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Abstract

Inherent to state-of-the-art dimension reduction algorithms is the assumption
that global distances between observations are Euclidean, despite the poten-
tial for altogether non-Euclidean data manifolds. We demonstrate that a non-
Euclidean manifold chart can be approximated by implementing a universal
approximator over a dictionary of dissimilarity measures, building on recent de-
velopments in the field. This approach is transferable across domains such that
observations can be vectors, distributions, graphs and time series for instance.
Our novel dissimilarity learning method is illustrated with four standard vi-
sualisation datasets showing the benefits over the linear dissimilarity learning
approach.
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1. Introduction

Dimension reduction algorithms used to generate visualisations of high di-
mensional data require a chart of observations which must follow a global or local
structure. The Sammon map [43], Stochastic Neighbour Embedding (SNE) [19]
and variants, the Gaussian Process Latent Variable Model (GPLVM) [21], Gen-
erative Topographic Map (GTM) [7], Metric Multidimensional Scaling (MDS)
and Curvilinear Component Analysis (CCA) [I1] assume global Euclidean struc-
ture. Bregman divergences generate mappings with non-metric multidimen-
sional scaling in [45], 47) [46] however the use of the Euclidean distance, as in
standard MDS, remains. In the case where the observed data is known to sit
upon a non-Euclidean manifold it is typically assumed that local regions of the
manifold are Euclidean. Algorithms such as Locally Linear Embedding [42],
Laplacian Eigenmaps [0], Riemannian Manifold Learning [26] and methods us-
ing geodesic distances based upon local Euclidean structure such as Isomap [49],
the Geodesic Nonlinear Map [25] and Curvilinear Distance Analysis [24] rely on

Email address: i.rice@aston.ac.uk (Iain Rice)

Preprint submitted to Journal of BTEX Templates August 29, 2017



this property holding. Furthermore these algorithms require smooth continuity
between local charts. This is known to not be the case where a manifold is,
for instance, fractal or when observations are sparse and not true neighbours.
As such the choice of local neighbourhood size parameters presents a challenge,
causing the potential for short-circuits in neighbourhood graphs. The work of
FINE [10] assumes that observations sit upon a statistical Riemannian manifold
which is less restrictive than the Euclidean counterpart [3]. As such FINE uses
an approximation to the Fisher Information metric to calculate local distances
between observations, however each of the proposed approximations are not
without limitations. In contrast the framework of [40] embeds non-Euclidean
data onto a latent sphere of with calculated radius. This is in contrast to almost
all other dimension reduction algorithms which do not restrict the structure of
the latent space.

The latent variable models GTM and GPLVM assume that observations sit
upon hyper-ellipses. In the GTM case this structure is treated as isotropic and
as such suffers from the issues of hyper-spherical geometry (see [23] for details).
The hyper-ellipse of GPLVM only permits dimensions between observations to
be independent, a trait known to be false in many time series and image analysis
domains for instance. These approaches are therefore incapable of constructing a
reliable chart for complex datasets. In [23] it was demonstrated that dimension
reduction algorithms relying on nonconvex optimisation of latent points, for
instance MDS, CCA and GTM, perform superior to mappings using convex
optimisation including PCA, LLE and Isomap.

An alternative approach is considered in [30} 3] for the task of pattern dis-
covery in large datasets. Local affinity patterns are identified across patterns
and observed dimensions to convey significant attributes. The test for signifi-
cance involves a Euclidean thresholding scheme over the cleaned graph weight
matrix. The highlighted local affinities should be anomalies or sources of infor-
mation, allowing the user to focus on a small subset of a large collection of data.
In contrast the result of information visualisation is to utilise all attributes of
observations and present the visual map over all datapoints to a human for in-
terpretation. Such a weighting matrix as used in [30] can however be integrated
within several visualisation frameworks when the weighting function is specified.

The notion and impact of non-Euclidean pattern analysis is discussed at
length in [37]. Despite the fact that there are many causes of non-Euclidean
observations, frameworks to handle such datasets are still emerging and have
not been widely adopted [12]. When the nature of an observed manifold is of
unknown topology one naturally is unaware of the dissimilarity measure which
charts the manifold. It is however possible to learn such a chart using a com-
bination of a set of multiple dissimilarity measures, a dictionary. This is the
approach of multiple kernel learning where kernels are combined linearly or non-
linearly in order to improve regression or classification performance (see [9} [15]
for an overview). Multiple kernel learning has also been implemented in the field
of manifold learning [2]. Multi-feature kernels were developed in [55] to learn
features for facial recognition based on a dictionary approach and discriminant
analysis rather than dimension reduction. This notion is developed further in



[1] where a sparse hierarchical dictionary based on Gaussian kernels is used for
classification.

