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Abstract 

The objective of this study is to characterize and predict the permanent deformation properties of 

unbound granular materials (UGMs) for Pavement ME Design. First, laboratory repeated load 

triaxial (RLT) tests are conducted on the UGMs from 11 quarries in Texas to measure the 

permanent strain curves. The shakedown theory is applied to evaluate the permanent deformation 

behavior of the selected UGMs. It is found that using Werkmeister’s criteria to define the 

shakedown range boundaries is not suitable for the selected UGMs. Under this circumstance, 

new criteria are proposed to redefine the shakedown range boundaries for the flexible base 

materials in Texas. The new criteria are consistent with the current Texas flexible base 

specification in terms of aggregate classification. Second, the mechanistic-empirical design guide 

(MEPDG) model is used to determine the permanent deformation properties of the selected 

UGMs on the basis of the measured permanent strain curves. The determined permanent 

deformation properties are assigned as target values for the development of permanent 

deformation prediction models. Third, a series of performance-related base course properties are 

used to comprehensively characterize the UGMs, which include the dry density, moisture content, 

aggregate gradation, morphological properties, percent fines content, and methylene blue value. 

These performance-related base course properties are assigned as the inputs of the permanent 

deformation prediction models. Fourth, a multiple regression analysis is conducted to develop 

the prediction models for permanent deformation properties using these performance-related 

properties. The developed models are capable of accurately predicting the permanent 

deformation properties of UGMs. Compared to other prediction models (e.g., simple indicators-

based models and Pavement ME Design models), the developed models have the highest 

prediction accuracy. It is also found that the Pavement ME model-predicted permanent strains 

are much lower than those measured from the RLT tests. This demonstrates that the current 

Pavement ME Design software substantially underestimates the rutting that occurs in base course. 

Finally, the developed prediction models are validated by comparing the predicted and measured 

permanent strains of other four base materials. The obtained R-squared value of 0.81 indicates 

that the developed models have a desirable accuracy in the prediction of permanent deformation 

properties of UGMs. 

Keywords: Unbound Granular Material; Permanent Deformation; Performance Prediction; 

Pavement ME Design 
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Introduction 

Unbound base layer is laid between asphalt concrete and subgrade in flexible pavements. Its 

main function is to provide the support for asphalt concrete and protect subgrade from severe 

permanent deformation (rutting) [1]. Pavements become prone to rutting when the unbound base 

can only poorly bear the stresses induced by the repeated traffic loads. Therefore, the permanent 

deformation behavior of unbound granular material (UGM) plays a significant role in the 

evaluation and prediction of the performance of unbound base layer in the field [2-3]. 

Currently, the most popular approach to determine the permanent deformation properties 

of UGM is by conducting the laboratory repeated load triaxial (RLT) test. The response of an 

UGM specimen under repeated loading is divided into a resilient (recoverable) strain and a 

permanent (unrecoverable) strain. The recoverable behavior is characterized by the resilient 

modulus of UGM. The permanent strain accumulated under load repetitions is used to describe 

the permanent deformation behavior [4]. To evaluate the permanent deformation properties of 

UGM, the shakedown theory has been widely used by pavement design practitioners [5-7]. 

According to this theory, the UGMs are categorized as three groups: 

 Range A – plastic shakedown: the response is plastic only for a finite number of load 

repetitions, and becomes resilient after post-compaction; 

 Range B – plastic creep: the level of permanent strain rate decreases to a low and nearly 

constant level during the primary stage; and 

 Range C – incremental collapse: the permanent strain rate decreases slowly, and 

permanent strain accumulation does not cease. 

In pavement design, the pavement must be able to resist permanent deformation. To 

ensure that pavement has desirable rutting resistance, the pavement design guide suggests to 

select the base materials from Range A and Range B, and avoid using the base materials from 

Range C [7]. To define the shakedown range boundaries, Werkmeister proposed the following 

criteria [8]: 

 Range A: 5
,5000 ,3000 4.5 10p p      

 Range B: 5 4
,5000 ,30004.5 10 4.0 10p p        

 Range C: 4
,5000 ,3000 4.0 10p p      
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where ,5000p  is the accumulated plastic strain at the 5000th load cycle, and ,3000p  is the 

accumulated plastic strain at the 3000th load cycle. However, these criteria are developed merely 

based on a limited number of RLT test results. Whether these criteria are suitable for other base 

materials are still unknown. Thus, the Werkmeister’s criteria should be revisited and reevaluated 

for local base materials. 

