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Abstract 

Bioactive glasses are of great importance for medical and dental applications. In order to understand, 

model and predict the behaviour of these materials, and ultimately improve their design, it is 

important to understand the structure of these glasses. Ion dissolution is known to be the crucial first 

step in bioactivity and is strongly dependent upon the atomic scale structure and network 

connectivity. Whilst significant progress has been made understanding the structure of oxide based 

glasses, relatively little is known about the structure of bioactive glasses containing halides. Recently 

a series of novel chloride based bioactive glasses has been developed. Chlorapatite converts to 

hydroxyapatite in water and these glasses are therefore of interest for novel toothpastes. This study 

reports the first detailed structural investigation of these bioactive chloride glasses using neutron 

diffraction and solid state NMR. Chlorine was found to bond to calcium within the glass, and no 

evidence of Si-Cl bonding was detected. Furthermore, the absence of a chemical shift in the 29Si 

NMR upon the addition of CaCl2 helped confirm the absence of detectable amounts Si-Cl bonding. 

Given that chlorine does not disrupt the Si-O-Si network, widely used network connectivity models 

are therefore still valid in oxychloride glasses. 



2 
 

Introduction 

Since the invention of bioglass by Larry Hench in 1969, bioactive glasses have been used for a 

range of medical and dental applications [1-3]. These glasses have the ability to chemically bond to 

bone and stimulate new bone growth [4, 5]. The reaction mechanisms are reasonably well 

understood for archetypal bioactive glasses. Controlled dissolution of the glass is the critical first 

step in the bioactivity of these materials. Traditional bioactive glasses consist of sodium calcium 

silicate glasses with the addition of small quantities of P2O5. Calcium ions are released from the 

silicate host and combine with phosphorous ions (either from the glass or from body fluid) to form an 

amorphous calcium phosphate layer which then crystallises into hydroxyapatite [6]. Sodium oxide is 

only incorporated into the glass to improve glass forming properties (lowering the melt temperature) 

and for aiding the dissolution of the glass. Oxygen atoms have a large affinity for bonding with silicon 

atoms, therefore the addition of oxygen atoms in the form of sodium and calcium oxide fragments 

the silicate network. The atomic-scale structure, its effect on the network connectivity, and the effects 

of these factors on the chemical durability and bioactivity has been widely studied and is reasonably 

well understood for sodium calcium phosphosilicates [7-9]. However other systems are less well 

studied. 

Recently, Hill and co-workers have developed novel sodium free bioactive glasses containing halides 

for dental applications [10, 11]. Fluoride containing glasses have potential benefits for dental 

applications; for example the presence of CaF2 favours the formation of fluorapatite which is more 

resistant to acid erosion. Consequently, fluoride doped bioactive glasses are already incorporated 

into toothpastes. However, high fluoride concentrations in bioactive glasses result in the formation 

of CaF2 upon quenching [10]. Furthermore given that excess fluoride can potentially lead to fluorosis, 

the use of fluoride is highly regulated in toothpastes with an upper limit of 1500ppm in Europe [12]. 

Chen et al. have developed a series of novel CaCl2 containing glasses as an alternative to the 

fluorides [10]. Replacing calcium fluoride with calcium chloride avoids the problems of excess CaF2 

in the glass and avoids regulatory restrictions since chlorides are naturally present in the human 

body. Chlorapatite readily converts into hydroxyapatite on immersion in water making chloride 

containing bioactive glasses particularly attractive for incorporating into toothpaste. 
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In order to be able to model and predict the behaviour of these glasses and ultimately improve their 

design it is important to understand the local structure of these novel glasses and in particular the 

role chlorine adopts in these glasses. The structure will strongly influence the release kinetics and 

dissolution profile however it is not possible to predict a prior the structure of these glasses.  

There have been reports that F can bond directly to Si in calcium fluorosilicates; e.g. Iwamoto et al. 

[13] found that F ions bond to Si at low CaF2 concentrations (< 7 mol %), and Tsunawaki reported 

that Si-O bonds were still broken for concentrations up to 15-20 mol% CaF2 [14]. However the large 

size difference between Cl and F ions means they could adopt significantly different structural roles. 