The tasks of regression and classification are by nature supervised. In this
paper we consider the case of dimension reduction, in particular visualisation,
which is unsupervised and as such mapping targets do not exist. The tar-
gets in this case are learned by minimisation of a mapping cost function such
that neighbourhoods and the topological ordering of data is preserved. Non-
Euclidean charts form the input to the visualisation framework of [27] relying
on linear discriminant analysis. This linear approach does not generalise to non-
linear mappings. Another linear projection is used in [56] to map data whose
dissimilarities are specified by a probabilistic measure. This approach cannot
suitably map nonlinear structures, but the proposed measure can be incorpo-
rated into the framework of this paper. A distance metric learning approach
is proposed in [51] focussing on clustering by adapting a kernel to learn a dis-
similarity measure rather than fixed combinations of kernels. The clustering
of data through spectral construction of kernels is detailed in [4] with links to
Laplacian Eigenmaps, however this by nature learns a local descriptor of data.
Using adaptive metrics [I7] present an analogue of PCA with the goal of intrin-
sic dimensionality estimation rather than performing dimension reduction. The
variables of interest in data are learned in [39] in a linear fashion prior to di-
mension reduction, however the relative significance of these features compared
to one-another is not retained. Linear combinations of kernels form the basis of
the nonlinear dimension reduction performed in [53] however the kernels used
are restricted to polynomial functions and no learning of dissimilarities upon a
manifold is performed. The Canonical Correlation Analysis approach of [57] lin-
early combines separate local and global kernels to perform dimension reduction
which for certain kernel choices will behave like Isomap. A far more expressive
linear combination of multiple kernels is presented in [33] where the weighting
is fixed prior to dimension reduction. The work of [I4] creates an ensemble of
different clustering partitions, which may be non-Euclidean by nature, allows
for more accurate clustering and classification.

In this paper we present a method for learning a chart based on a dictionary
of dissimilarity measures whilst simultaneously constructing a nonlinear map-
ping. In [41] a linear combination of dissimilarity measures was used in this way
and it was shown that the quality and interpretability of visualisations improved
when the chart is learned. This paper builds on this linear model by learning a
nonlinear combination of dissimilarity measures using a universal approximator.
In order to show the improvements of this nonlinear learning of dissimilarities
we use Elastic MDS as in [4I] to provide a benchmark for our experimental
results, however our approach generalises to other visualisation algorithms. In
order to demonstrate the impact of our approach we generate visualisations of
four standard datasets with Elastic MDS and Isomap. We assess the quality of
our results with a visual comparison of the mapped latent variables, however
as discussed in [52] quantitative comparison with visual quality metrics are not
appropriate for non-Euclidean mappings.



2. The Learning Task

The aim of this paper is to accurately estimate the chart of an observed
manifold without assuming a particular metric, but by learning a mixture from
a fixed dictionary of dissimilarities. As a precursor we build on the work of [41]
and therefore focus on the case of Elastic MDS [32] to perform a comparative
analysis of our approach. We assess the performance of the constructed chart
through visual analysis of an embedding of a dataset. This embedding need
not be Euclidean in terms of Witney’s emedding theorem [54] as visualisation
would only be possible here if the intrinsic dimensionality of a dataset were 3-
dimensional or less. Elastic MDS generates an embedding of a dataset, X, with
N observations by constructing a set of latent points, Y € RY. As is typical
for the task of visualisation we fix V' = 2 in this paper, however our methods
generalise trivially to other integer values for V.

A particular benefit of MDS methods is that X need not be vectorial or even
explicitly known, it is only required that the matrix of pairwise dissimilarities
D,(i,j) between observations X; and X is given. The latent points y; corre-
sponding to observation X; are learned through gradient descent of the Elastic
MDS cost function:

(Dx(i,j) — Dy (i, 5))°
E = 9
Z< (Dali, 5))? .

where D, (4, j) denotes the dissimilarity between the latent, visualised points y;
and y;. This measure is typically taken to be the Euclidean distance. Elastic
MDS is distinct from the popular Sammon map due to the quadratic term in
the denominator of equation , making the cost function more sensitive to
local distances by stretching D, (i, ), hence the term elastic. This local focus
naturally comes at the expense of global preservation.

For the case that X consists of vectorial observations, x;, it is typically
assumed that D, (i, ) is the Euclidean distance in the literature. This measure
is only appropriate in the cases where the observed manifold is Euclidean. In the
Riemannian or non-Riemannian manifold cases this distance function will give
an incorrect approximation of distance. On statistical Riemannian manifolds
the natural distance measure is known to be the Fisher Information Metric,
which is typically approximated [I0] using other divergence measures. The aim
of this paper is to approximate the distance between observations:

Dy (i, j) = f (X, X5) - (2)

In [41] the function f is approximated using a linear combination of dissimilarity
measures as a dictionary:

L
Dx(imj):ZalDl(iaj)? (3)
=1

where « is the weight corresponding to the [-th dissimilarity measure, con-
strained such that a; sums to unity. The dictionary of L dissimilarity measures



is user specified and the weights were learned during the optimisation of the
Elastic MDS cost function in equation . These weights were optimised using
gradient descent over equation with respect to each factor a; in order to find
the optimal representation achieving a global minima. The dictionary-based
approach is suited to situations where the natural metric of the observed data
is unknown. In the regression or classification setting it would typically be as-
sumed that the measure generating a chart over observations X; is that which
achieves the highest predictive performance, however there is no guarantee that
the measure which charts the manifold will be identified. For the unsupervised
dimension reduction case we cannot identify a single measure in the same way.
The use of a broad dictionary, containing for instance, weighted, unweighted,
correlation and divergence measures for vectorial datasets allows us to circum-
vent this issue. To ensure the chart approximation was flexible 15 dissimilarity
measures were used in [4I] as a dictionary which are listed in table |1} taken
from [36]. For the developments in this paper we utilise the same dictionary,
noting that the methods discussed need not be restricted to vectorial observa-
tions x;. In the non-vectorial observation case such that X; may be for instance
a probability distribution, binary data, an image, a graph or a time series for
instance, the technique generalises provided a similar dictionary to that of table
[[]is provided (see [36] for examples).