In order to characterize the permanent deformation properties of UGM, various models 

have been developed to determine the relationship between the accumulated permanent strain 

and the number of load cycles. The most commonly used model is the Tseng-Lytton model as 

shown in Equation 1 [9].  

0

( )p Ne


 


         (1) 

where p  is the permanent strain of the granular material; 0  is the maximum permanent strain; 

N  is number of load cycles;   is a scale factor; and   is a shape factor. 0 ,  and   are the 

permanent deformation properties. However, in this form, it does not consider the stress effect, 

which significantly affects the permanent deformation behavior of UGM [10-11]. To consider 

the stress effect, the mechanistic-empirical design guide (MEPDG) modified the Tseng-Lytton 

model by converting the plastic strain measured from the laboratory to the field condition [12]. 

0 N
p s v

r

e

  


  
  

  
 

         (2) 

where s  is a global calibration coefficient; r  is the resilient strain imposed in the laboratory 

test; and v  is the average vertical resilient strain in the base layer of the flexible pavements. As 

seen from Equation 2, the MEPDG model considers the effect of stress level on permanent 

deformation by linearly projecting the plastic deformation obtained from the laboratory tests to 

the plastic deformation of the pavement base layer in the field through vertical strains [13]. In 

this model, the permanent deformation properties (i.e., 0

r




,  and  ) are determined through a 

regression analysis of the RLT test data. The RLT test method is accurate and reliable, but 

meanwhile such a test is complex and time-consuming, which requires experienced personnel to 

operate the test machine and analyze the data. These become major obstacles to applying the 
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permanent deformation properties in quality control and quality assurance of base course 

construction [14]. 

 In order to overcome the limitations associated with the RLT test, using prediction 

models to estimate the permanent deformation properties of UGM has attracted more and more 

attention recently [2, 9, 15-17]. In this approach, the permanent deformation properties are 

usually correlated to a group of performance indicators which can be efficiently measured from 

other simple tests. Equations 3-5 present the prediction models that are recommended by 

Pavement ME Design [12]. 

    910
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        (5) 

where c  is the moisture content of UGM (%). These prediction models correlate the permanent 

deformation behavior only to the moisture content of UGM, which do not take into account the 

physical properties of coarse and fine aggregates. However, the existing studies demonstrated 

that these physical properties of aggregates (e.g., gradation, angularity and shape) significantly 

affect the permanent deformation behavior of UGM [18-21]. Thus, new prediction models 

should be developed for Pavement ME Design in a manner that permanent deformation 

properties of UGMs are correlated to a series of performance-related base course properties.  

To address the aforementioned research needs, this study aims to develop new models for 

predicting the permanent deformation properties of UGM. The performance-related base course 

properties are first identified. The laboratory triaxial tests and performance-related indicator tests 

are then performed on 14 types of UGMs. The shakedown theory is applied to evaluate the 

permanent deformation behavior of the selected UGMs. New criteria are proposed to define the 

shakedown range boundaries for flexible base materials in Texas. Subsequently, a statistical 

analysis is conducted to investigate the significant variables that are related to the permanent 

deformation properties of granular material. The prediction models are developed to estimate the 
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permanent deformation properties of UGM using the identified significant variables. The 

developed prediction models are compared to other prediction models (e.g., Pavement ME 

Design models and simple indicator-based prediction models) in terms of the prediction accuracy. 

Finally, the prediction models are validated by comparing the model-predicted results to the 

laboratory-measured data of other four types of UGMs. 

 

Selection of Performance-Related Base Course Properties 

The selection of performance-related base course indicators is crucial to accurately estimate the 

permanent deformation properties of UGM. There are many property indicators used to 

characterize the flexible base materials. Typical properties used in Texas include particle size 

gradation, plasticity index, liquid limit, wet ball mill value, dry density and moisture content [14]. 