Again there are conflicting reports of the role Cl may adopt within these glasses; for example 

Rabinovich et al. [15] hypothesised that Cl- can replace bridging oxygen atoms due to their 

polarizability whilst Sandland et al. reported chloride ions were primarily coordinated to Ca2+ in 

calcium silicate glasses [16].  

We have therefore investigated a series of CaCl2 containing glasses using a combination of neutron 

diffraction and solid state NMR. Glasses of composition (SiO2)50-x/2(CaO)50-x/2(CaCl2)x, where x varies 

between 3.3 and 27.4 were designed to keep a constant Si:O ratio to enhance sensitivity to any 

structural differences in the silicate network caused by the addition of CaCl2. 

 

Methods 

Glass preparation 

Melt quenched glass samples were prepared using SiO2 (Alfa Aesa, 99.5%), CaCl2.2H2O (Sigma 

Aldrich ≥ 99.999%) and CaCO3 (Alfa Aesar, 99.95-100.05%) precursors. After weighing the 

precursors in the appropriate molar concentrations the chemicals were thoroughly mixed and placed 

into a 90%Pt-10%Rh crucible. The crucible and precursors were then heated, under an inert flowing 

argon atmosphere, from room temperature to a final temperature of between 1320°C and 1530°C 

with a heating rate of 10°C/minute. After homogenising for 1 hour at temperature, the liquid melts 

were rapidly splat quenched between two carbon graphite blocks to form glasses. The mass of the 

resultant glass was measured and compared with expected values, based on the mass of the starting 
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precursors, to ensure no unexpected losses occur during the heating process. Excess argon 

prevented oxidation during the heating process. To avoid potential absorption of moisture from air, 

the glasses were stored in a desiccator. Glass densities were measured using a He pycnometer 

(Quantachrome Multipycnometer). The nominal glass compositions, melt temperatures and glass 

densities are given in Table 1.  

 

Neutron diffraction 

Neutron diffraction spectra were collected using the GEM diffractometer at the ISIS spallation 

neutron source at the Rutherford Appleton Laboratory, UK [17]. The coarsely ground samples were 

held at ambient temperature in a cylindrical vanadium container of 8.3 mm internal diameter and 

0.025 mm wall thickness. Interference patterns were collected for each of the samples, an empty 

vanadium container, an 8 mm diameter vanadium niobium null alloy (0.941V: 0.059Nb) and the 

empty GEM instrument in order to perform the appropriate corrections. Data corrections including 

background scattering, inelastic, multiple and self-scattering were performed using GUDRUN [18].  

Following these corrections, the resultant coherent scattering intensity, i(Q), is defined by 

݅ሺܳሻ ൌ 	∑ ∑ ܿ ܾܿ ܾൣሺܳሻ െ 1൧               (1) 

where ci, cj, bi and bj represent the atomic concentration and coherent scattering length of the 

chemical species i and j respectively, and pij(Q) is the pair correlation function. Fourier transforming 

i(Q) generates the total correlation function, T(r), given by 

ܶሺݎሻ ൌ 	ܶሺݎሻ 	
ଶ

గ	
	 ܳ݅ሺܳሻܯሺܳሻ sinሺܳݎሻ ݀ܳ
ஶ
       (2) 

where M(Q) is a Lorch window function that takes into account the finite maximum experimentally 

attainable value of Q. T0(r) is the average density term, given by: 

ܶሺݎሻ ൌ ∑ሺߩݎߨ4	 ܿ ܾ ሻଶ         (3) 

where r is the distance from an arbitrary atom at the origin and ρ0 is the atomic number density.  
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Structural information can be obtained by modelling the real-space correlation functions. Pair 

functions are generated in Q-space and Fourier transformed to allow comparison with the 

experimental data in real-space. The pair functions are given by: 

ሺܳሻ ൌ 	
ேೕ௪ೕ

ೕ
	
ୱ୧୬ொ	ೕ
ொ	ೕ

exp 
ିொమఙೕ

మ

ଶ
൨	                   (4) 

where Nij, rij and σij represent the coordination number, atomic separation and disorder parameters 

respectively. The weighting factor wij is given by: 

ݓ ൌ 2ܿ ܾܿ ܾ 					if	݅ ് ݆           (5) 

ݓ ൌ 	 ܿ
ଶܾ

ଶ												if	݅ ൌ ݆                                                 (6) 

Atomic bond distances, coordination numbers and disorder were fitted using NXFit [19].  

