© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

Accepted Manuscript

A topological view on algebraic computation models

Eike Neumann, Arno Pauly

PII: S0885-064X(17)30076-6
DOI: http://dx.doi.org/10.1016/j.jc0.2017.08.003
Reference: YJCOM 1338

To appear in: Journal of Complexity

Received date: 4 March 2016
Accepted date: 2 August 2017

Please cite this article as: E. Neumann, A. Pauly, A topological view on algebraic computation
models, Journal of Complexity (2017), http://dx.doi.org/10.1016/j.jc0.2017.08.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jco.2017.08.003

A topological view on algebraic computation models

Eike Neumann?®, Arno Pauly®!

% Aston University, Birmingham, UK
b University of Cambridge, Cambridge, UK
¢ Birmingham University, Birmingham, UK

Abstract

We investigate the topological aspects of some algebraic computation mod-
els, in particular the BSS-model. Our results can be seen as bounds on how
different BSS-computability and computability in the sense of computable anal-
ysis can be. The framework for this is Weihrauch reducibility. As a conse-
quence of our characterizations, we establish that the solvability complexity
index is (mostly) independent of the computational model, and that there thus
is common ground in the study of non-computability between the BSS and TTE
setting.

Keywords: Weihrauch reducibility, BSS-machine, Analytic machine, Effective
DST, solvability complexity index, TTE, Computable analysis
2010 MSC: 03D78, 68Q05, 12Y05

1. Introduction

There are two major paradigms for computability on functions on the real
numbers: On the one hand, computable analysis in the tradition of GRZEGOR-
czyK [1, 2] and LACOMBE [3] as championed by WEIHRAUCH [4, 5] (see also
the equivalent approaches by POUR-EL and RICHARDS [6] or KO [7]). On the
other hand, the BSS-machines by BLuM, SHUB and SMALE [8, 9], or the very
similar real-RAM model. Incidentally, both schools claim to be in the tradition
of TURING.

Computable analysis can, to a large extent, be understood as effective topol-
ogy [10, 11] — this becomes particularly clear when one moves beyond just the
real numbers, and is interested in computability on spaces of subsets or func-
tionals. In particular, we find that the effective Borel hierarchy occupies the
position analogous to the arithmetical hierarchy in classical recursion theory;
and that incomputability of natural problems is typically a consequence of dis-

Email addresses: neumaefl@aston.ac.uk (Eike Neumann), Arno.M.Pauly@gmail.com
(Arno Pauly)
IPauly has since moved to the Université Libre de Bruxelles.

Preprint submitted to Journal of Complexity August 18, 2017

continuity. A more fine-grained view becomes possible in the framework of
Weihrauch reducibility (more below).

In contrast, the study of BSS-computability is essentially a question akin
to (logical) definability in algebraic structures. This causes the lack of a sta-
ble notion of BSS-computability on the reals: BSS-computability on the ring
(R, +, x, =) differs from BSS-computability on the unordered field (R, +, x, —, /,=
), which in turn differs from BSS-computability on the ordered field (R, +, x, —, /, <
). Taking into account as basic functions further maps such as square root or
the exponential function induces additional variants. There are, however, also
topological obstacles to being BSS-computable — and as we shall demonstrate,
these obstacles are common to all variants of BSS-machines.

Hotz and his coauthors [12, 13, 14] have introduced and studied a number
of extensions of BSS-machines (called analytic machines), which can (in var-
ious ways) make use of approximations. These additional features enable the
“computation” of even more discontinuous functions, however, there are still
topological limitations.

In the present article, we characterize the maximal degrees of discontinu-
ity for functions computable by each of the algebraic machine models in the
framework of Weihrauch reducibility. We thus continue and extend the work by
GARTNER and ZIEGLER in [15]. This allows us to differentiate between topolog-
ical and algebraic reasons for non-computability in these models. Moreover, we
can show that for sufficiently discontinuous problems the difference between the
various computational models vanishes: This can be formalized using HANSEN’s
solvability complexity index (SCI) [16, 17], which is the least number of limits
one needs in order to solve a particular problem over some basic computational
model. Our results show e.g. that for values of 2 or greater the SCI based on
the BSS-model coincides with the SCI based on the computable analysis model.

In Section 3 we characterise the computational power of generalized register
machines with LPO-tests (Proposition 10) as well as BSS-machines over the
reals with equality- and order-tests (Corollary 14). We show that their strength
is captured by the Weihrauch degree Cy of closed choice over the natural num-
bers, in the sense that any function computable by either type of machine is
Weihrauch-reducible to Cy and for each type of machine there exists a function
which is Weihrauch-equivalent to Cy and computable by that type of machine.
We furthermore show that all BSS-computable total functions are strictly below
Cn (Corollary 18 and Proposition 19) and that the strength of BSS-machines
with equality-tests but without order-tests is characterised by the strictly weaker
Weihrauch degree LPO* (Proposition 20).

In Section 4 we study the BSS-halting problem from the point of view of
Weihrauch-reducibility. We show in particular that the halting problem of a
machine over the signature (R, 4, =, <) cannot be solved by any machine over a
signature which expands (R, 4, =, <) by continuous operations only. Therefore,
the inability of BSS-machines to solve their halting problem already holds for
topological reasons.

In Section 5 we prepare the discussion of analytic machines and the solv-
ability complexity index by some more technical results on Weihrauch degrees.

We introduce the Weihrauch degree of the problem Sort of “sorting” an infinite
binary sequence. We discuss its position in the Weihrauch lattice in detail and
prove in particular that Sort™ <y Sort™ " (Corollary 27) and that we have the
absorption lim * lim #Sort =y lim *lim (Corollary 32).

In Section 6 we characterise the strength of analytic machines. We show that
the computational power of analytic machines is characterised by the Weihrauch
degree Sort” in the same way as the power of BSS-machines is characterised by
Cy (Observation 35 and Corollary 39).

In Section 7 we combine the results of the two previous sections to show that
the SCI of an uncomputable function over the BSS-model is the same as the
SCI over the computable analysis model as soon as the SCI over either model
is greater than or equal to 2 (Theorem 44).

2. Background on the models and Weihrauch reducibility

2.1. Algebraic computation models

We introduce the notion of a register machine over some algebraic structure,
following GASSNER [18, 19, 20] (1997+) and TAVANA and WEIHRAUCH (2011)
[21]. Other approaches to computation over algebraic structures were put forth
e.g. by TUCKER and ZUCKER (2000) [22] and HEMMERLING (1998) [23]. For
this consider some algebraic structure 2l = (A4, f1, fo,...,T1,Ts,...), where A
is a set, each f; is a (partial) function of type f; :C A% — A, and each Tj is a
relation of type T; C A%. In the usual examples, the signatures will be finite,
but this is not essential for our considerations.

Generalized register machines will compute functions of type g : A* — A*.
They have registers (R;);en holding elements of A, and index registers (I,)nen
holding natural numbers. Programs are finite lists of commands, consisting of:

e standard register machine operations on the index registers
e copying the value of the register R, indexed by I; into Ry,

e applying some f; to the values contained in Ry,..., Rk, and writing the
result into Ry

e branching to a line in the program depending on the value of 7; on the
values contained in Ry,..., Ry,

i

e HALT, in which case the values currently in the registers Ry,..., Ry,
constitute the output

Initially, the register Iy contains the length of the input, all other I,, start
at 0. The input is in Ry,..., R,, all other R; contain some fixed value ag € A.
If the program either fails to halt on some input, or invokes a partial function
on some values outside its domain, the computed function is undefined on these
values. We call a (partial) function g :C A* — A* A-computable, if there is a
generalized register machine program computing it.

In analogy to the situation in computable analysis, we shall call sections of 2I-
computable function A-continuous. This boils down to programs being allowed
additional assignment operations R; := a for any element a € A. These are
usually included in the algebraic models, but have the undesirable consequence
of there being more than countably many programs, if A itself is uncountable.

The primary example of a structure will be (R,+, x, <) (yielding BSS-
computability). Secondary examples include (R, +,=) (additive machines with
equality) and other combinations of continuous functions and tests in {=, <}.

2.2. Analytic machines

The analytic machines introduced in [12, 13] enhance BSS-machines by
means to approximate functions. More generally, if we consider the algebraic
structure 2 to also carry a metric, we can define functions computable by
strongly 2-analytic machines and functions computable by weakly 2(-analytic
machines in one of two equivalent ways: Either a generalized register machine
receives an additional input n € N; thus computes a function G :C N x A* —
A* which is then considered as weakly approximating g :C A* — A* iff
Va € dom(g) lim,—o G(n,a) = g(a), and as strongly approximating g iff
Va € dom(g) Vn € N d(G(n,a),g(a)) < 27™. Alternatively there is no ex-
tra input, and the machine keeps running, and produces an infinite sequence
p € A¥ (plus some information on the length of the desired output). The limit
conditions are the same.

We shall speak just of “functions computable by a strongly (weakly) analytic
machine” if the underlying structure is (R, +, X, <). As functions computable
by an analytic machine receive their input exactly, but produce their output in
an approximative fashion, they are generally not closed under composition.

Further variants of analytic machines have been considered, which are not
relevant for the present paper though. We refer to [24] by ZIEGLER for an
excellent discussion.

2.3. Type-2 Turing machines

The fundamental model for computable analysis/the TTE-framework [5] are
the Type-2 Turing machines. Structurally, these do not differ from ordinary
Turing machines with a designated write-once only output tape. What differs is
that instead of halting and thus producing a finite output, the machine continues
to run for ever. As long as it keeps writing on the output tape, this produces an
infinite sequence in the limit. While some might object to the use of infinitely
long computations, this model is realistic in as far as anything written on the
output tape at some finite time constitutes a prefix to the infinite output (as each
cell in the output tape can be changed just once). Thus, this model inherently
captures approximating computations — and its intricate connection to topology
is perhaps unsurprising. In particular, we find that any computable function
is automatically continuous w.r.t. the standard topology on {0, 1} — and vice
versa, every continuous function becomes computable relative to some oracle.