For the experiments described in this paper the parameters of the weighted
Euclidean (measure 2) were fixed to be the inverse of the sample mean vector.
The Minkowski distance (measure 5) parameter, p, was fixed to be 1.2 to induce
a metric between the city block and Euclidean measures. The weighting matrix,
C, in the Mahalanobis distance (measure 6) was the sample covariance matrix
calculated from the observations. These dissimilarity measures are therefore
invariant to the absolute scale of the data in each dimesion. This ensures that
a single dimension does not disproportionately affect the overall dissimilarity.
The geodesic distance (measure 15) is performed over the Euclidean distance as
is typical in the literature.

It is well known that linear functions are not capable of universal approxi-
mation and that they are subject to adversarial examples [I6] from an improper
interpolation of the input space. We propose an extension to the approximation
in equation with a nonlinear interpolator. For this task we propose to use
an RBF network [8] which is known to be a universal approximator of functions
[38] [35], 44]. In particular we use an RBF network of the form:

(z:)" = Z Wik (wi —vy) " H™ (u; — vy)), (4)

where (2;)* is the k-th dimension of output vector z;, u; is the input vector,
W, are the jk-th weights of the matrix W, ¢ is a nonlinear basis function,
v; is the j-th network prototype and H is a diagonal matrix of weights to
perform automatic relevence detection (originally derived in the artificial neural
networking literature [29] [34]) learning the significant dimensions of w;. The
mapping of equation can be written in matrix form as Z = ®W with the



Measure Dissimilarity - d(x,y) M | E
1 | Euclidean x—y)T(x—-y) Yes | Yes
2 | Weighted Euclidean V(x —y)Tdiag(w?)(x —y) Yes | Yes
3 | City block S @ — il Yes | No
4 | Max norm max; |x; — y;l Yes | No
5 | Minkowski (I,) o Jwi — yi|p)%, p>1,p+#2]| Yes | No
6 | Mahalanobis Vx—y)TC-1(x—y), C psd Yes | Yes
7 | Median distance median; (|z; — y;|) No | No
8 | Correlation based (Deor) % (1 — m) No | No
9 | Correlation based (Dcorr2) % (1 - W) No | No
10 | Cosine 1(1- &) No | No
11 | Divergence S g:;;z No | No
12 | Bray and Curtis % No | No
13 | Soergel % No | No
14 | Ware and Hedges > (1 — %) No | No
15 | Geodesic d(DEue) No | No

Table 1: Numbered dissimilarity measures between vectors x,y listing whether
they are metric (M) and Euclidean (E).

elements of ® given by:
0y = ¢ ((u; —vj) " H (u; — v;)). (5)

In order for the RBF network to approximate the function of equation
we must explicitly specify the inputs and outputs. Denoting the i-th vector
of dissimilarities in D, (¢,7) by d; we use the convention that the outputs of
the RBF network should be (d;)’ = (2;)*. The network inputs u; should
naturally relate to the individual L dissimilarity measures in the dictionary to be
interpolated, each vector of which we denote d. containing N elements D' (i, ;)
for fixed ¢. In the same way that dynamical systems form a delay embedding
to approximate the intrinsic dimensionality of inputs through Taken’s theorem
[48] 20] we form an embedding of the dissimilarity spaces forming the inputs
through the concatenation:

w; = [d},d?, ... d",



and as such the dimensions of u; will be N x L. The network prototypes v; are
a subset of these observations which can be learned in the optimisation process
which follows. Given the potential for the dimensionality of u; to be very large
it is naturally desirable to reduce this to avoid memory issues in the compu-
tational implementation of the process. In section 3 we demonstrate that the
impact of choosing a subset N’ of the N elements of each vector d. does not
reduce the visualisation quality and in fact assists in model regularisation. An
additional tool for imposing sparsity in this model is through the manipulation
of H such that insignificant dimensions of u; can be ‘switched off’ as the ele-
ments of H approach zero. In [4I] the responsibility of each of the dissimilarity
measures used in the linear mixture is assessed through plotting the values of
the linear weights, «;, to identify which input dissimilarity measure is the most
significant. Here however the matrix H allows us to analyse this by plotting
the responsibilities, r;:
T = Z H,;,

i€[l—1x N,Ix N]

1227l
i.e. only summing the values in H relating to the [-th dissimilarity measure and
calculating the responsibilities which must sum to +1. Aside from the potential
for inducing sparsity it was found that the learning of H in the experiments
of section 3 did not improve mappings compared to when H was fixed to the
identity matrix. The decision to learn H will therefore depend on the necessity
for a sparse solution. In the case where H is fixed such that H = I, where I is
the identity matrix, then ® can be fixed such that training time can be reduced.