Other properties used by other specifying agencies include LA abrasion value and sand 

equivalent value. Among these properties, particle size gradation, dry density and moisture 

content are considered as basic performance indicators. Wet ball mill value and LA abrasion are 

used specially to evaluate the durability of coarse aggregates, while Atterberg limits and sand 

equivalent are applied to fine aggregates [22]. The existing studies focused on the prediction of 

the permanent deformation properties of UGM using these indicators [9, 15-16]. However, these 

indicators are usually empirical and not directly related to the performance of flexible base 

materials [14]. 

In recent years, many performance-related tests are investigated to evaluate flexible base 

materials, such as aggregate imaging system (AIMS) test, methylene blue test, and percent fines 

content (PFC) test. The AIMS test is used to characterize the shape, angularity and texture 

properties of aggregates [23-24]. The cubic-shaped aggregates were found to be more susceptible 

to permanent deformation than the crushed aggregates. The aggregate matrix specimens with 

lower angularity index and surface texture index correspond to a higher permanent strain in the 

base course [25-26]. Therefore, these aggregate morphological indices have potential to correlate 

to the engineering properties of UGM. The methylene blue test is used to measure the amount of 

moisture active clay particles in the aggregate matrix. It is proven that the methylene blue test 

has less variability compared to the plasticity index test [27]. The higher Methylene Blue Value 

(MBV) indicates that the fines in the base material have higher plasticity, which has a negative 

effect on the performance of the base course. For example, AASHTO T330 considers the 
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expected performance of base course to be a failure, if its MBV is higher than 20 [28]. The PFC 

test is used to evaluate the total clay content in fine aggregates [29]. Clay is defined as the 

particles smaller than 2 microns according to the identification and classification of soils [29]. 

The clay content is a critical factor that controls moisture susceptibility, swelling, shrinkage, and 

plasticity of soils, which affects the performance of flexible bases. 

 

Materials and Test Methods 

This section presents the materials and laboratory test methods used to predict the permanent 

deformation properties of base courses. 

 
Laboratory Experiments 

The following laboratory tests were conducted in this study: 

 RLT test that was used to determine the permanent deformation properties of UGMs; 

 Tests to measure performance-related base course properties, including AIMS test for 

coarse aggregates, methylene blue test and PFC test for fine aggregates.  

The RLT test was conducted on the cylindrical UGM specimens through the Material 

Testing System (MTS). The sample fabrication and testing procedure followed the standard 

AASHTO T 307 [30]. The permanent deformation test was conducted at a level of 137.9 kPa 

deviatoric stress with 48.3 kPa confining pressure. This recommended stress state was 

determined according to the finite element calculation of the stress response of the middle of an 

aggregate layer in a typical pavement structure under a standard traffic load when considering 

the nonlinear cross-anisotropic behavior of the base course. The static confining pressure and 

haversine-shaped deviator stress with 0.1 second load period and 0.9 second rest period were 

applied to the specimen for 10,000 cycles. During each test, two Linear Variable Differential 

Transformers (LVDTs) mounted on the middle-half of the specimen were used to measure the 

vertical deformation of the specimen. The test data were used to determine the permanent 

deformation properties of UGMs. 

The tests to measure the performance-related base course properties were detailed 

described at Gu et al. [4]. These required tests were simpler, lower cost, and more efficient than 

the RLT test. 

Materials 
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Base materials used in this study are selected from different quarries in Texas. These quarries are 

selected in attempts to capture the geographic, mineralogical, and production volume diversity of 

typical sources used for Texas Department of Transportation (TxDOT) projects. In this study, 14 

types of base materials are used to develop the permanent deformation prediction models, and 

other 4 types of base materials are selected to validate the prediction accuracy of the developed 

models. Most of the selected base materials are tested at their optimum moisture contents. To 

investigate the influence of moisture content, 3 types of base material are fabricated at three 

different moisture contents. 