Type-2 machines natively provide us with a notion of computability on
{0,13N. This is then transferred to the spaces of actual interest by means

of a representation. Our presentation follows [11], to which we refer for more
details. A represented space is a pair X = (X,0x) of a set X and a partial
surjection dx :C {0,1} — X. A (multi-valued) function between represented
spaces is a partial relation f C X x Y. We write f :C X = Y for these; here
C denotes (potential) partiality, and =% (potential) multi-valuedness. We write
f@)={yeY | (x,y) € f} and dom(f) :={x € X | Ty € f(x)}. We recall that
composition of multi-valued functions is defined via dom(go f) := {« € dom(f) |
f(z) Cdom(g)} and z € (go f)(x) for x € dom(go f), if Iy € f(x) z € g(y).

For f:C X =Y and F :C {0,1} — {0, 1}, we call F a realizer of f (nota-
tion F' = f), iff §y (F(p)) € f(0x(p)) for all p € dom(fdx). A function between
represented spaces is called computable (continuous), iff it has a computable
(continuous) realizer. Note that, unlike in the case of algebraic models, the
behaviour of a Type-2 machine which computes a partial function is completely
unconstrained on inputs outside of the function’s domain.

{0, 1% —£ 5 10,1}

Jr(sx J,(SY
x I v

Figure 1: The notion of a realizer

As we are primarily interested in computability on R and R*, we shall
introduce the standard representations for these spaces. Fix some standard
enumeration vg : N — Q. Then let p(p) = = if p = 0™010™1... and Vi €
N d(z,vg(n;)) < 27% In other words, a name for a real number is a sequence
of rationals converging to it with some prescribed speed. We thus understand R
to be the represented space (R, p). As we can form products and coproducts of
represented spaces, we automatically obtain a representation for R* =[], . R".

We will encounter decision problems, and thus need spaces of truth-values.
For this, we use both the space {0, 1} represented by 2 defined by d2(p) = p(0),
as well as Sierpinski space S. The latter has the underlying set {1, T} and
the representation ds with ds(0“) = L and ds(p) = T iff p # 0. As usual,
we identify 0 with L and 1 with T. The space {0,1} captures decidability,
and S captures semi-decidability. The usual boolean connectives A and V are
computable on both spaces. Negation —: {0,1} — {0, 1} is computable, whereas
- :S — S is not computable.

We also make use of the represented space N, represented via 5§1(”) =
{0™1%}. Any represented space naturally comes with a topology, namely the
final topology along the representation, where the domain of the representation
just inherits the subspace topology of the usual complete metric on {0,1}".
For N, this is the discrete topology, for R the usual Euclidean topology. Via
the utm-theorem, we obtain the represented space O(X) of the open subsets
of the represented space X in a canonical manner, by identifying them with
continuous functions from X to S. By considering complements instead we

obtain a representation of the space A(X). Here, the space A(X) is the space
of closed subsets represented with negative information, or equipped with the
upper Fell topology. A representation via positive information is obtained by
identifying a closed set A C X with the open set of all open sets which intersect
A. The corresponding represented space is denoted by V(X) and called the
space of overt subsets of X. We only use the special cases O(N) and A(N) here
though. One may consider O(N) to be represented by d4: {0, 1} — O(N) with
n € §(p) iff 017110 is a subword of p; and thus A(N) by ¢: {0, 1} — A(N) with
n € 9 (p) iff 017710 is not a subword of p. Note that the computable points of
O(N) are precisely the computably enumerable sets, and the computable points
of A(N) are the co-c.e. sets.

2.4. Weihrauch reducibility

Weihrauch reducibility is a preorder on multivalued functions between rep-
resented spaces, and serves as a framework for comparing incomputability in the
Type-2 setting, similar to the role of many-one or Turing reductions in classical
recursion theory. We refer to [25] for a more detailed introduction, and a survey
of known results.

Definition 1 (Weihrauch reducibility). Let f,g be multi-valued functions on
represented spaces. Then f is said to be Weihrauch reducible to g, in symbols
f <w g, if there are computable functions K, H :C {0,1} — {0,1}" such
that K{id, GH) - f for all G I g. Accordingly, f is said to be continuously
Weihrauch reducible to g, in symbols f < g, if there exist continuous functions
K and H satisfying this condition.

The relation <y is reflexive and transitive. We use =w to denote equiva-
lence regarding <w, and by <w we denote strict reducibility. By 20 we refer
to the partially ordered set of equivalence classes. As shown in [26, 27], 20
is a distributive lattice, and also the usual product operation on multivalued
function induces an operation x on 2J. The algebraic structure on 2J has been
investigated in further detail in [28, 29].

There are two relevant unary operations defined on 20, both happen to
be closure operators. The operation * was introduced in [26, 30] by setting
fO = idyw, fF = f x f" and then f*(n,z) := f"(x). It corresponds to
making any finite number of parallel uses of f available. Similarly, the paral-
lelization operation from [27, 31] makes countably many parallel uses available
by f(zo,21,22,...) == (f(z0), f(z1), f(22),...).

We will make use of an operation * defined on 2J that captures aspects of
function composition. Following [32, 33], let f x g := max<,{foogo | f =w
foANg =w go}. We understand that the quantification is running over all
suitable functions fy, go with matching types for the function composition. It
is not obvious that this maximum always exists, this is shown in [29] using
an explicit construction for f % g. Like function composition, % is associative
but generally not commutative. We use * to introduce iterated composition by
setting f(©) := idyw and fF(H1) = f(0) & f.

All computable multivalued functions with a computable point in their do-
main are Weihrauch equivalent, this degree is denoted by 1.

An important source for examples of Weihrauch degrees that are relevant
for the classification of theorems are the closed choice principles studied in
e.g. [31, 34]:

Definition 2. Given a represented space X, the associated closed choice prin-
ciple Cx is the partial multivalued function Cx :C A(X) = X mapping a
non-empty closed set to an arbitrary point in it.

The Weihrauch degree corresponding to Cy has received significant atten-
tion, e.g. in [31, 34, 35, 36, 37, 38, 39, 40, 41]. In particular, as shown in [42], a
function between computable Polish spaces is Weihrauch reducible to Cy iff it
is piecewise computable iff it is effectively AJ-measurable.

The second standard Weihrauch degree very relevant for our investigation
will be lim, with its representative lim :C NN — NN defined via lim(p)(n) =
lim; o p((n,i)). It was shown in [43] that lim is Weihrauch-complete for 9-
measurable functions, and that, more generally, lim™ is Weihrauch-complete
for 30 ;-measurable function. This line of research was continued in [44].

The third standard Weihrauch degree we will refer to is LPO, which has the
eponymous representative LPO : {0, 1} — {0, 1} mapping 0“ to 1 and p # 0%
to 0. We also find id : S — {0, 1} in this class. Furthermore, =0: R — {0, 1},
=:RxR — {0,1} and < : RxR — {0, 1} are members of the Weihrauch degree
LPO. In the context of computable analysis the degree was first introduced and
named as such in [45], based on earlier usage in constructive mathematics [46].

For our purposes, the following representatives and properties of the degree
Cy are also relevant:

Lemma 3 ([40]). The following are Weihrauch equivalent:

Cy, that is closed choice on the natural numbers.

UCl;, defined via UCy = (Cn) |{ac.a)||4|=1}-

min :C A(N) — N defined on the non-empty closed subsets of N.

maxp :C O(N) — N defined on the non-empty bounded open subsets of
N.

maxyy :C NY — N defined by maxyy(p) = max{p(i) | i € N}.

6. Bound :C O(N) = N, where n € Bound(U) iff Vim € U n > m.

- =

o

Lemma 4 ([32]). The following are Weihrauch equivalent:
1. Cy

2. lima :C€ RY — R, where lima maps an eventually constant sequence to
its limit
Lemma 5 ([36, 35]). 1. For f:X — {0,...,n} we have Cy £w f.
2. LPO <w LPO* <w Cn

Lemma 6 ([34]). 1. Cy*Cy =w Cy

2.5. On the difference between algebraic and topological models of computation

PENROSE [47] posed and made popular the question whether the Mandel-
brot set is computable — albeit without specifying any formal definition of com-
putable for this question. In the BSS-model, a negative answer was readily
obtained in [9]. BRATTKA [48], however, argued that this result just reflects
that the Mandelbrot set is not an algebraic object, without being meaningful
for computability as naively understood: A very similar proof applies also to
the epigraph of the exponential function — which, as many? would agree, ought
to be computable.(?)

The usual focal point for disagreement between the two communities, how-
ever, is not about functions computable in the Type-2 sense but non-computable
in the BSS-sense, but vice versa. As is commonly understood, and will be proven
formally below, this boils down to equality (or any other non-trivial property
of real numbers) being decidable in the BSS-model. BRATTKA and HERTLING
[51] proposed the feasible real RAM’s, a variation on the BSS-model that rather
than deterministic tests can only perform non-deterministic tests that may give
a wrong answer for very close numbers. The functions approximable by a feasi-
ble real RAM are precisely those computable in the Type-2 sense; i.e. allowing
approximation and removing exact tests is precisely what is needed to move
from BSS-computability to Type-2 computability.

The complexity of (semi)decidable sets in the two models was compared
by ZHoNG [52], and BoLDI and VIGNA [53]. In [52] it is proved that every
TTE-semi-decidable set is BSS semi-decidable, and a criterion is given under
which the converse holds true. In [53] it is shown amongst other things that
if an open set U € O(R™) is BSS decidable with constants ¢y, ..., ¢,, then the
Turing degree of some standard name of U is below the jump of the degrees
of the binary expansion of the constants. Furthermore, a particular set U is
constructed for which the degree of every standard name of U is above the
jump of the degrees of the binary expansion of the constants. It is also shown
that the halting set of any BSS machine with constants c1, ..., ¢, is computably
(Turing-)overt relative to the constants.