In order to optimise the parameters of our model, {y;, D, (i,7), W, H}, we
propose an alternating iterative learning scheme. The parameters belonging
to the RBF network, {W, H}, are typically learned through pseudoinverse of
W with respect to the network output targets. The targets here do not exist
and as such we choose to optimise these parameters in the same fashion as in
NeuroScale with Shadow Targets [50].

As in standard Elastic MDS the visualised points are learned through gradi-
ent descent of the cost function in equation , which could be performed via
scaled conjugate gradients (SCG). The gradients required are given by:

T

oF 1 1
oy o (Dwu,j)Dy(i,j) ! <D$(z’,j>)2>) (i)

The RBF network parameters are global in nature and should therefore be
optimised on a slower timescale than the latent points. From the Shadow Targets
approach we require the gradients of the cost function of equation , with
respect to the network outputs:

oF :<—2<Dy<z‘,j>>2 2Dy<zyj>>

(6)



We then perform a gradient step over the D, (4, j) with a learning rate 7:

D(i.d) = Duliod) = w55 @

in order to update the RBF network outputs. The updating rule for H is given
by:

Hyp=Hip+n | Y (Do — Do)WT (u; — vj)H Hui —v)" |, (8)

ij

as is typical in the ARD setup. Here we use ® to denote the elementwise
derivative of the basis function matrix ® with respect to its’ argument.Once
H is calculated the basis function matrix ® can be updated from equation
with the new H matrix to give ®. Following this the weight matrix W can be

learned in the standard pseudoinverse method:
W =a'D,.

As with [4I] by attempting to minimise the Elastic MDS cost function of
equation [1| we are attempting to construct a dissimilarity matrix D, (7, j) which
can be accurately reproduced in Dy (i, j). This is performed by both modifying
D,(i,j) and the latent points y; which are used to calculate D, (1, 7).

In this context there are many different ways of optimising the RBF network
parameters in either a convex or non-convex fashion to improve the regression
performance. Since in this paper we are concerned with the creation of a fixed
visualisation we choose to learn {W, H} though the gradient descent procedure
detailed above by matching the shadow targets of the MDS cost function as by
design this will improve the quality of the generated visualisations. The pseu-
docode for the algorithm is presented in algorithm [I} In order to generate the
visualisations of section 3 we fixed Nepochs to 300 and Niter to 20, however the
models all converged to a minimum before reaching these levels. It is proposed
that H be initialised to the identity matrix so as not to bias the dissimilarity
weighting at the beginnning of training. We have found in the experimental
results that initialising W in such a way that training time is minimised is
best done by fixing D, (4, j) suitably using the linear input dissimilarity model
of equation . Here o is set to the maximal eigenvalue of each dissimilarity
measure as outlined in [41] to allow for D, (i, 5) to be quickly initialised and W
to be learned by pseudoinverse as above.

3. Experimental Results

It was established in [41] that learning a linear mixture of input dissimilarities
improved the visualisation quality when compared to standard Elastic MDS
relying on Euclidean distances as inputs. Using this as a benchmark we test
the impovements of the nonlinear mixture of learned input dissimilarities using



Algorithm 1 Pseudocode for multiple dissimilarity learning in Elastic MDS.

Require: Dissimilarities D’ (4, 7),
1: Initialise D, = >, ay D!, with « given by the maximal eigenvalue of each
dissimilarity matrix.

2: Initialise H = I, calculate ® from equation ,

3: Initialise W = ®'D,,D, = ®W,

4: Initialise y; by kernel PCA or randomly.

5: Calculate latent dissimilarities Dy (4, j) = |ly; — yjll2,

6: Calculate initial error E from equation (T]),

7: for epochs = 1:Nepochs do

8: for iter = 1:Niter do

9: Calculate error gradients g—Ei,

10: Perform a gradient step for y; with SCG to give v,
11: Re-calculate latent dissimilarities D, (4, 7) = [[y; — ¥;ll2,
12: Re-calculate mapping error E,

13: if error reduced then

14: Update y; + v,,

15: end if

16: end for

17: Perform a gradient step using equation @) to give Dy = D, — naaTEz,
18: Perform a gradient step using equation 1@) to give H,
19: Calculate ® from equation ,

20: Update weights W =diD,,

21: Re-calculate input dissimilarities D, = ®W,

22: Re-calculate mapping error F,

23: if error reduced then

24: Update H < HW « W |, & « .