 
Results and Discussion 

Determination of Permanent Deformation Properties of UGM 

Figure 1 presents the relationship between the accumulated plastic strain of the selected UGMs 

and the number of load cycles. In the legend of Figure 1, the letter represents the different source 

of the selected UGM, the number represents the number of times that the material is obtained, 

the symbol “+” indicates the specimen is compacted above the optimum moisture content, and 

the symbol “-” means that the specimen is fabricated below the optimum moisture content. For 

instance, “B02” stands for the material from the quarry B that is picked up at the second time. In 

this study, the base materials “B02”, “E01”, and “H01” are selected to fabricate at three different 

moisture contents (i.e., optimum, above the optimum, and below the optimum moisture content). 

As seen from Figure 1, most of the selected base materials only experience the primary stage and 

secondary stage under the current load protocol. The primary stage has a high initial permanent 

deformation, with a decreasing rate of change of plastic strains. The secondary stage has a 

constant rate of change of plastic strain. The accumulated plastic strain of “B02+” exceeds the 

measurement upper limit during the test. 

The measured plastic strain curves are used to determine the permanent deformation 

properties in Equation 1. Table 1 presents the determined permanent deformation properties of 

the selected UGMs. The resilient strains corresponding to the 500th load cycle are also recorded 

and shown in Table 1. By inputting these data into the MEPDG model, the rutting behavior of 

unbound base can be predicted at any given pavement structure and number of load repetitions. 

These determined permanent deformation properties will be assigned as target values to develop 

the permanent deformation prediction models. 
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Figure 1. RLT Test Results of the Selected Unbound Granular Materials 

Table 1. Determined Permanent Deformation Properties of Unbound Granular Materials 
Source Type ε0 ρ β εr at 500th load cycle 

A01 8.38E-03 890 0.301 3.89E-04 
A02 5.04E-03 860 0.305 3.07E-04 
B01 9.32E-03 940 0.287 3.59E-04 
B02 1.28E-02 1500 0.246 4.06E-04 

B02+ 2.00E-02 1570 0.303 3.58E-03 
B02- 1.24E-03 1520 0.302 2.23E-04 
C01 1.04E-02 860 0.305 8.81E-04 
D01 1.23E-02 970 0.293 3.85E-04 
D02 4.86E-03 940 0.292 3.25E-04 
E01 1.98E-03 820 0.31 3.12E-04 

E01+ 1.21E-02 810 0.289 4.36E-04 
E01- 1.08E-03 1560 0.303 2.26E-04 
F01 2.19E-02 900 0.3 4.23E-04 
F02 2.24E-02 1230 0.304 4.82E-04 
G01 9.19E-03 950 0.302 3.61E-04 
G02 4.50E-03 980 0.31 2.28E-04 
H01 1.42E-03 980 0.1 1.92E-04 

H01+ 1.21E-02 810 0.289 2.26E-04 
H01- 1.08E-03 1560 0.303 8.36E-05 
I01 8.57E-04 1530 0.305 3.95E-04 
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Characterization of Permanent Deformation Behavior of UGM 

In this study, the shakedown range criteria are reevaluated for flexible base materials in Texas. 

Table 2 presents the grading results of the tested base materials based on the Werkmeister’s 

criteria and the TxDOT’s specification (i.e., Item-247). According to Item-247, the flexible base 

materials are classified as 4 grades in terms of aggregate gradation, Atterberg limits, wet ball 

mill value, and unconfined and confined compressive strength [31]. The Grade 1 and Grade 2 

aggregates are preferred to use in the base course construction. As seen from Table 2, most of the 

UGMs used in this study are in Range C (i.e., incremental collapse) according to Werkmeister’s 

criteria. This implies that these base materials should be avoided using in base course. However, 

according to the TxDOT’s specification Item-247, most of these materials are in Grade 2, which 

is recommended to base course construction. This contradiction demonstrates that the 

Werkmeister’s criteria needs to be adjusted for the base materials in Texas. In order to be 

accordance with the TxDOT’s specification, new criteria are needed to define the shakedown 

range boundaries, which are presented as follows. 

 Range A: 5
,5000 ,3000 6.0 10p p      

 Range B: 5 4
,5000 ,30006.0 10 6.0 10p p        

 Range C: 4
,5000 ,3000 6.0 10p p      

Table 2 also presents the classification results of the selected UGMs using the new 

criteria. It is shown that the new criteria are in good agreement with Tex-247 in terms of these 

classification results. 