We can translate some of their results into our parlance. Let OD denote
the space of open subsets of R* that are decidable by a BSS-machine using
constants, represented in the obvious way by a Goédel-number of the machine
together with names for the constants. Let SD denote the space of Halting sets
of BSS-machines using constants, again represented in the obvious way. Then:

Proposition 7. 1. id: O(R*) — SD is computable.

2. lim <w (id : OD — O(R*)).
3. There is some g :C NN = N such that (id : OD — O(R*)) <w g * lim.

?Including PENROSE himself, see e.g. [47, Figure 4.5, p. 167].

3The question whether the (distance function of the) Mandelbrot set is computable in the
computable analysis sense is still open — as shown by HERTLING [49], this would be implied
by the hyperbolicity conjecture. See the book [50] for a general discussion of Julia sets and
computability.

4. There is some g :C NN = N such that (7: SD — V(R*)) <w g, where
denotes the closure operator.

Proof. 1. This is the uniform version of [52, Theorem 3.1].
2. This follows by noting that the proof of [63, Theorem 10] is completely
uniform.
3. This follows from [53, Theorem 7].
4. This is the statement of [53, Corollary 6].

O

While making these classifications precise, and attending to the numerous
remaining questions on the complexity of sets in terms of Weihrauch reducibility
seems like an interesting endeavour, we leave it to future work.

In [54], the notion of semi-decidability in the TTE model is related to -
definability over the reals without equality: It is shown that the ¥-definable sets
without equality are precisely the semi-decidable sets in the TTE-model. The
main result of the paper is that there is no effective procedure which takes as
input a finite formula that defines an open set with equality and takes it to a
formula that defines the same open set without equality.

2.6. Relativization

Prima facie, several of our most general results might look unsatisfactory
to the reader coming from the algebraic computation model side: We restrict
our operations to be computable, hence presuppose the Type-2 notion of com-
putability, and disallow the use of arbitrary constants that is customary for
BSS-machines. These issues can be resolved directly, using the technique of
relativization from classical recursion theory. The idea here is that almost all
computability-theoretic arguments remain true relative to some arbitrary, but
fixed oracle € {0, 1}V, This is of crucial importance for us due to the following:

Fact 8. A function is continuous iff it is computable relative to some oracle.

All of our proofs relativize. Thus, for each of our results replacing each
instance of computable by continuous again yields a true statement. Moreover,
for the relativized version of a statement about an algebraic computation model,
it does not change anything to allow arbitrary constants.

3. The complexity of finitely many tests

3.1. Generalized register machines with LPO-tests

As explained above, the crucial distinguishing feature giving the algebraic
computation models additional power is the ability to make finitely many tests,
usually either equality or order. Both examples are Weihrauch equivalent to
LPO. Thus we are lead to the problem of classifying the computational power
inherent in being allowed to make finitely many uses of LPO. Note that we are

not required to state any bounds in advance (which would just yield LPO*),
but simply have to cease making additional queries to LPO eventually.

We can formalize this using the generalized register machines: We allow all
computable functions on {0, 1} as functions, and LPO as test*.

Definition 9. Let LPO® :C N x ({0, 1}Y)* — ({0,1}Y)* take as input a Godel-
number of some generalized register machine M on {0,1} with computable
functions (specified as part of the Godel-number) and LPO-tests, as well as
some input (po,...,pn) € ({0,1})* for such a machine. The output of LPO®
is whatever M would output on input (po,...,pn).

Of course, the preceding definition makes sense with some arbitrary multi-
valued function f in place of LPO, and would give rise to an operation ¢ on
the Weihrauch degrees. This operation is related to the generalized Weihrauch
reductions proposed by HIRSCHFELDT and JOCKUSCH in [55, 56]. While a de-
tailed investigation of ¢ seems highly desirable, it is beyond the scope of the
present paper and thus relegated to future work.

Proposition 10. Cy =w LPO°.

Proof. maxyy <w LPO°® We describe a generalized register machine program
using computable functions and LPO that solves maxyx. Given p € NV
and n € N, we can compute some p,, € {0, 1} such that p,, # 0N < Ji €
Np(i) > n. Starting with ¢ = 0, we simply test LPO(p;). If yes, we output
7 and terminate. Else we continue with ¢ := 4 + 1.

LPO° <w Cy Consider some generalized register machine with computable
functions and LPO-tests. Each computation path of the machine corre-
sponding to some valid input is finite, in particular, uses LPO only finitely
many times. We encode the results of the LPO-tests along such a finite
path by a sequence of numbers aq,...,a, in the following way: If the
result of the i*" test is 1, we put a; = 0. If it is 0, we put a; = ¢+ 1,
where c¢ is a “precision parameter”, intended to represent a bound on the
occurrence of the first 1 in the input to LPO. Using a standard tupling
function we can encode the sequence ay, ..., a,, into a single natural num-
ber {(aj,...,an). Furthermore, we can arrange that every natural number
encodes such a tuple.

Given a natural number (aj,...,a,) which encodes the results of the

LPO-tests along a finite path, we can check if the choices are infeasible.
The number is rejected in three cases:

1. If the path does not end in a leaf.
2. If there exists 1 < i < m such that a; = 0 but the input to the ith
LPO-test is non-zero.

4 Alternatively, we could have used the rather cumbersome Oracle-Type-Two machines
suggested in [39].

10

3. If a; = ¢+ 1 but the input to the i** LPO-test starts with more than
C zeroes.

We can effectively enumerate all numbers that are rejected. This amounts
to being able to compute the set NR € A(N) of numbers that are never
rejected. We apply Cy to this set to pick a number which is never rejected,
which allows us to simulate the computation of the register machine in an

otherwise computable fashion.
O

On a side note, let us consider two more computational models: First, the
concept of finitely revising computation presented in [57] by ZIEGLER: These
are Type-2 machines equipped with the additional power to reset their out-
put finitely many times. It is easy to see that being computable by a finitely
revising machine is equivalent to being Weihrauch-reducible to lima. Second,
non-deterministic Type-2 computation, also introduced by ZIEGLER [58] and
fleshed out further by BRATTKA, DE BRECHT and P. in [34]: Here the machine
may guess an element of an advice space, and either proceed to successfully com-
pute a solution, or reject the guess at a finite stage (and there must be a chance
of the former). As shown in [34], being computable by a non-deterministic ma-
chine with advice space Z is equivalent to being Weihrauch reducible to Cz. We
thus arrive at the following:

Theorem 11. The following computational models are equivalent in the sense
that they yield the same class of computable functions:

1. Generalized register machines with computable functions and LPO as test.
2. Finitely revising machines.
3. Non-deterministic machines with advice space N.

We could equivalently have used generalized register machines over R, with
partial computable functions over R and = as test. As BSS-machines are a
restricted case of these, it is clear that simulating a BSS-machine is no harder
than solving LPO°.

3.2. BSS-machines over the reals

So far we have only obtained an upper bound for the power of BSS-machines
in the Weihrauch lattice. For a lower bound, we require some further rep-
resentatives of the Weihrauch degree of Cy. Let QS denote the set of non-
negative rational numbers understood as a subspace of the represented space
R, i.e. represented by the appropriate post-restriction of p. In contrast, let
Qi be the discrete space of non-negative rational numbers, represented by
?Q(Okl]()”loml“’) = 47 Some of the following have already been shown in
36, 35].

Proposition 12. The following are Weihrauch equivalent:

1. Cx.

11

2. maxyy :C NN 5 N.

3. 1dg? 1 Q5 — Q4.

4. Numerator : Q¢ — N, where Numerator(q) = n iff Im € N ged(n,m) =1
and [q| = .

5. Denominator : Q% = N, where Denominator(q) = m iff In € N ged(n,m) =
Land |¢| = Z2.(°)

Proof. Cny <w maxyv Lemma 3.

maxyy <w Denominator W.l.o.g., assume that the input p to maxyw is mono-
tone and that p(0) = 0. We proceed to compute a non-negative real
number x which will happen to be rational (i.e. we compute = as an ele-
ment of Q5). Our initial approximation to x is zg = 0. If p(n+1) = p(n),
then ©,11 = zp. If p(n+1) > p(n), then we search for some k,! € N such
that d (Niﬂ%m,xn) < 277~! _ which are guaranteed to exist. Then
we set Tp41 = W%&iﬂrm As the range of p is finite, this sequence will
stabilize eventually, and by construction, converges quickly to its rational
limit,.
Applying Denominator to z will give us some 2{Fm2xw (P)) ¢ N. By design
of {,), we can extract maxyw(p) from this value.

maxyy <w Numerator Very similar to the reduction maxyy <w Denominator.
On monotone input p with p(0) = 0, we start with the approximation
xzg = 1. If p(n+1) = p(n), then z,+1 = x,. Otherwise, we search for

olp(n+1),k) olp(n+1).k)
k,l € N such that d (T TTEIFT

for these values. As the range of p is finite, this sequence will stabilize
eventually, and by construction, converges quickly to its rational limit x.

Ty) < 27771 and set x4 =

Applying Numerator to z will give us some 2Fm2x(P)) ¢ N. By design
of (,), we can extract maxy~(p) from this value.

Denominator <w id('a;j Trivial.
Numerator <w ida’ii Trivial.

idaf <w Cpn Given a non-negative real number z € R, we can compute the
closed set {(n,m) € N | maz = n,m # 0} € ANN). If x € Q% this set is
non-empty, so we can use Cy to extract an element, which allows us to

; d

obtain z € Q.
O

Proposition 13. idai is computable by a machine over (R, +,=,1).

5This map is multivalued, as any positive integer is a valid output on input 0. Restricting
the map to positive inputs does not change the Weihrauch degree.