25: end if

26: end for

the framework of algorithm [I] on four standard datasets. Experiments have
been repeated five times with randomly perturbed initialisations. In each case
the mappings converged to the same latent space indicating a global minimum
has been achieved. We also present visualisations generated using Isomap with
a geodesic dissimilarity measure over both a linear and nonlinear mixture of
input dissimilarities. The neighbourhood size, k, is set such that a connected
neighbourhood graph is achieved. For each experiment the following parameter
settings of algorithm [I] were used:

e Nepochs = 150 iterations,

e Niter = 20 iterations optimised with scaled conjugate gradients and a
threshold parameter le~# resulting in early stopping of the gradient cal-
culation,

e Learning parameter n = 0.8 which is increased by a factor of 1.2 upon



successfull gradient steps and decreased by a factor of 0.64 otherwise.

For each experiment we detail the training time for each section of algorithm ] as
these will depend on model parameterisation. The first category is naturally the
construction of DL (i, j) as this will depend on the specified dictionary. Secondly
we detail the initialisation of D, and ®,W stages corresponding to algorithm
steps 1 and 2-3 resepctively. Finally we report the computation time for the
training of the latent space mapping. All experiments were performed using
unoptimised code in Matlab on a core i5 1.7Ghz quadcore computer. These
results are compared to the time required to generate a standard Elastic MDS
mapping, with justification for the time differences, in section 3.5.
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Figure 1: The swiss roll dataset in 3-dimensional observation space. The struc-
ture contains dark blue points at the centre (the left of the 2-dimensional latent
rectangle) and dark red points at the exterior of the curve (the right of the
2-dimensional latent rectangle).

3.1. Swiss Roll

Firstly we analyse the artificial swiss roll dataset used extensively in [23]
to test nonlinear dimension reduction algorithms. The 3-dimensional observed
structure consists of 300 points randomly sampled from a 2-dimensional rectan-
gular grid mapped into the roll.

Figures[2 and [3|show three visualisations of the swiss roll generated by Elastic
MDS. For reference we use Elastic MDS based on a standard Euclidean distance
input as a benchmark in figure When the learned input dissimilarities are
linear, shown in figure ), there is a greater level of overlap between the blue
and orange points than when the learned input dissimilarities are nonlinear in
figure ) The spread of points within each local region of the roll is also lower
in the nonlinear extension. As such the unnormalised mapping stress for the
linear mixture in figure ) is 143,320 compared to 11,649 for the nonlinear
extension in figure ) This is due to the removal of restrictions in the linear
case allowing for a more flexible dissimilarity matrix, D, (4, j), to be constructed
in the nonlinear model. Figure [4 shows the responsibilities for each of the
dissimilarity measures in table[I] In this artificial dataset the model utilises all
measures in the mapping.

The Isomap visualisations are shown in figure [5| with linear mixtures of
input dissimilarities in figure ) and the nonlinear extension in figure )
The neighbourhood parameters were k = 10 for both experiments, achieving a
connected graph. The nonlinear learned structure in figure ) appears to form
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Figure 2: Visualisation of the swiss roll dataset in 2-dimensional latent space
assuming Euclidean distance inputs. There is a significant overlap of dark blue
points with orange points and minimal separation between the red and light-blue
points.
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Figure 3: Visualisations of the swiss roll dataset with (a) linear input dissimi-
larities Elastic MDS and (b) nonlinear input dissimilarities in Elastic MDS.
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Figure 4: Responsibilities of the dissimilarity measures for the swiss roll map-
ping.
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Figure 5: Swiss roll dataset visualisations with Isomap based on (a) linear and
(b) nonlinear input dissimilarities.

a latent loop, however there is a discontinuity at the join, whilst imposing a
lower level of overlap between neighbourhoods than the linear input dissimilarity
model in figure [Bh).
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Figure 6: MNist mapping with Elastic MDS based on Euclidean distances as
inputs. The latent variables of digit thickness and curvature are not mapped
across the latent space, nor are incorrectly drawn digits clustered appropriately.

3.2. MNist Dataset

The second experiment presented in this paper is a subset of the MNist
dataset [22]. We focus on 150 patterns with 50 ‘0’s, ‘I’s and ‘6’s such that
N = 150. The handwritten digit images are 28 x 28 pixels and are therefore
treated as 784-dimensional observation vectors. A natural latent similarity is
expected between the ‘0’ and ‘6’ classes which both posess a circular structure.
Similarly we expect the ‘1’s and ‘0’s to be separated since the straight line in the
‘1’s should not be seen in the joined ‘0’s. For reference we show the visualisation
based on Euclidean distances as inputs in figure[6] Figures[8h) and[8p) contain
the visualisations of the MNist dataset with Elastic MDS based on linear and
nonlinear input dissimilarity learning respectively. In both cases the topological
ordering of points is similar moving from ‘0’s on the left through ‘6’s to ‘1’s
on the right of the latent space with bold face characters are located centrally.
Slanted ‘1’s are situated at the top of the latent spaces and the latent variable
of orientation in ‘6’s moves from left to right slants along the y-axis. The digits
with poor caligraphy, particularly the ‘1’s with bends and discontinuous ‘0’s
and ‘6’s, are located at the top of the visualisation. The noticable difference
between these two mappings is that the latent points, y;, are located upon an
approximately uniform circular grid in figure ) On the other hand there
is more clustering in the edges of the latent circular structure in figure )
The nonlinear learning of D, (%, j) has allowed the Elastic MDS cost function
to be reduced from 20,565,002 in the linear case to 1,509 when the dissimilarity
measure of equation [2|is better approximated.