Table 2. Grading Results of Tested Base Materials Using Werkmeister’s Criteria, New 
Criteria and Tex-247 

Source Type ,5000 ,3000p p   Werkmeister’s Criteria New Criteria 
TX Item-247 

Grade 
A01 4.34E-04 C B 2 
A02 2.63E-04 B B 2 
B01 4.80E-04 C B 2 
B02 4.43E-04 C B 2 
C01 5.44E-04 C B 2 
D01 6.29E-04 C C 3 
D02 4.32E-04 C B 2 
E01 4.25E-04 C B 2 
F01 9.83E-04 C C 3 
F02 1.21E-03 C C 3 
G01 4.83E-04 C B 2 
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G02 2.42E-04 B B 2 
H01 5.75E-05 B A 1 
I01 4.80E-05 B B 2 

 

Characterization of Performance-Related Base Course Properties 

Aggregate Gradation 

In order to quantify the aggregate gradation, a known statistical distribution is used to fit the 

gradation curve. The cumulative Weibull distribution is adopted in this study, which is shown in 

Equation 6. 

 ; , 1
a

x
F x a e 

 
 
 


           (6) 

where  ; ,F x a   is the cumulative probability; x  is the aggregate size;   is the scale 

parameter; and a  is the shape parameter [32]. The determined shape parameter a  and scale 

parameter   are used to quantify the aggregate gradation. The determined gradation parameters 

are presented at the 6th and 7th columns in Table 3. 

 

AIMS Test 

The AIMS test is used to characterize the angularity, shape and texture properties of aggregates. 

Angularity index is related to the corner sharpness of aggregate particle. The AIMS software 

calculates the angularity index of aggregate using the gradient method, which is shown in 

Equation 7. 

3

3
1

1

1
3

N

i i
i
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 




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
          (7) 

where AI is the angularity index,   is the edge directional angle, the subscript i denotes the ith 

point on the boundary of a particle, and N is the total number of points on the boundary. A 

higher angularity index represents that the aggregate particle has more sharp corners. 

Shape index is related to the sphericity of aggregate particle, which is calculated using 

Equation 8. 

360

0

R R
SI

R

 
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 

 





           (8) 

where SI  is the shape index,   is the directional angle, and R  is the radius in different 

directions. The shape index less than 6.5 indicates that the particle shape is circular, the shape 
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index between 6.5 and 8.0 indicates that the particle shape is semi-circular, the shape index 

between 8.0 and 10.5 represents that the particle shape is semi-elongated, and the shape index 

greater than 10.5 represents that the particle shape is elongated.  

Texture index describes the relative surface smoothness of aggregate particle. The AIMS 

software calculates the texture index of aggregate using the wavelet method, which is presented 

in Equation 9. 

  
23

,
1 1

1
,

3

N

i j
i j

TI D x y
N  

           (9) 

where TI is the texture index, N denotes the level of decomposition, and i takes a value 1, 2 or 3, 

for the three detailed images of texture, j is the wavelet coefficient index, and  , ,i jD x y  is the 

detail coefficient at location (x, y) for the Nth level of decomposition [33]. A higher texture 

index indicates the aggregate particle has a rougher surface. 

Since the aggregate matrix is composed of the different sizes of aggregates, the 

composite angularity, shape and surface texture indices are used to characterize the 

morphologies of coarse aggregate blend. The calculation of composite angularity, shape and 

surface texture indices are shown in Equation 10. 

  
 

1

1

index
Composite Index

n

i ii
n

ii

a

a




   


       (10) 

where Composite Index is the composite angularity, shape, or surface texture index for a certain 

aggregate blend, respectively;  is the volume percentage of the ith size aggregate blended in the 

aggregate matrix; and indexi is the angularity, shape, or surface texture indices for a given size of  

aggregate [26]. The AIMS test results are presented from the 8th to 10th column in Table 3. The 

subscripts in these columns denote the following: A is for angularity; S is for shape; and T is for 

texture. 