12

Proof. Let = be the input. We can test if x = x4z, in which case we know that
x = 0. If this is not the case we compute for all pairs n,m € N with n,m > 1,
the numbers mz and n by repeated addition and test them for equality. If
they are equal, then we have found a valid output in the pair (n,m), if not, we
consider the next pair. O

Corollary 14. For every algebraic computation model over every structure
expanding (R, +,=,1) not exceeding the computable functions and {=, <} as
tests, we find that:

e Every partial function computable in that model is Weihrauch reducible
to CN-

e There is a (partial) function computable in that model that is Weihrauch
equivalent to Cy.

Thus, the computational power of algebraic computation models is, from the
perspective of topological computation models, characterized by the Weihrauch
degree of Cy.

3.8. BSS-machines which compute total functions

It should be pointed out though that the characterisation in Corollary 14
relies crucially on considering partial functions, too. For total functions, we
obtain instead a family of upper bounds as follows:

Definition 15 ([59]). Let R C N x N be a well-founded partial order. We
define £x :C (N x NY)N — NN as follows: A sequence (n;, x;);eny where n; € N
and z; € NV is in the domain of £r, if z; # ;41 = (niy1,n;) € R and
T; = Tiy1 = n; = ni+1. As R is well-founded, these conditions imply that the
sequence stabilizes eventually, and £g returns the corresponding limit x .

Theorem 16 (Computable Hausdorff-Kuratowski theorem [60]). For a total
function f :R* — R* the following are equivalent:

1. f <w Cn.
2. There exists some computable R such that f <w £g.

Let RC Nx Nand P C N x N be two well-founded partial orders such
that there exists an order-preserving map f from R to P, i.e. some f: N — N
such that if (n,m) € R, then (f(n), f(m)) € P. It follows that £ <§, £p.
Conversely, results from [61, 59] show that this implication indeed reverses.
Consider well-founded partial orders up to the equivalence notion induced by
the existence of order-preserving maps in both directions is one construction
of the countable ordinals — and as shown in [60], it can indeed be seen as a
canonical one. Thus, for any countable ordinal a we can associate a continuous
Weihrauch degree £, as the degree of £g for any/every well-founded partial
order R with rank a.

Proposition 17 ([59]). For countable ordinals o < 8 we have £, <G £ <$y
Cn.

13

Corollary 18. Let f : R* — R* be a total BSS-computable function. Then
there is some countable ordinal o with f <g £a.

Proposition 19. For each countable successor ordinal v+ 1 there is some BSS-
computable total function fay1 : [0,1] — N (using constants) with fay1 >$y
Lot1-

Proof. We proceed by induction over a+ 1. The claim for a = 0 is witnessed by
LPO. Tt suffices to show that if the claim is true (uniformly) for («;);en with
a; < 41, then it is true for (sup;ey ;) +1=: a4+ L.

We define fo41 :[0,1] — N piecewise. If z € [ﬁ, 5] for some i € N, then
fat1(z) == (@ + 1, fo,+1(2i(2i + 1)z — 2i)). Otherwise, fot+1(x) := (0,0). If the
fa;+1 are either uniformly (in) BSS-computable, or, alternatively, coded into
a real parameter, this clearly yields a BSS-computable function.

Claim: £,41 <{ fa+1

We start writing a name for := 0 while reading the input to £,41. If the
first parameter ever changes, then it will move to some n; such that the lower
cone of n; has some height o/ +1 < . In particular, there must be some j € N
with o +1 < a; + 1. The suitable pairs (i,7) can be coded into a single real
parameter. There will be some k > j such that |] is still within the
scope of the current approximation to 0.

The tail of the input to £,41 at the current moment is now also a valid
input to £4,+1. Thus, we can continue to use the reduction £4, 11 <% fa,+1,
with fa, 11 scaled down into the interval [5h, 57].

To interpret the output of f,y1, the only difference is whether it is of the
form (0,0) or (i + 1,n). In the former case, the input sequence to £,41 is
constant, and we just read off the answer. In the latter case, there is at least
one change — so we can search for it, and then split n := (i’,n’) to see whether
there is a further change, and so on.

_1 1
2k+1° 2k

O

3.4. BSS-machines without order tests

If we consider total functions, and drop the order test from the signature,
the maximum Weihrauch degree reachable is even lower. This is caused by
two properties of algebraic sets that are not shared with semi-algebraic sets:
every descending chain of algebraic sets eventually stabilises and every proper
algebraic subset of an irreducible variety V' is nowhere dense. These properties
will cause any computation tree of an algorithm which computes a total function
to be finite.

Proposition 20. If f : R* — R* is BSS-computable over (R,+, X, =), then
f <§& LPO”. There is a function g : R* — R* that is BSS-computable over
(R, +, x,=) and satisfies g =w LPO™.

Proof. Let f: R* — R* be BSS-computable over (R, +, x,=). Fix some BSS-
machine computing f. For a fixed input dimension n, consider the computation
tree of that machine. We claim that the tree is finite. It then follows that

14

f <& LPO*, for we can bound the number of equality tests we need to simulate
the machine in terms of the size of the input tuple alone.

If the computation tree is infinite it has an infinite path by Kénig’s lemma.
Each node on the path corresponds to an algebraic set, and the outgoing edge
from each node is labelled “€” or “¢”, depending on whether we branch on the
condition that the input is in the algebraic set or outside of it. Since the Zariski
topology on R"” is Noetherian, there are only finitely many edges labelled with
“€” in a non-trivial way. By this we mean the following: if we number the nodes
on the path with numbers 0,1,2,... then there exists a number N € N such
that for any node v on the path which is labelled with a number greater than N
and whose outgoing edge on the path is labelled with “€”, the computation on
any input will branch to “€” if it reaches this node. Let V' be the algebraic set
which is defined by the nodes with number smaller than IV whose outgoing edge
on the path is labelled with “€”. Let (V},), be the sequence of algebraic sets
which correspond to the nodes whose outgoing edge is labelled with “¢”. Our
goal is to show that there exists x € R” with z € V and = ¢ V,, for all n € N.
This means that x passes all tests on the infinite branch (since all tests which do
not correspond to V' or one of the V,,’s are passed automatically), which means
that the machine runs forever on input z, contradicting the totality of f. The
set V' is a finite union of irreducible algebraic sets, at least one of which is not
contained in any of the V,,’s. We can hence assume without loss of generality
that V is itself an irreducible algebraic variety. The sets V,, NV are (potentially
empty) proper algebraic subsets of V' and thus have dense open complement in
the Euclidean topology on V. By the Baire category theorem, their countable
union has dense open complement in V. In particular, this complement contains
a point. This finishes the proof.

For the example g, consider the function g : R* — N mapping an input tuple
(x1,...,2y) to the set |[{i € {1,...,n} | ; = 0}|. This function is obviously
BSS-computable over (R, +, x,=), and easily seen to be Weihrauch-equivalent
to LPO™. O

4. On the BSS-Halting problems

Very much in analogy to the (classical) Halting problem and the investigation
of the Turing degrees below it (Post’s problem), the BSS-Halting problems are
easily seen to be undecidable by the corresponding BSS-machines, and there are
rich hierarchies to be found below them [62, 63]. Very much unlike the classical
setting, there is a natural undecidable set strictly below the Halting problem,
namely Q.

Let H C N x R* be the Halting problem for BSS-machines having access to
+, =, 1 and potentially additional computable operations and/or < as test®.

S0Of course, changing the signature changes the set H, but as the proof of Theorem 21 is
independent of these details, they do not change the Weihrauch degree of xp.

15

This means that (n, zo,...,Zm) € Hiff n is a Gédel-number for a BSS-machine
that on input (xo, ..., z,) will eventually halt.

Let xg : R — {0,1} be the characteristic function of Q (into the discrete
space {0,1}), and xg : N x R* — {0,1} be the characteristic function of H.
Finally, let isInfinite : {0, 1} — {0,1} be defined via isInfinite(p) = 1 iff [{n €
N{p(n) = 1}| = oco.

Theorem 21. The following are Weihrauch-equivalent:

1. xo:R—{0,1}

2. xm:NxR*— {0,1}

3. isnfinite : {0, 1} — {0,1}

Proof. xqo <w xm Note that xqo =w Xq,, where Q denotes the set of non-
negative rational numbers. Now, xo, <w Xmu is easily established: we just
combine the original input with the program for idai1 from Proposition
13. This will halt iff the input is rational.

xu <w islnfinite Given the Godel number of a BSS-machine M and a standard
name p of a point x € R*, we construct a sequence (A,), of Type-2
algorithms as follows: The n'® algorithm simulates the machine M on
input p until it reaches an equality- or order-test. It then tries to show
that the result of the test is “false” with precision parameter n (cf. the
proof of Proposition 10). Otherwise it assumes that the result of the test
is “true” and continues to simulate M in this manner. If n < m, we say
that A,, refutes A, within [steps if A,, and A,, take different branches
on the equality- or order-tests within [steps of computation. This defines
a relation between the numbers m, n, and [which in general depends on
p (and not just on z). Note that this relation is decidable relative to p.

Now consider the following Type-2 algorithm: Assign a variable n = 0.
For all pairs (m, 1) € N? do the following: Run the machine A,, for [steps.
If it doesn’t halt within those [steps, write a 1 on the output tape. Test
if A, refutes A, within [steps. If so, put n = m and write a 1 on the
output tape. Finally, write a 0 on the output tape, and continue looping.

We claim that the sequence this algorithm produces contains finitely many
1s if and only if M halts on input z. Assume that the sequence contains
finitely many 1s. Then there exists n € N such that A,, halts within a finite
number of steps and no A,, refutes A,, in any finite number of steps. But
this means that A,, correctly simulates M on input z, for if it erroneously
decides a test to be “true”, it will eventually be refuted. Hence, M halts
on input z within a finite number of steps. Conversely, if M halts on input
x, then it makes only finitely many equality- or order-tests before halting.
Hence for sufficiently large n the algorithm A,, correctly simulates M on
input x, and thus is never refuted and halts after finitely many steps. It
follows that our algorithm only writes finitely many 1s on the output tape.