The responsibilities, r;, allocated to each dissimilarity measure in the train-
ing phase are shown in figure Unlike in the linear input dissimilarity case
of [4I] where the Ware and Hedges dissimilarity measure was most significant
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Figure 7: Responsibilities of the dissimilarity measures for the MNist mapping.

in mappings, here the median distance is sufficient to allow nonlinear interpo-
lation of the latent variables. This would allow for a sparse solution in this
case as a single dissimilarity measure accounts for nearly all of the responsibil-
ity in the mapping. No link between the responsibilities and the dissimilarity
measures, D'(, j) has been identified and since RBF networks perform a many-
to-one mapping it is not expected that r; will have a physical meaning beyond
automatic relevence detection.

The visualisations of the MNist dataset usign Isomap on the learned dissim-
ilarity measures are shown in figure [0] In the linear case a neighbourhood size
of k = 28 was required however for D, (i, j) constructed using the method pro-
posed in this paper a neighbourhood size of k = 3 was sufficient for the graph to
be fully connected. The linear learned input dissimilarity visualisation of figure
@i) separates the class of ‘1’s from the other two classes and does not separate
out the poorly drawn digits. On the other hand the mapping of figure @]b) bears
more resemblence to that of figure ) generating an approximately uniform
filled circle with bold face characters at the central regions and disconnected
‘0’s at the top. This visualisation is clearly more informative than the linear
case of figure [9p).

The intrinsic dimensionality of these digits is estimated to be between 7 and
12 [I8] and therefore all physical latent variables cannot be accounted for in a
2-dimensional latent mappings. In spite of this a successful visualisation must
ensure the pivotal latent variables are interpretable, as the visualisations with
nonlinear input dissimilarity learning do.
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Figure 8: Visualisations of the MNist dataset using Elastic MDS with (a) linear
16

and (b) nonlinear input dissimilarity learning.



Figure 9: Visualisations of the MNist dataset using Isomap with (a) linear and

(b) nonlinear input dissimilarity learning.

17



8.8. Artificial Faces Dataset

The next dataset analysed in this paper is the artificial faces dataset [49]
which was demonstrated with Isomap. The 698 observations consist of 64 x 64
pixel images, treated as 4096-dimensional vectors, where the face is subject
to differing levels of light and camera orientation. These two latent variables
should be clearly represented in any generated visualisations. Figure [I0] shows
the visualisation based on standard Elastic MDS for reference.

As with the MNist dataset the visualisations generated using Elastic MDS
with linear and nonlinear dissimilarity learning, shown in figures ) and )
respectively, are very similar in terms of the topological ordering and neigh-
bourhoods of points. The latent variable of lumination is mapped from dark
on the left to light on the right with orientation changing as the latent points
move around the circular structure. The nonlinear learned model does not
posess the discontinuity present in the linear equivalent in figure ) The
mapping stress for the linear model is 89,465,000 compared to only 32,533 using
the method developed in this paper. The nonlinear model is naturally more
flexible than the linear counterpart, allowing for instance the latent points to
be situated further from one-another. One way of assessing this is to anal-
yse the range of values in the two latent dimensions under each model. For
the standard Elastic MDS case with Euclidean input dissimilarities the latent
space is contained within the rectangle {(—380.05, —617.72), (426.90, 628.84)}.
The Elastic MDS model with a linear mixture of input dissimilarities is con-
tained within the larger rectangle {(—1,788.1 — 1,803.1),(1,886.3,1,614.3)}.
When the linear restrictions on the approximation of the natural dissimilar-
ity over observations are removed in the nonlinear learned input dissimilarity
model, the visualised points are contained within the much larger rectangle
{(-5,017.9,-5,033.3), (5,051.3,4,947.1)}. The larger spacing between latent
points in the nonlinear model of figure ) allows for the reduction in stress
when compared to the linear counterpart in figure [12h).

The responsibilities for each of the input dissimilarities, D!(4, j), are shown
in figure For the artificial faces dataset the dominant features are shared
between 7 different dissimilarity measures, allowing a sparsity level of over 53%.
As with the MNist dataset the median distance (measure 7) is significant in the
generation of the visualisation.

The Isomap visualisations of the faces dataset with linear and nonlinear input
dissimilarity learning are shown in figures[I3h) and[I3p) respectively. Both cases
required a neighbourhood size of £ = 16 to create a connected graph. For the
linear case the latent space appears to peel the two regions of darker faces apart
based on the difference in orientation. On the other hand when D, is learned
nonlinearly the latent space is more continuous moving from dark images on
the left to lighter images on the right, as in figure ) The latent variable of
orientation is again mapped around the oval structure on the more continuous
latent structure. The approach of this paper therefore generates a more intuitive
visualisation of this dataset also than that of [41].
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Figure 10: Visualisation of the Faces dataset using Elastic MDS based on
Euclidean input distances. There are clear discontinuities on the right side of
the latent space and outliers on the upper left which have clearly been removed
from their neighbours.
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Figure 11: Responsibilities of the dissimilarity measures for the faces mapping.
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Figure 12: Visualisations of the Faces dataset using Elastic MDS with (a) linear

and (b) nonlinear input dissimilarity learning.
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Visualisations of the MNist dataset using Isomap with (a) linear

and (b) nonlinear input dissimilarity learning.