Figures 2 – 4 present the correlations of morphological properties (i.e., angularity, shape 

and texture indices) of coarse aggregates to the accumulated plastic strain at the 10,000th load 

cycle. As seen from these figures, increasing the angularity, texture and shape indices tends to 

reduce the accumulated plastic strain. This demonstrates that the UGM with more sharp corners 

and rougher surfaces has a higher rutting resistance. The shape index of the selected UGMs 

ranges from 7.1 to 8.1, which indicates that most of the selected aggregates are semi-circular. In 

this range, the aggregates oriented to elongation is slightly better than those oriented to circle to 



Gu et al.    13 
 

resist the permanent deformation. Note that the shape index of the selected UGMs is in a 

relatively narrow range. This might not sufficiently reflect the impact of aggregate shape on 

permanent deformation behavior of UGM. 

 

Figure 2. Correlation between Angularity Index and Accumulated Plastic Strain 

 

Figure 3. Correlation between Texture Index and Accumulated Plastic Strain 
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Figure 4. Correlation between Shape Index and Accumulated Plastic Strain 

 

Percent Fines Content and Methylene Blue Tests 

Percent fines content and methylene blue tests are used to characterize the amount and quality of 

moisture active clay in fine aggregates. The percent fines content is calculated using Equation 11.  
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where   is the mass of aggregate smaller than 2 microns;  is the mass of aggregate 

smaller than 75 microns. The 5th column of Table 3 lists the results of percent fines content test. 

The MBV is calculated using Equation 12 [27]. 

 c readingMBV S MBV C           (12) 

where MBV  is the real methylene blue value of fine aggregates, readingMBV  is the reading value 

from the colorimeter device (mg/g); C  is the correction factor for the concentration of the 

solution, and cS is the adjusting factor for sample size. The methylene blue test results are listed 

in the 4th column of Table 3. The performance-related base course properties listed in Table 3 

will be assigned as input variables to develop the permanent deformation prediction models in 

the next section. 
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Table 3. Performance-Related Base Course Properties of Selected Base Materials for 

Model Development 

Material 

Type 
d

(kg/m3) 

w
(%) MBV pfc 

Gradation Angularity Shape Texture

Ga  G  AI SI TI 

A01 2414 5.4 7.1 13.2 0.73 10.6 2994.6 7.68 137.6 

A02 2409 5.6 6.4 12.3 0.67 9.6 3033.3 8.13 137.2 

B01 2267 6 2.1 20 0.72 10.4 2860.5 7.12 109.0 

B02 2254 6.4 2.7 21.5 0.72 10.4 2860.5 7.12 109.0 

B03 2210 7.5 2.7 21.5 0.72 10.4 2860.5 7.12 109.0 

B04 2230 4.9 2.7 21.5 0.72 10.4 2860.5 7.12 109.0 

C01 2196 7.1 5.3 11.4 0.87 14.6 2909.3 7.75 175.1 

D01 2246 6.2 16.4 12.7 0.93 10.3 2836.6 7.30 130.1 

D02 2276 6 10.6 12.3 0.93 12.7 2836.6 7.30 130.1 

E01 2185 7.9 3.1 14.3 0.90 11.3 2935.9 7.24 150.8 

E02 2110 9.4 3.1 14.3 0.90 11.3 2935.9 7.24 150.8 

E03 2120 6.4 3.1 14.3 0.90 11.3 2935.9 7.24 150.8 

F01 2206 7.4 7.0 15.5 0.85 12.7 2797.1 7.19 109.5 

F02 2233 7.1 7.6 15.8 0.85 13.1 2884.7 7.12 117.0 

G01 2335 6.5 6.8 13.6 0.88 10.8 3098.3 7.82 169.0 

G02 2249 6.5 2.8 15.0 1.02 13.1 3098.3 7.82 169.0 

H01 2291 6.3 5.0 16.1 0.89 8.3 3118.4 7.47 218.8 

H02 2240 7.8 5.0 16.1 0.89 8.3 3118.4 7.47 218.8 

H03 2180 4.8 6.1 11.2 0.89 8.3 3118.4 7.47 218.8 

I01 2092 7.7 18.5 22.8 0.75 9.9 3098.3 7.50 169.0 

 