Hence we can decide if M halts on input x by applying isInfinite to the
output of the algorithm.

16

isInfinite <yy xo Compute the real number with the decimal expansion
0.a10a200a3000a40000. . .

where a; is the ith bit of the input. This number is rational, i.e. has a
periodic decimal expansion, if and only if the a; are eventually 0.

O

This shows that the role of (local) cardinality for BSS-reducibility demon-
strated in [64] depends on the set of operations available in the reduction. Fur-
ther, note that isInfinite f%v Cy is easily seen: While Cy is Ag—measurable
(cf. e.g. [42]), isInfinite is the characteristic function of a I13-complete set, thus
not even ¥9-measurable. By [43], levels of Borel measurability are preserved un-
der Weihrauch reductions. Thus, the inability of BSS-machines to decide their
Halting problem already holds for topological reasons (in particular, adding
more continuous operations never allows a machine to solve a more restricted
Halting problem).

As a side note, we shall point out that isInfinite also is the degree of deciding
whether a Type-2 computable function is well-defined on some particular input:

Proposition 22. Let isDefined : Nx {0, 1} — {0, 1} be defined via isDefined(n, p) =
1 iff the n-th Type-2 machine produces some ¢ € {0, 1} on input p. Then:

isDefined =y isInfinite

Proof. Let s be an index for the Type-2 machine that copies each 1 from the
input to the output, and skips all Os. Then isInfinite(p) = isDefined(s, p).

For the other direction, note that we can simulate the n-th Type-2 machine
while writing 0s. Whenever the machine outputs something, we write a 1.
Applying isInfinite to the output produces an answer for isDefined. O

5. The Weihrauch degree of sorting and other problems

In this section we will investigate some Weihrauch degrees, in particular the
degree of sorting some p € {0,1}Y by order. This degree will turn out to be
crucial in characterizing the power of strongly analytic machines later.

Let a = (an)nen be a computable, infinite, repetition-free and dense sequence
in the complete computable metric space X. Let Type, : X — [0, 1] be defined
via Type,(ay,) = 27" and Type,(z) = 0 if = ¢ range(a).

Let Sort : {0,1}N — {0,1}" be defined via Sort(p) = 0"1% iff p contains
exactly n times the bit 0, and Sort(p) = 0 iff p contains infinitely many Os.

Theorem 23. Sort =y Type, for any a.

Proof. Type, <w Sort

Let z be the input to Type,. Start testing if z = ap. While this is possible,
write 1’s on the input to Sort. If = # ag is ever proven, write a single 0 and
proceed to test if x = a; instead, while again writing 1’s. Repeat indefinitely.

17

The outer reduction witness is given by computable K :C {0,1}N x {0, 1} —
[0, 1] with K(p,0™1¥) = 27" and K(p,0¥) = 0.

Sort <w Type,

Aslong as we find only 1’s in the input to Sort, start writing ag as the input x
to Type,. If a 0 is read (at time t), we have specified = by fixing z € B(ag,27").
As the (an)nen are dense, we can compute an injective function f : N — N
such that (as(,))nen ranges over all a,, in B(ao, 27%) (and we may assume that
f(0) = 0). We proceed to write approximations to a (1) while we read 1’s on the
input to Sort. If the next 0 is read, we again compute a suitable subsequence
and switch our approximations to the next element, and so on.

Given the output of Type,, we can start by deciding whether it is 1 or not.
If it is 1, the output of Sort must be 1¥. If not, then the input to Sort must
contain some 0, and we can search until we find the first one at position t.
Knowing ¢t means we can recover the computable function f constructed in the
inner reduction witness. Then we test whether the output of Type, is 2~f O 1f
so0, the output of Sort is 01“. If not, there is a second 0 somewhere in the input
at time t/, etc. O

Let isFinites : {0,1} — S be defined via isFinites(p) = T iff p contains
finitely many 1s. Let isInfiniteg : {0, 1} — S be defined via isInfinites(p) = T iff
p contains infinitely many 1s. Let TCy : A(N) = N be the total continuation
of Cy, i.e. p€ TCx(A) iff pe AV A=0.

Proposition 24.

1. Cny <w Sort <w S/OF: =w lim
2. isInfinites <w TCy
3. isFinites <w Sort
4. isInfinites £w Sort
5. isFinites £w TCy
Proof.

[Claim: Cy <w Sort | We show maxp <w Sort instead and appeal to Lemma
3. Given some set A € O(N), we start writing 1’s. In addition, we make
sure that we write exactly as many Os as the largest number encountered
in A so far. If A is guaranteed to be finite, then the resulting sequence
contains only finitely many 0’s, and after it was sorted, we can read off
how many there are — which returns maxp A.

[Claim: Sort < lim] Given some p € {0, 1}, let ¢({n,)) = 0 if p<,; contains
at least n Os, and ¢((n,7)) = 1 otherwise. Then Sort(p) = lim(g).

[Claim: Sort <w lim | From Sort <y lim with lim =w lim.

[Claim: lim <w Sort | From Cy <y Sort and lim = é;; (see [34, Example
3.10)).

18

[Claim: lim £w Sort | Sort maps every input to some computable output. lim
maps some computable inputs to non-computable outputs.

[Claim: islInfinites <w TCy | Given p € {0,1}", we can compute the set
{n € N | p contains no more than n 1 s} € A(N).

Apply TCy to obtain some m € N. Now read p while writing 0s. If ever
the (m+1)-st 1 in p is found, then the input to TCy must have been the
empty set, i.e. p must contain infinitely many 1s. Switching the output to
writing 1s from then on causes the output to be correct.

That the reduction is strict follows from the fact that Cy <w TCy (by
definition), whereas isInfinites has a codomain with just 2 elements.

[Claim: isFinites <w Sort | Let S : {0, 1} — {0, 1} be the map that swaps
0s and 1s. Then isFiniteg(p) = ds o Sort o S.

As above, that the reduction is strict follows from the fact that Cy <w Sort
as shown above, whereas isFinites has a codomain with just 2 elements.

[Claim: isInfinites £w Sort | As Sort <y lim, we find that Sort is £9-measurable,
and so is every function reducible to it (cf. [43]). But isInfiniteg ' ({T}) is
a I19-complete set.

[Claim: isFinites £w TCy] Assume that isFinites <y TCy via some wit-
nesses K’, H. By composing K’ with s and 5", we obtain computable
K :C {0,1}N x N — S. We can assume K to be total, as we can let it
write 0 infinitely many times without changing the value of the output.
Note that we can assume that this procedure for making K total preserves
single-valuedness since N is discrete. We can turn H into a computable
function h : {0,1}* — N* such that n ¢ ¢(H(p)) iff 3. (n + 1) € h(p<),
where p<; is the prefix of p of length . We will reason with K and A in
the following.

As isFinites(0¥) = T, there have to be ly, k € N such that K (0%{0,1}*, k) =
T. As isFiniteS(Ol‘)l“’) = 1, there has to be some [y € N such that
h(0b11) 5 k+ 1.

Now we proceed in stages i € N, each associated with some current prefix
p; € {0,1}*. We start with i = 0 and py = 0%1%. In stage i, con-
sider K (p;0¢,4). If this is 1, then we must have i ¢ ¥(H(p;0)) (other-
wise the reduction could answer L wrongly), so there is some j such that
h(p;07) > i + 1. We set p;;1 := p;0/1 and continue with the next stage.
If K(p;0“,i) = T, then this is already determined by some finite prefix
p;07. Hence, we must have that i ¢ ¢ (H (p;071%)) (otherwise the reduc-
tion could answer T wrongly), so there is some m with h(p;071™) 3 i+ 1.
We set p; 11 := p;0°1™1 and continue with the next stage.

We find that p = lim; . p; € {0,1}" is well-defined, contains infinitely
many ls and satisfies that ¥(H(p)) = . Thus, a realiser of TCy may

19

answer anything on input H(p), in particular it may answer k. But
K(p,k) =T, so the reduction fails.

[Claim: Sort £w Cy | By combining isFinites <w Sort and isFinites £w TClp,
and noting that Cy <w TCy by definition.

O

We next wish to show that Sort <w Sort? <w Sort® <w For this,
we need a slight generalization of the Squashing Theorem from [65] (cf. the
development in [66]). Rather than using the notion of a finitely-tolerant function
as employed there, we generalize this to weakly finitely-tolerant functions. The
proof remains unaffected by this, though.

Definition 25. Call f : N¥ = NN weakly finitely-tolerant, if there is a com-
putable function A such that for any A\, X € N*, p,q € NV if ¢ € f(\p), then

Alg, A X) € f(Np).

Theorem 26 (Squashing Theorem [65]). If f : NN = NN is weakly finitely
tolerant and f =w f x f, then f =w f.

Corollary 27. For any n € N, Sort” <y Sort" .

Proof. Tt is easy to see that any Sort® is weakly finitely tolerant. Thus, if the
claim were false, the Squashing Theorem would imply Sort’ = Sort =w lim
(from Proposition 24 (1)), but the left-hand side has only computable outputs,
whereas the right-hand side maps some computable inputs to non-computable
outputs. [

Proposition 28. 1. Sort * LPO = Sort x LPO
2. Sort x Cy =w Sort x Cy

Proof. Note that we can extend any computable partial function f :C NNV —
{0, 1} to a computable total function F : NN — {0, 1} such that Sorto f(p) =
Sort o F(p) for any p € dom(f) — just add infinitely many 1’s to the (partial)
output of f. Furthermore, for both cases it suffices to show the <y-direction,
the >w-direction trivially holds.