Figure 13:
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8.4. Caltech101 Images Dataset

Our final experiment considers visualisation of the Caltech101 images dataset
[13]. A subset of the images is used for analysis containing 52 aeroplanes, 52
Bonsai trees and 52 dollar bills. We first generate a SURF bag-of-words [5]
in which the 156 observed images are mapped to 500-dimensional vectors as
input to the Elastic MDS and Isomap algorithms. The visualisation based on
standard Euclidean Elastic MDS is shown in figure

The visualisations using linear and nonlinear input dissimilarity learning are
shown in figures [I6] and [I7] respectively. As with the previous two datasets the
topological ordering and neighbourhood structures are very similar, grouping
dollar bills on the right and bonsai trees at the top of the latent space. Aero-
planes with grass present on the runways are placed in close proximity and
darker bonsai tree images are mapped on the left side of the circular structure.
In both cases the dollar bill and bonsai tree with red backgrounds are mapped
as neighbours, but the bonsai tree in the lower right of the linear case with
the white background is correctly placed among the other bonsai trees in the
visualisation of figure[I7} In addition to this the bonsai tree and dollar bill with
brown wood backgrounds are neighbours in the nonlinear model visualisation of
figure [I7] placed at the upper left region, whereas in the linear equivalent they
are separated. Further to this the latent points, y;, of the method proposed in
this paper are again placed approximately uniformly across a latent circle with
less clustered edges as in the linear case of figure The mapping stress in the
linear input dissimilarity case was 1,244,400 which was far higher than that of
the nonlinear case, 1,628.

The responsibilities allocated to each dissimilarity measure are presented in
ﬁgure As with the MNist case the median distance (measure 7) is allocated a
large responsibility, however here the weight is negative. This dominant feature
will allow for a level of sparsity and therefore a more efficient model to be
trained.

The Isomap visualisations of the Caltech101 dataset are shown in figures[I§]
and [I9]for the linear and nonlinear model cases respectively. For the linear input
dissimilarity case of figure [18] generated with a neighbourhood size of k = 68,
there are three distinct clusters with some dollar bills and aeroplanes being
incorrectly placed in the neighbourhood of the bonsai tree cluster. On the other
hand the visualisation when the input dissimilarities are learned in a nonlinear
fashion, generated with a small neighbourhood size of only & = 5, resembles
the Elastic MDS cases of figures and placing dollar bills on the right
with a smooth transition from aeroplanes with grass present to the similarly
coloured bonsai trees. The dollar bill and bonsai tree with red backgrounds
are placed close together, as are the bonsai tree and dollar bill with the brown
wooden backgrounds at the top of the elliptical structure. Further to this the
latent space is again approximately uniform across the ellipse, with latent points
almost as regularly spaced as in the nonlinear Elastic MDS case of figure
This visualisation is clearly an improvement on the linear input dissimilarity
model and therefore also better than the standard Elastic MDS and Isomap
cases for generating visualisations.
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Figure 14: Visualisation of the Caltech101 dataset using Elastic MDS with
Euclidean input distances. There are notable issues with this representation
such as the cluster of dollar bills on the left side which should be with the
remainder of dollar bills on the right side. In addition an outlying dollar bill is
contained within the region of aeroplanes on the lower left of the space.
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Figure 15: Weighting of the dissimilarity measures for the Caltech101 mapping.
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Figure 16: Visualisation of the Caltech101 dataset using Elastic MDS with
linear input dissimilarity learning.
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Figure 17: Visualisation of the Caltech101 dataset using Elastic MDS with
nonlinear input dissimilarity learning.
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Figure 18: Visualisation of the Caltech101 dataset using Isomap with linear
input dissimilarity learning.
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Figure 19: Visualisation of the Caltech101 dataset using Isomap with nonlinear
input dissimilarity learning.
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Experiment | D% (i,5) | D.(i,5) | ®, W | Map | Standard EMDS

Swiss Roll 18.86 0.47 0.83 52.95 44.26
MNist 26.25 0.15 0.13 | 441.83 25.73
Faces 9737.13 5.20 14.76 | 659.78 47.00
Caltec 16.29 0.16 0.15 | 356.33 27.63

Table 2: Time in seconds to calculate the [ components of DL (4, j), the initial-
isation of D,(i,j), the initialisation of the RBF network parameters ® & W
and the learning stage compared to that of standard Elastic MDS.