Development of Prediction Models for Permanent Deformation Properties of UGM 

Based on the permanent deformation properties and performance-related base course properties 

determined above, multiple regression analysis is performed using JMP software to investigate 

the correlation between them [34]. As listed in Table 3, the base course properties used in the 

model development include the dry density, moisture content, aggregate gradation in terms of 

Weibull distribution parameters, MBV, pfc, and angularity, shape and texture indices. A 
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stepwise regression analysis is performed to identify the significant performance-related 

properties of the base course for predicting 0

r




,   and   in the permanent deformation models 

[35]. The analysis mixes the forward and backward stepwise regression methods. The p-value 

obtained from the t-test is used to identify the significant variables in the model. A p-value less 

than 0.05 indicates that the variable is significant at a 95 percent confidence level. Initially, all of 

the variables are inputted into the model. When running the analysis, the variables are removed 

or entered on the basis of the p-value threshold stopping rule. That is, if the p-value of the 

variable is larger than 0.25, the variable will be removed from the model, and vice versa. Finally, 

the one with largest F-test value is chosen as the best regression model. 

Table 4 presents the results produced by the JMP software. The t-ratio is a ratio of the 

departure of an estimated parameter from its notional value and its standard error. A higher 

absolute value of t-ratio corresponds to a smaller obtained p-value. Equations 13 to 15 list the 

prediction models for 0

r




,   and  , respectively. Figures 5—7 compare the permanent 

deformation properties (i.e., 0

r




,   and  ) predicted by Equations 13 through 15 against those 

determined from the RLT tests. It is shown that the predicted permanent deformation properties 

are in good agreement with those laboratory measured results. This indicates that the developed 

prediction models can accurately estimate the permanent deformation behavior of UGM. 

   

 

0 2511.78 156.40ln 9.65 2.70 225.57 ln

30.86 53.77 ln

d
r

w pfc AI

SI TI

 


     

 
    (13) 

   ln 42.83 4.56ln 0.19 0.038d w pfc            (14) 

   
 

0.29 0.52 ln 0.0058 0.0036 0.56 ln 0.037

0.148ln 0.0039

d

G

w pfc AI SI

TI

 



     

 
   (15) 
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Table 4. Results of Multiple Regression Analysis 

 Variables DF
Parameter 
Estimate 

Standard 
Error 

T- ratio P-value

Prediction Model 
of 0 / r    

 

Intercept 1 -2511.78 726.60 -3.46 0.0043 
ln( )d  1 156.40 51.87 3.02 0.0099 

w  1 9.65 1.34 7.18 <0.0001
pfc  1 2.70 0.58 -4.68 0.0004 

ln( )AI  1 225.57 102.66 2.20 0.0467 
SI  1 -30.86 8.07 -3.82 0.0021 

ln( )TI  1 -53.77 15.67 -3.43 0.0045 
Prediction Model 

of  ln    

 
 

Intercept 1 42.83 5.97 7.17 <0.0001
ln( )d  1 -4.56 0.76 -6.00 <0.0001

w  1 -0.19 0.025 -7.61 <0.0001
pfc  1 0.038 0.0066 5.76 <0.0001

Prediction Model 
of   

 

Intercept 1 0.29 1.37 0.21 0.8337 
ln( )d  1 -0.52 0.090 -5.72 <0.0001

w  1 -0.0058 0.0023 -2.58 0.024 
pfc  1 -0.0036 0.00097 -3.68 0.0031 

ln( )AI  1 0.56 0.18 3.19 0.0078 
SI  1 0.037 0.015 2.46 0.0298 

ln( )TI  1 -0.15 0.026 -5.74 <0.0001

G  1 0.0039 0.0018 2.10 0.0574 
 

 

Figure 5. Comparison of Model-predicted ε0/εr against Laboratory-determined ε0/εr 
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Figure 6. Comparison of Model-predicted ρ against Laboratory-determined ρ 

 

 

Figure 7. Comparison of Model-predicted β against Laboratory-determined β 
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 Simple indicators-based models, which are the regression models based on the simple 

indicators including, the liquid limit, plasticity index, aggregate percent of passing sieve 

No. 4, and aggregate percent of passing sieve No. 200; and  

 Pavement ME models, which are described in Equations 3—5.  