1. Aslong as the input to LPO is consistent with O, we use the corresponding
input to Sort. If we ever read a 1 in the input to LPO, we restart writing
the input to Sort corresponding to the now known output of LPO. By
looking at the output of LPO (on the right hand side), we can determine
in which case we are. In the former, the output of Sort already is correct.
In the latter, we can find out the precise finite prefix of the input to Sort
we had written when encountering the 1 in the input to LPO, count the
0s in that prefix and adjust the output of Sort accordingly.

20

2. We use maxyy instead of Cy. The argument proceeds similar as above:
Start by providing the input to Sort that would correspond to maxyw
outputting 0. Once we learn that maxyy will provide a larger value, switch
to the corresponding input to Sort. Repeat as required. We can then use
maxyy (on the right hand side) to determine the length of the finite wrong
prefix fed to Sort, and change the output of Sort accordingly to fix it.

|
Proposition 29. TCy <y Cy * isFinites and Sort <y Cy * isInfinites.

Proof. First claim: Given some A C N, we can compute pa € {0, 1} such that
H{k € N|pa(k) =1} >niff {0,...,n—1}N A = 0. Apply isFiniteg to this, and
then (id : S — {0,1}) =w LPO to the output. If the answer is 1, the original
input is a valid input for Cy. If we learn 0 from the first part, feed a name
for N to Cy. The output of Cy yields a solution to TCy in either case. Thus,
TCy <w Cy * LPO x isFinites =w Cpy * isFinites. Here we used LPO <w Cy,
and Cy * Cy =w Cy (as recalled in Lemma 6).

Second claim: We show that Sort <w maxyn *LPO x isInfinites instead.
Let S : {0,1}" — {0,1}" swap 0 and 1 componentwise, and let p € {0, 1} be
the original input to Sort. Apply id : S — {0,1} to the output of isInfinites on
inputS(p). If we receive a 1, feed 0N to max, and answer 0N for Sort. Else,
define ¢ € NN by ¢(n) = |{k < n | p(k) = 0}|, and note that ¢ € dom(maxyy).
Then 0™#*91¢ is the correct output to Sort. O

Corollary 30. Cy * Sort =w Cy % isFinites =w Cp * isInfinites =w Cy * TCy
Proof. Cy * isInfinites <y Cy * TCy By Proposition 24 (2).

Cn * TCy <w Cy ~isFinites By Proposition 29 we have Cy x TCy <w Cy *
Cy * isFinites =w Cy * isFiniteg, invoking Lemma 6.

Cy « isFinites <y Cy * Sort By Proposition 24 (3).

Cn * Sort <w Cy ~islnfinites By Proposition 29 we have Cy % Sort <y Cy *
Cy * isInfinites =w Cy * isInfiniteg.
|

Our next goal is to show that Sort is 2-low, in the sense that lim x lim xSort =w
limxlim. We start with a more general result, for which we need the notion
of a precomplete represented space. A space Y is called precomplete, if for ev-
ery partial computable function F :C {0,1} — Y there is a total computable
function F’ : {0,1} — Y such that F = F'lqom(ry- Typical examples of
precomplete spaces are S, O(N) and A(N).

We further use the precomplete space Szg with underlying set {L, T} and
representation dJyg : {0,1}N — {L, T} defined via d59 (p) = T iff p contains
infinitely many 1s, and 523(]9) = L else. Now the map id : Syy — {0,1}
(mapping L to 0 and T to 1) has the same realizer as isInfinite. Moreover,

isInfinite =w lim % lim was shown in [43].

21

Proposition 31. Let g : X = N, and f : Y = Z where Y is precomplete.
Then f*xg <w f x g.

Proof. We make use of the explicit representative of f x g constructed in [29].
The input of f x g is a partial continuous function e :C N = NN x Y and some
x € X. The output is a pair (p,z) € NN x Z such that there exists y € Y such
that (p,y) € e(g(z)) and z € f(y). As N has an injective representation, we
can assume w.l.o.g. that e is actually a single-valued (partial) function, which
then splits into e; :C N — NN and e, :C N — Y. As Y is precomplete, we can
extend ey to a total function, and by currying, obtain a sequence (yo,y1,.-.).
We apply fto (0,1, -..) and obtain some sequence (zo, 21,...,), and g to x
to obtain n € N. The pair (e1(n), z,,) constitutes a valid output for fxg. O

Corollary 32. lim % lim xSort =y lim x lim

Proof. From Proposition 29 we can in particular conclude that Sort <y Cy *
isInfinite, and the righthand side has up to isomorphism codomain N. The

Weihrauch degree of limxlim has (id : Sy — {0, 1}) as a representative with

precomplete domain. Thus, from Proposition 31 we conclude:
lim + lim *Sort <w (lim lim) x (Cy * isInfinite)

Since (Cy * isInfinite) <w Cy * (LPO = isFinites) <w (Cy * LPO) % Sort <w
lim * lim using Proposition 24 (1,3), Lemma 6 (1), and Lemma 5 (2), the claim
follows. O

Corollary 33. [,y Sort™ <y lim « lim.
Proof. By iterating Corollary 32 n times, we find that:
lim * lim xSort™ <y lim lim

As this argument is uniform in n, the claim follows. O

6. The algebraic decision problem

We are now ready to introduce and study a canonical problem associated
with strongly analytic machines. Let (P, 4)nen be some standard enumeration
of the d-variate polynomials with rational coefficients.

Definition 34. Define functions ALGDEC : R* — [0, 1] and ALGDEC, : R —
[0, 1] via
ALGDECd(.’L‘l, ... ,.’Ed) = Z 9~2n—2
{n|Pp,a(z1,...,xq)=0}

and ALGDEC(21,...,%m) = ALGDEC,(21,...,Zm).

22

The choice for [0,1] as the codomain for ALGDEC is just to ease the com-
parison to functions computable by strongly analytic machines, we could just as
well have defined ALGDEC, : R — {0, 1} with ALGDECy((71,...,74))(n) =1
iff Py q(x1,...,2q) = 0. Thus, intuitively ALGDEC will tell us the “algebraic
type” (in the sense of the definition before Theorem 23) of the input tuple.

Observation 35. If f : R* — R* is computable by a strongly analytic machine,
then f <w ALGDEC. Moreover, ALGDEC is computable by a strongly analytic
machine.

Proof. That ALGDEC is computable by a strongly analytic machine is immedi-
ate. For the remainder of the claim, we argue that if a strongly analytic machine
M computes f : R* — R* on input x, then a Type-2 machine can simulate M
if provided x and ALGDEC(x) as input. Clearly, the only obstacle to such a
simulation are the equality tests that M can make. Each of these is of the form
p(x) = 07, where p is a rational multivariate polynomial”. If p = P, 4, then
inspecting ALGDEC(x) up to precision 272"~ allows the Type-2 machine to
determine whether or not p(x) = 0. O

Observation 36. ALGDEC =w (]_[deN ALGDECd)
Proposition 37. ALGDEC; =w Sort

Proof. Let a be an effective enumeration of the algebraic numbers in R. We
understand this to mean that an index n of an algebraic number a,, encodes the
minimal polynomial of a,, together with some information about which root
(e.g. ordered by <) a, is of its minimal polynomial. By Theorem 23 we have
that Sort =w TYPE,, thus we only need to show ALGDEC; =w TYPE,.

For ALGDEC; <w TYPE, we show that for a given rational polynomial P
the predicate P(z) = 0 is decidable relative to TYPEq(z). Given a non-zero
rational polynomial P, we verify in parallel if P(z) # 0 and if TYPE,(z) # 0.
Clearly, one of the searches has to terminate. If the second search terminates, it
yields the minimal polynomial of . Now we can decide if P(z) = 0 by deciding
if the minimal polynomial divides P.

For TYyPE, <w ALGDEC, observe that from any non-zero rational polyno-
mial P and a real number z € R with P(z) = 0, we can compute the minimal
polynomial of x and determine the position of x in the list of its roots. O

Theorem 38. ALGDEC,; =w ALGDEC‘%
Corollary 39. ALGDEC =y Sort*

In order to prove Theorem 38 we need to recall a few facts from (compu-
tational) commutative algebra. Let Z(Q[X7,..., X]) denote the represented
space of ideals in Q[X71, ..., X4], where an ideal is represented by some finite set
of generators (that this is a representation follows from Hilbert’s basis theorem).

7If M is using real constants, we would consider these as part of x.

23

Recall that the height ht(P) of a prime ideal P is the length n of the longest
chain of strict inclusions

P:PnQPn—l_:,_)"';)PIQPOv

where the P;’s are prime ideals. The Krull dimension of a ring R is the supre-
mum of the heights of all prime ideals in R. If K is a field, then the polynomial
ring K[X1,...,X4] has Krull dimension d. We will need the following well-
known facts from computer algebra (see e.g. [67, 68, 69, 70, 71])

Fact 40.

1. Membership of a polynomial f € Q[X;,..., Xy inanideal I € Z(Q[X1, ..., X4])
is decidable.

2. Primality of a given ideal T € Z(Q[X7,...,Xq4]) is decidable.

3. The height of a given prime ideal P € Z(Q[X4, ..., X4]) is computable. [J

Proof of Theorem 38. The direction ALGDECf <w ALGDEC, is trivial. For
the converse direction we prove ALGDECy <y Sort? and apply Proposition 37.
For a given point € R?, consider the prime ideal I(x) = {f € Q[X1,..., X4 |
f(xz) = 0}. Our goal is to compute the characteristic function of I(x). We
will use Sort? to approximate I (z) “from below” in the following sense: we will
compute a sequence (Py,), of prime ideals with P,, C I(x) for all n and P,, = I(x)
for sufficiently large n. Using the sequence (P,), we can verify if f € I(z) by
searching for an n € N such that f € P,, using Fact 40 (1). Conversely, we can
verify if f ¢ I(z) by verifying if f(z) # 0.