140

120

100

80

60

Training Time

40

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Dissimilarity Measure

Figure 20: Time required to train a standard Elastic MDS mapping with input
dissimilarity measure, D,(i,7), given by each of the measures taken from the
proposed dictionary of table

3.5. Computational Considerations

The time required to compute each of the above mappings is shown in table
The high cost for calulation of D' (i, ) for the Artificial Faces dataset is due
to the high dimensionality (4096) of the observations. Naturally the experiments
of our proposed method are more computationally expensive than the standard
Elastic MDS with Euclidean input dissimilarities as we propose to learn not only
a set of latent points, but the input dissimilarities also. This increase in time is
worst for the MNist mapping with a slow down factor of over 17 times. Although
this may seem a serious barrier to implementation we do not consider this an
issue because we are incorporating a dictionary of different measures. As an
alternative to our proposed learning approach a mapping should be computed
with each dissimilarity measure in the dictionary in order to approximate a
chart over the manifold. For the MNist dataset the time required to compute
an Elastic MDS mapping with each of the 15 measures from the dictionary used
in this paper is shown in figure In total it would require 815.87 seconds of
computation to generate the 15 mappings, following which these would require
human interpretation, which is in excess of the 441.83 seconds required for our
proposed approach.
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Figure 21: Plot showing error (top), duration per iteration (middle) and mag-
nitude of latent points (bottom) during the training process. It is clear that the
mapping focuses firstly on the minimisation of the error through movement of
the latent points whilst retaining the same magnitude of latent points during
the first 45 iterations. Beyond this point the mapping expands the latent space,
increasing ||Y'||2, to cause a rapid decrease in error. During this period the
relative positioning of the points does not change significantly. This is obvious
through the lower training time requirement per iteration step, caused by the
clipping parameter preventing miniscule gradient modifications.

When the mapping is trained in the approach of algorithm 1 we find an inter-
esting two-stage development of the latent spaces. Figure|21|shows the changes
in error, duration and latent space magnitude over time. There is a clear initial
phase where the latent points are repositioned to minimise the cost function with
the size of the latent space remaining unchanged post-initialisation. Following
this phase the points y; undergo an expansion and steps 8 to 16 of algorithm
are not required at each step.

8.6. Mapping Architecture

For the MNist visualisation we ran the experiment allowing for different con-
figurations of the RBF network used to construct D, (4, j). Firstly we investigate
the significance of the number of network prototypes, v; used. Figure @ plots
the weight magnitude against iteration number for five different configurations
of network where the percentage indicates the proportion of vectors u; used
as prototypes v;. The network clearly self-regularises preventing overtraining,
as in NeuroScale [28], such that using more centres results in a lower weight
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Figure 22: Weight magnitude (logarithmic scale) plotted against iteration num-
ber for the MNist dataset. Each curve corresponds to a different setup of RBF
network where the percentage of datapoints u; are used as network prototypes
v; where in the 100% case all inputs are used as network centres. In the other
four cases the selected prototypes were chosen randomly.

Prototypes used | Mapping Stress
100% 1,509
50% 1,617
33% 1,716
25% 1,751
20% 1,764

Table 3: Mapping stress for different proportions of the RBF network inputs
used as network prototypes.

magnitude. Furthermore, as shown in table |3] the mapping stress also reduces
as the number of centres increases.

A further experiment we performed was to limit the size of the RBF network
inputs, u;. We create a reduced dimensionality input vector u; = [d~21, cif, ey dﬂ
where cill contains M elements with M < N. We investigated the impact on the
MNist mapping when d; contains 100%, 50%, 33%, 25% and 20% of the elements
in d;. The mapping stress for each of these cases was constant at 1,509, however
the weight magnitude varies in each case. Figure 23] presents the weight magni-
tude at during training for each of the setups. The highest weight magnitude,
attributed to overtraining, is found in the case where M = N at 100%, with the
lowest achieved when M = 0.2N.

The optimal configuration for the above experiments was to fix H = I, using
a large prototype set {v;};=1.5 = {@; }i=1.~, and a low dimensional input vector
u; with M = 0.2N.
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Figure 23: Weight magnitude (logarithmic scale) plotted against iteration num-
ber for the MNist dataset. Each curve corresponds to a different setup of RBF
network where the percentage of dissimilarity vectors in @, is varied. The 100%
case corresponds to ; = u; whereas the 20% case occurs when w; only contains
20% of the elements in u;.

4. Conclusion

In this paper we have presented a novel method for generating a nonlinear
chart over observations whilst simultaneously constructing a visualisation with
Elastic MDS. The linear framework of [41] was extended to allow for nonlinear
interpolation of the induced dissimilarity space. For each of the four visuali-
sations presented in this paper the learned visualisations using the nonlinear
input dissimilarity improved on the linear cases in terms of both mapping stress
and the topological ordering of latent points. We have shown that the nonlinear
chart can be combined with an ARD weight scheme to allow for sparse solu-
tions, increasing efficiency. Further to this we have discussed the architecture of
RBF network allowing for optimum visualisation performance while preventing
overtraining.

Further research will test the extent to which the benefits of linear and non-
linear chart learning processes translate to other mappings such as Curvilinear
Component Analysis, Stochastic Neighbour Embedding and Bregman MDS.
Further to this we will investigate dissimilarity measures which form a robust
dictionary to visualise non-vectorial observations such as probability distribu-
tions and graphs.
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