Figure 8 compares the model prediction accuracy among the above three models. The 

model-predicted permanent strains are compared against the laboratory-measured results for all 

the selected base materials. As seen from Figure 8, the performance-related properties-based 

prediction models outperform the other two types of models at the prediction accuracy. Among 

these prediction models, the current Pavement ME Design models have the lowest prediction 

accuracy. It is shown that the Pavement ME model-predicted permanent strains are much lower 

than those measured from the RLT tests. This demonstrates that the current Pavement ME 

Design software substantially underestimates the rutting that occurs in base course. 

 

Figure 8. Prediction Accuracy of Various Permanent Deformation Prediction Models 

In this study, other 4 types of base materials are selected for model validation. Table 5 

presents the measured performance-related base course properties of these base materials (i.e., 
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permanent deformation properties of base materials. Meanwhile, the RLT tests are also 

performed on these base materials. The measured permanent strains of base materials are then 

compared to those predicted by the developed models. The detailed comparison results are 

shown in Figure 9. As illustrated, the model-predicted permanent strains are comparable to those 

measured from the RLT tests. The obtained R-squared value of 0.81 indicates that the developed 

models have a desirable accuracy in the prediction of permanent deformation properties of UGM. 

    

Table 5. Performance-Related Base Course Properties of Selected Base Materials for 

Model Validation 

Material 

Type 
d

(kg/m3) 

w
(%) MBV pfc 

Gradation Angularity Shape Texture

Ga  G  AI SI TI 

J01 2174 6.7 4.1 12.4 0.75 10.2 3015.1 7.32 162.5 

J02 2192 6.9 4.5 14.1 0.77 10.3 3015.1 7.32 162.5 

K01 2321 6.2 4.5 15.3 0.85 12.6 3120.4 7.61 140.45 

K02 2345 6.0 5.7 16.4 0.82 12.8 3120.4 7.61 140.45 

 

 

Figure 9. Validation of Model Prediction Accuracy 
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Conclusion 

This study focused on the characterization and prediction of the permanent deformation 

properties of unbound granular materials (UGM) for Pavement ME Design. A comprehensive 

laboratory testing program was performed on a total of 18 types of base materials, which 

included both the repeated load triaxial tests and other performance-related indicator tests. The 

relationship was established between the permanent deformation behavior of UGMs and their 

performance-related properties. The major findings of this paper were summarized as follows. 

 The shakedown theory was used to evaluate the permanent deformation behavior of the 

selected UGM. The Werkmeister’s criteria to shakedown range boundaries were not 

suitable to the flexible base materials in Texas. New criteria were proposed to redefine 

the shakedown range boundaries, which are 5
,5000 ,3000 6.0 10p p      for Range A; 

5 4
,5000 ,30006.0 10 6.0 10p p        for Range B; and 4

,5000 ,3000 6.0 10p p      for 

Range C. These new criteria were consistent with the TxDOT’s flexible base 

specification Item-247 in terms of aggregate classification. 

 Aggregate morphological properties, such as angularity, shape, and texture indices, were 

correlated to the permanent deformation behavior of UGM. Increasing the angularity, 

texture and shape indices tends to reduce the accumulated plastic strain.  

 A series of performance-related base course properties were identified, which included 

the dry density, moisture content, aggregate gradation in terms of Weibull distribution 

parameters, methylene blue value, percent fines content, and angularity, shape and 

texture indices. These properties were then used to develop regression models to predict 

the permanent deformation properties of UGM. It was found that the developed 

performance-related properties-based prediction models were capable of accurately 

predicting the permanent deformation properties of UGM. 

 Compared to the simple indicators-based models and Pavement ME Design models, the 

performance-related properties-based model has the highest prediction accuracy. It was 

also found that the Pavement ME model-predicted permanent strains are much lower than 

those measured from the RLT tests. This demonstrated that the current Pavement ME 

Design software substantially underestimates the rutting that occurs in base course. 
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 The developed prediction models were validated by comparing the predicted and 

measured permanent strains of other four base materials. The obtained R-squared value 

of 0.81 indicated that the developed models have a desirable accuracy in the prediction of 

permanent deformation properties of UGMs.    
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