It remains to construct the sequence (P,),. By Fact 40 we can compute for
each h € [1;d] a sequence (P},)y, containing all prime ideals in Q[X7y, ..., X4]
of height > h. For each of these sequences we use an instance of Sort to compute
a new sequence (P}), with P, C I(z), proceeding like in the proof of the
reduction Type, <y Sort in Theorem 23: start with P, and try to prove
that P o € I(x) by searching for a generator f of Pj, o with f(z) # 0. At the
same time, write 1’s to the input of Sort. If Py o € I(z) is proved, write a 0
and continue with P ;. Apply Sort to the resulting sequence to obtain a new
sequence p € {0, 1}N. If p = 0V 1%, put

P {(0) if n < N,

P, n otherwise.

If p= 0%, put Pj, = (0) for all n € N.

By construction, each of the ideals P}, , is contained in I(z). If h < ht(I(x)),
then there exists n € N such that P,’l’n has height > h. In particular, if h =
ht(I(x)), then there exists P, , C I(z) with ht(F}) > ht(I(z)). Since P ,
is prime it follows that P , = I(z). Since Q[Xj,..., Xg4] has Krull dimension
d, the height ht(I(z)) is a number between 0 and d, and if ht(I(x)) = 0, then
I(z) = (0), so that P, , = I(x) for all n € N, h € [1;d]. In any case, there
always exist h and n such that P,’m = I(z). Using standard coding tricks we

24

may write the double-sequence (P; ,,)ne[1;d),nen as a single sequence (J,,),. The
Jpn's are a sequence of prime ideals contained in I(z), at least one of which is
equal to I(z). Now put P, = >} _, Ji. Then P,, C I(z) for all n and P,, = I(x)
for sufficiently large n. O

[15, Question 3.9] asks whether there is a set A C R which is weakly semide-
cidable, yet not a I13-set. They define a set to be weakly semidecidable, if it
is BSS many-one reducible to the boundedness problem for analytic machines.
This in turn means that there is a BSS-computable function H : R — R*, and
an analytic machine that on input H(z) for z € A computes some bounded
sequence (a;) € RY, and on input H(z) for x ¢ A computes some unbounded
sequence (a;) € RY. We can give a negative answer:

Proposition 41. Every weakly semidecidable set is AS.

Proof. Given some weakly semidecidable set A, we want to provide an upper
bound on the Weihrauch degree of x4 : R — {0,1}. By combining Corollary
14, Observation 35 and Corollary 39, we see that there is a function a : R — RN
with a <w Sort* x Cy, such that a(z) is bounded iff z € A.

Now given (a;) € RY, we can compute some p € {0, 1} such that p contains
at least n Os iff 3% |ag| > n. Thus, using isInfinite, we can detect whether a real
sequence is bounded or unbounded.

Put together, we conclude that x4 <w isInfinitexSort*xCy. Since isInfinite <y
lim x lim, we have x4 <w lim*lim %«Sort™ x Cy. By Corollary 32 the righthand
side is reducible to lim % lim xCy. With Lemma 6 we conclude y 4 <yw lim xlim.
As limxlim is ¥3-measurable, the claim follows. O

7. Comparing the SCI in the two models

Following [16, 17] we shall define the solvability complezity index over the
BSS-model and over the TTE-model, and then use the results on Weihrauch
degrees obtained in the preceding sections to bound their difference.

Definition 42. An n-tower for a function f : R* — R* is a function F': N x
R* — R* such that f(z1,...,Tm) = lim;; e - limy, o0 F(i1, -« ln, T1, .oy Tm)-
For some function f : R* — R* let SClggs(f) be the least n such that there a
BSS-computable n-tower for f. Let SCIrrr(f) be the least n such that there a
computable (i.e. TTE-computable) n-tower for f.

Observation 43. SClrrg(f) <niff f <w lim ™),
Theorem 44. If SCITTE(f) Z 2or SCIBSS (f) Z 2, then SCITTE(f) = SCIBSS (f)

Proof. Assume SCItrg(f) =n > 1. Let F : N® x R* — R* be a com-
putable n-tower for f. By the Stone-Weierstrass Approximation Theorem, we
can approximate F' by rational polynomials on each hypercube, i.e. there are
rational multivariate polynomials gfh_“’in such that for (z1,...,zm) € [k, k™
we find that d(gfh“_!in(xh...,xm),F(il,...,in,xl,...,xm)) < 27F As we

25

can code a computable countable sequence of rational multivariate polynomi-
als into a computable parameter, we find that G : N® x R* — R* defined
via G(i1, ...y in, L1, ..y Tm) = ngZn (z1,...,%m) is BSS-computable. More-
over, it is straight-forward to verify that G also is an n-tower for f. Thus,
SCIrre(f) > SCless(f).

Assume SClgss(f) = n > 2. Let F be a BSS-computable n-tower for
f. We curry F to obtain G : R* — (R*)N"| and notice that with the same
reasoning as for strongly analytic functions in Section 6, we find that G <w
Sort*. By assumption, we then have that f <w lim(™ *Sort*. As n > 2,
Corollary 32 implies that already f <w lim™. By [32, Fact 5.5] lim is a
transparent cylinder, i.e. it follows that there is a computable function H such
that f =limo...olimoH. But this means that H is a computable n-tower for

f, ie. SCIgss(f) > SCITTE(f) O
Corollary 45. For n > 2, SClggs(f) > n iff f £w lim™= 1

Theorem 44 provides a formal version of the informal idea that a function
that is very non-computable in the BSS-model is still so in the TTE-model and
vice versa. This provides a reason to continue the investigation of the non-
computability of an interesting function beyond establishing it — as a more pre-
cise classification can potentially be translated to the other setting via Theorem
44. This also shows that there is common ground between the two frameworks,
and that this common ground includes the SCI (provided it is at least 2).

8. Summary diagram

The following diagram provides an overview of some of the relevant Weihrauch
degrees. Arrows denote reductions in the reverse direction. The diagram is com-
plete up to transitivity, i.e. if no arrow is present in the transitive closure of the
diagram, then there is a separation proof for the principles.

26

e lim captures limit computabil-

| Sort* ’ TCn ‘ ity.
\ e Sort" captures computability
by strongly analytic machines

’ Sort ‘ ’ isInfiniteg H isInfinite ‘

e isInfinite contains BSS-Halting
/ problems

’ Cn ‘ ’ isFinites ‘ e Cy captures computability by
BSS-machines.

e LPO* captures computability

Lotita of total functions by BSS-

machines without <

References

[1] A. Grzegorcyk, Computable functionals, Fundamenta Mathematicae 42
(1955) 168-202.

[2] A. Grzegorcyk, On the definition of computable real continuous functions,
Fundamenta Mathematicae 44 (1957) 61-71.

[3] D. Lacombe, Extension de la notion de fonction récursive aux fonctions
d’une ou plusieurs variables réelles III, Comptes Rendus Académie des Sci-
ences Paris 241 (1955) 151-153.

[4] K. Weihrauch, Computability, Monographs on Theoretical Computer Sci-
ence, Springer-Verlag, 1987.

[5] K. Weihrauch, Computable Analysis, Springer-Verlag, 2000.

[6] M. Pour-El, I. Richards, Computability in analysis and physics, Perspec-
tives in Mathematical Logic, Springer, 1989.

27

[7]
8]

[13]

[14]

[19]

K.-I. Ko, Computational Complexity of Real Functions, Birkh&user, 1991.

L. Blum, M. Shub, S. Smale, On a theory of computation and complexity
over the real numbers: N P- completeness, recursive functions and universal
machines, Bull. Amer. Math. Soc. 21 (1) (1989) 1 — 46.

L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation,
Springer, 1998.

M. Escardé, Synthetic topology of datatypes and classical spaces, Elec-
tronic Notes in Theoretical Computer Science 87.

A. Pauly, On the topological aspects of the theory of represented spaces,
Computability 5 (2) (2016) 159-180. doi:10.3233/COM-150049.
URL http://arxiv.org/abs/1204.3763

T. Chadzelek, G. Hotz, Analytic machines, Theoretical Computer Science
219 (1999) 151-167.

G. Hotz, G. Vierke, B. Schieffer, Analytic machines, Tech. Rep. 25, Elec-
tronic Colloquium on Computational Complexity (1995).

T. Gértner, G. Hotz, Computability of analytic functions with analytic ma-
chines, in: K. Ambos-Spies, B. Lowe, W. Merkle (Eds.), Mathematical The-
ory and Computational Practice, Vol. 5635 of Lecture Notes in Computer
Science, Springer, 2009, pp. 250-259. doi:10.1007/978-3-642-03073-4_
26.

URL http://dx.doi.org/10.1007/978-3-642-03073-4_26

T. Géartner, M. Ziegler, Real analytic machines and degrees, Logical Meth-
ods in Computer Science 7.

A. C. Hansen, On the solvability complexity index, the n-pseudospectrum
and approximations of spectra of operators, Journal of the AMS 24 (2011)
81-124.

J. Ben-Artzi, A. C. Hansen, O. Nevanlinna, M. Seidel, Can everything be
computed? — on the solvability index and towers of algorithms, Comptes
Rendus Mathematique 353 (10) (2015) 931-936.

URL http://arxiv.org/abs/1508.03280

C. Gafiner, On NP-completeness for linear machines, Journal of Complex-
ity 13 (2) (1997) 259 — 271. doi:10.1006/jcom.1997.0444.

URL http://www.sciencedirect.com/science/article/pii/
S0885064X97904441

C. Gafiner, The P-DNP problem for infinite abelian groups, Journal of
Complexity 17 (3) (2001) 574 — 583. doi:10.1006/jcom.2001.0583.
URL http://www.sciencedirect.com/science/article/pii/
S0885064X01905837

28

[20]

[30]

[31]

C. Gaflner, On relativizations of the P =7 NP question for several
structures, Electronic Notes in Theoretical Computer Science 221 (2008)
71 — 83. doi:10.1016/j.entcs.2008.12.008.

