 0 ik3e

ik3d3 −ik3e
−ik3d3 κ0

,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where κ2
0 = (β2 − ω2/c2) and k2

i = εiω
2/c2 − β2 are the109

transverse wave numbers in each medium.110

As we mentioned above, the wave numbers of the localized111

modes are found from the equation112

det(M̂) = 0. (3)

In general, this equation cannot be solved analytically;113

therefore, in what follows we solve it numerically in order114

to find the mode wave numbers β. To find regimes when115

conservative modes exist in this structure, we fix parameters116

of the first layer, n1 = 2 + 0.1i, and also fix the real parts of117

the refractive indices of the two remaining layers at 2. Then,118

we scan the plane of parameters of imaginary parts of the119

layers 2 and 3 [Im(n2),Im(n3)] in order to find points at which120

there is a solution to Eq. (3) with real β. The examples of this121

search are shown in Fig. 2, where we demonstrate the cases for122

three values of layer thickness d. For thin layers, d = 100 nm,123

there is just one mode, and its losses can be compensated124

for parameters shown by the line in Fig. 2(a). As we make125

the layers thicker, more modes appear, and corresponding126

parameters required to compensate their attenuation due to127

losses are shown by two (for d = 200 nm) and three (for128

d = 300 nm) curves in the Figs. 2(b) and 2(c), respectively. In129

these two cases, all the curves intersect in a point on the vertical130

axis. This point corresponds to the case when the middle131

layer is passive, and n1 = n∗
3, where the star denotes complex132

conjugation. This coincides with the condition of classic133

optical PT symmetry, when the index of refraction satisfies134

the condition n(x) = n(−x)∗ (with x = 0 corresponding to135

the center of our structure). The mode structure for the case A136

shown in Fig. 2(b) is shown in Fig. 3(a). It has a symmetric 137

amplitude distribution, while the phase shows some gradient 138

indicating the energy flow from an active layer to a lossy layer. 139

Cases B and C are quite remarkable, and they are offering a 140

new mechanism for controlling the required balance between 141

gain and loss in two nonconservative layers. Indeed, if we 142

have two layers of the same thickness, then the condition of 143

FIG. 2. Location of the energy-conserving modes on the plane
of parameters of [Im(n2),Im(n3)] for three different values of layer
thickness d: (a) d = 100 nm, (b) d = 200 nm, and (c) d = 300 nm.
In panel (b) points A, B, and C show the special cases, and points E
and D correspond to general cases, which are discussed in the text.
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FIG. 3. Mode structure for three special cases; shown are the
electric field amplitudes and phases for (a) a degenerate PT -
symmetric case with parameters corresponding to point A in Fig. 1
and (b,c) two cases corresponding to points B and C in Fig. 1, when
one of the layers is passive. Parameters of the structures are shown in
the corresponding figure panels.

usual PT symmetry requires that the amount of gain in one144

of the layers is equal to the loss in another layer. Now, we145

can attach the third layer to the structure, and due to a change146

in the mode profile the amount of the required gain can be147

either larger [case B, Fig. 3(b)] or smaller [case C, Fig. 3(c)].148

In the former case, the amount of gain is characterized be the149

imaginary part of the index of refraction, Im(n3) ≈ −0.517,150

while in the latter case, it is −0.0524, whose magnitude is151

almost twice smaller than the loss coefficient Im(n1) = 0.1.152

This is achieved by having larger field intensities in the gain153

layer as compared to the field in the lossy layer.154

Finally, in a more general case, the modes have a compli-155

cated structure shown in Fig. 4, where we show two typical156

modes corresponding to the two dispersion curves. One of157

the modes resembles the fundamental mode of dielectric158

waveguides with just one maximum, while another one is159

double humped.160

Equation (3) has more than one solution. We study one161

case of fixed parameters, case E: n1 = 2 + 0.1i, n2 = 2 −162

0.2075i, and n3 = 2 + 0.3098i. In this case, we plot det(M̂)163

on the complex plane of wave numbers in Fig. 5. We observe164

that there are several zeros that correspond to the solutions of165

Eq. (3). There is one solution that corresponds to the mode that166

propagates without loss (marked by a red cross), and there are167

multiple solutions with complex wave numbers corresponding168

to the modes that decay away from the source. Thus, we can169

conclude that our system provides energy conservation just for170

one mode, whereas other modes experience attenuation.171

FIG. 4. Mode structure for two general cases. Shown are the
electric field amplitudes and phases; (a) and (b) correspond to points
E and F in Fig. 1, respectively.

Figure 6 shows the parameter plane of the imaginary parts 172

[Im(n2),Im(n3)] for the asymmetric case, when Re(n3) = 173

2.2, while n1 and n2 are the same as above. Two curves 174

corresponding to the two modes of the system still intersect at 175

one point, but this point is now not on the Im(n2) = 0 axis, as it 176

was in the previously considered symmetric case. Remarkably, 177

this regime now possesses the same properties as the PT - 178

symmetric case, i.e., both modes of the system have real eigen 179

wave numbers, but the system is not PT symmetric. Thus, we 180

have revealed novel regimes in nonsymmetric structures when 181

all modes have their losses perfectly compensated by gain. 182

FIG. 5. Determinant of the matrix M in the logarithmic scale
on the plane of complex wave numbers. Shown are the points of
the stationary propagating mode (marked by a red “x”) and the
nonpropagating modes (marked by black circles).
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FIG. 6. Location of the energy conserving modes on the plane of
parameters of [Im(n2),Im(n3)] for the asymmetric case. Parameters
are d = 200 nm, n1 = 2 + 0.1i, Re(n2) = 2, and Re(n3) = 2.2.

III. CONCLUSION183

We have studied the guiding properties of three-layer184

non-Hermitian dielectric waveguides with gain and loss. We185

have revealed that the functionalities of conventional PT -186

symmetric optical waveguides can be expanded substantially187

by adding an additional dielectric layer and extending the188

structure into a broader class of non-Hermitian systems to189

control a ratio of gain and loss required to support propagating190

and nondecaying guided modes. Our approach can be useful191

for a design of novel types of waveguiding systems with192

low-gain materials for the loss compensation.193
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