URL http://www.sciencedirect.com/science/article/pii/
S1571066108004714

N. Tavana, K. Weihrauch, Turing machines on represented sets, a model of
computation for analysis, Logical Methods in Computer Science 7 (2011)
1-21. doi:10.2168/LMCS-7(2:19)2011.

J. Tucker, J. Zucker, Computable functions and semicomputable sets on
many-sorted algebras, in: T. M. S. Abramsky, D.M. Gabbay (Ed.), Hand-
book of Logic in Computer Science, Vol. 5 of Oxford Science Publications,
2000, pp. 317-523.

A. Hemmerling, Computability of string functions over algebraic structures,
Mathematical Logic Quarterly 44 (1) (1998) 1-44. doi:10.1002/malq.
19980440102.

URL http://dx.doi.org/10.1002/malq. 19980440102

M. Ziegler, Real computability and hypercomputation, Habilitationsschrift,
University of Paderborn (2007).

V. Brattka, G. Gherardi, A. Pauly, Weihrauch complexity in computable
analysis, arXiv 1707.03202 (2017).

A. Pauly, On the (semi)lattices induced by continuous reducibilities, Math-
ematical Logic Quarterly 56 (5) (2010) 488-502. doi:10.1002/malq.
200910104.

V. Brattka, G. Gherardi, Weihrauch degrees, omniscience principles and
weak computability, Journal of Symbolic Logic 76 (2011) 143 — 176,
arXiv:0905.4679.

K. Higuchi, A. Pauly, The degree-structure of Weihrauch-reducibility, Log-
ical Methods in Computer Science 9 (2). doi:10.2168/LMCS-9(2:2)2013.

V. Brattka, A. Pauly, On the algebraic structure of Weihrauch degrees,
arXiv 1604.08348 (2016).
URL http://arxiv.org/abs/1604.08348

A. Pauly, How incomputable is finding Nash equilibria?, Journal of
Universal Computer Science 16 (18) (2010) 2686-2710. doi:10.3217/
jucs-016-18-2686.

V. Brattka, G. Gherardi, Effective choice and boundedness principles
in computable analysis, Bulletin of Symbolic Logic 1 (2011) 73 — 117,
arXiv:0905.4685. doi:10.2178/bsl/1294186663.

29

[32]

V. Brattka, G. Gherardi, A. Marcone, The Bolzano-Weierstrass Theorem
is the jump of Weak Konig’s Lemma, Annals of Pure and Applied Logic
163 (6) (2012) 623-625, also arXiv:1101.0792. doi:10.1016/j.apal.2011.
10.006.

V. Brattka, S. Le Roux, A. Pauly, On the computational content of
the Brouwer fixed point theorem, in: S. Cooper, A. Dawar, B. Lowe
(Eds.), How the World Computes, Vol. 7318 of Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 2012, pp. 56—67. doi:10.1007/
978-3-642-30870-3_7.

V. Brattka, M. de Brecht, A. Pauly, Closed choice and a uniform low basis
theorem, Annals of Pure and Applied Logic 163 (8) (2012) 968-1008. doi:
10.1016/j.apal.2011.12.020.

A. Pauly, Methoden zum Vergleich der Unstetigkeit von Funktionen, Mas-
ters thesis, FernUniversitdt Hagen (2007).

U. Mylatz, Vergleich unstetiger Funktionen in der Analysis, Diplomarbeit,
Fachbereich Informatik, FernUniversitit Hagen (1992).

U. Mylatz, Vergleich unstetiger Funktionen : “principle of omniscience”
und Vollstandigkeit in der C-Hierarchie, Ph.D. thesis, Fernuniversitét,
Gesamthochschule in Hagen (Mai 2006).

V. Brattka, G. Gherardi, R. Holzl, Probabilistic computability and choice,
Information and Computation 242 (2015) 249 — 286, arXiv 1312.7305.
doi:10.1016/j.1c.2015.03.005.

URL http://www.sciencedirect.com/science/article/pii/
S0890540115000206

A. Pauly, Infinite oracle queries in type-2 machines (extended abstract),
arXiv:0907.3230v1 (July 2009).

A. Pauly, G. Davie, W. Fouché, Weihrauch-completeness for layerwise com-
putability, arXiv:1505.02091 (2015).

A. Pauly, F. Steinberg, Comparing representations for function spaces in
computable analysis, Theory of Computing Systems (2017) 1-26doi:10.
1007/s00224-016-9745-6.

URL http://dx.doi.org/10.1007/500224-016-9745-6

A. Pauly, M. de Brecht, Non-deterministic computation and the Jayne
Rogers theorem, Electronic Proceedings in Theoretical Computer Science
143, dCM 2012.

V. Brattka, Effective Borel measurability and reducibility of functions,
Mathematical Logic Quarterly 51 (1) (2005) 19-44. doi:10.1002/malq.
200310125.

30

[44]

[45]

H. de Holanda Cunha Nobrega, Game characterizations of function classes
and Weihrauch degrees, M.Sc. thesis, University of Amsterdam (2013).

K. Weihrauch, The TTE-interpretation of three hierarchies of omniscience
principles, Informatik Berichte 130, FernUniversitdt Hagen, Hagen (Sep.
1992).

D. S. Bridges, F. Richman, Varieties of Constructive Mathematics, Vol. 57
of Lecture Notes, London Mathematical Society, 1987.

R. Penrose, The emperor’s new mind, Oxford University Press, 1989.

V. Brattka, The emperors new recursiveness: The epigraph of the exponen-
tial function in two models of computability, in: M. Tto, T. Imaoka (Eds.),
Words, Languages & Combinatorics III, 2003, pp. 63-72.

P. Hertling, Is the Mandelbrot set computable?, Mathematical Logic Quar-
terly 51 (1) (2005) 5-18. doi:10.1002/malq.200310124.
URL http://dx.doi.org/10.1002/malq.200310124

M. Braverman, M. Yampolsky, Computability of Julia Sets, Springer, 2009.

V. Brattka, P. Hertling, Feasible real random acess machines, Journal of
Complexity 14 (1998) 490-526.

N. Zhong, Recursively enumerable subsets of R? in two computing models,
Theoretical Computer Science 197 (1998) 79-94.

P. Boldi, S. Vigna, Equality is a Jump, Theoretical Computer Science 219
(1999) 49-64.

A. Morozov, M. Korovina, On X-definability without equality over the real
numbers, Mathematical Logic Quarterly 54 (5) (2008) 535-544.

D. Hirschfeldt, Slicing the Truth: On the Computability Theoretic and Re-
verse Mathematical Analysis of Combinatorial Principles, World Scientific,
2014.

D. Hirschfeldt, C. Jockusch, On notions of computability-theoretic reduc-
tion between IT3-principles, Journal of Mathematical Logic 16 (1).

M. Ziegler, Revising type-2 computation and degrees of discontinuity,
Electronic Notes in Theoretical Computer Science 167 (2007) 255-274.
doi:10.1016/j.entcs.2006.08.015.

M. Ziegler, Real hypercomputation and continuity, Theory of Computing
Systems 41 (2007) 177 — 206. doi:10.1007/s00224-006-1343-6.

M. de Brecht, Levels of discontinuity, limit-computability, and jump oper-
ators, in: V. Brattka, H. Diener, D. Spreen (Eds.), Logic, Computation,
Hierarchies, de Gruyter, 2014, pp. 79-108, arXiv 1312.0697.

31

[60]

[61]

[62]

A. Pauly, Computability on the countable ordinals and the Hausdorff-
Kuratowski theorem, arXiv 1501.00386 (2015).

P. Hertling, Unstetigkeitsgrade von Funktionen in der effektiven Analysis,
Ph.D. thesis, Fernuniversitat, Gesamthochschule in Hagen (Oktober 1996).

K. Meer, M. Ziegler, An explicit solution to Post’s problem over the reals,
Journal of Complexity 24 (1) (2008) 3-15. doi:10.1016/j.jco.2006.09.
004.

URL http://dx.doi.org/10.1016/j.jco.2006.09.004

C. Gafiner, A hierarchy below the halting problem for additive machines,
Theory of Computing Systems 43 (2008) 464-470.

W. Calvert, K. Kramer, R. Miller, Noncomputable functions in the Blum-
Shub-Smale model, Logical Methods in Computer Science 7 (2). doi:
10.2168/LMCS-7(2:15)2011.

F. G. Dorais, D. D. Dzhafarov, J. L. Hirst, J. R. Mileti, P. Shafer, On
uniform relationships between combinatorial problems, Transactions of the
AMS 368 (2016) 1321-1359, arXiv 1212.0157. doi:10.1090/tran/6465.

T. Rakotoniaina, On the computational strength of Ramsey’s theorem,
Ph.D. thesis, University of Cape Town (2015).

G.-M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra,
2nd Edition, Springer-Verlag, 2007.

M. Kalkbrener, Algorithmic properties of polynomial rings, Journal of Sym-
bolic Computation 26 (5) (1998) 525-582.

P. Gianni, B. Trager, G. Zacharias, Grébner bases and primary decompo-
sition of polynomial ideals, Journal of Symbolic Computation 6 (2-3).

B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. the-
sis, University of Innsbruck, Austria (1965).

B. Buchberger, Ein algorithmisches Kriterium fiir die Losbarkeit eines al-
gebraischen Gleichungssystems, Aequationes mathematicae 4 (3) (1970)
374-383.

Acknowledgements

This work was inspired by discussions at the workshop Real Computation

and BSS Complezity in Greifswald, and the second author would like to thank

the

participants Russell Miller, Tobias Gartner and Martin Ziegler, as well as the

organizer Christine Gafiner. Moreover, the second author would like to thank
Anders Hansen for fruitful discussions on the solvability complexity index.

32

The work presented here benefited from the Royal Society International
Exchange Grant TE111233. The second author is partially supported by the
ERC inVest project.

33

	A topological view on algebraic computation models