29Si NMR 

Solid state NMR spectra were obtained at the EPSRC UK National Solid-state NMR service at 

Durham on a 4.0 MM pencil Varian VNMRS 400 MHz spectrometer. The observed 29Si spectra were 

acquired with a frequency of 79.438 MHz, spectral width of 40322.6 Hz, acquisition time of 12.7 ms, 

and repetitions in the range 56-800 with a recycling time of 120 s at ambient temperature. Direct 

excitation had a pulse duration of 4.6 µs with a two pulse phase modulated decoupling [20] spin rate 

of 6000 Hz with reference to tetramethylsilane (0 ppm) [21].        

      

Results and discussions 

The series of calcium silicate glasses containing CaCl2 were successfully prepared by splat 

quenching between two carbon graphite blocks. In contrast to samples quenched into open graphite 

moulds, which showed visible signs of crystallisation and were therefore discarded, glasses 

quenched between two graphite plates were visibly clear and homogenous and showed no sign of 

crystallisation. Splat quenching avoided the need to quench into water which is highly undesirable 

given that these glasses are hydroscopic and water soluble. Furthermore neutron scattering is very 

sensitive to hydrogen which gives rise to large inelastic scattering and can be difficult to accurately 

correct for. 
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Density as a function CaCl2 content is given in Figure 1. As shown there is a systematic decrease in 

density of the series as the CaCl2 content increased. In contrast the molar volume increases with 

increasing CaCl2 concentrations. Similar trends of reduced density and increased molar volume as 

a function of CaCl2 were reported by Chen [22].   

 

Neutron diffraction. 

Neutron interference functions, i(Q), for the (SiO2)50-x/2(CaO)50-x/2(CaCl2)x series are shown in Figure 

2. Although the reciprocal space data extends to 50 Å-1 only 0 < Å-1 < 30 is shown for clarity. Figure 

3 shows the corresponding real space correlation function, T(r), obtained by Fourier transforming 

the reciprocal space i(Q) functions given in Figure 2 over the full range of 0 to 50 Å-1. The first peak 

in real space at ~ 1.6 Å corresponds to the well-defined Si-O tetrahedra. Given the size of the atoms, 

it is anticipated that a Si-Cl peak would occur in the region ~2.0 Å [23]. The absence of any notable 

features in this region suggests there is minimal direct bonding between silicon and chlorine at this 

detection level. As a result it is assumed that only interlinking SiO4 tetrahedra form the network 

structure of the glasses. 

The second principal feature in real space is more complex and contains overlapping O-(Si)-O and 

Ca-O correlations, of which the Ca-O can be further refined into bridging (Ca-OB) and non-bridging 

(CaONB) correlations. In addition, Ca-Cl peaks would be expected to appear in this region. The 

position of the O-(Si)-O correlation is reasonably well defined by the geometry of the SiO4 tetrahedra 

given by ඥ8/3 rSi–O, being ~ 2.65 Å. The O-(Si)-O coordination number can also be modelled using 

connectivity models and confirmed using 29Si NMR. For a silicate glass the network connectivity (NC) 

is given by 

NC = 4 – 2Z,          (7) 

where Z, the number of excess oxygen per SiO2, and is given by 

Z = 2
Si

O 
c

c
          (8) 

where cO and cSi represent the concentration of oxygen and silicon respectively.  
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Solid state NMR 

Figure 4 shows the solid state 29Si NMR. Spectra are similar for all of the chloride containing glasses, 

and have a broad peak at ~ -81ppm which is assigned to a Q2 connectivity. The Q2 species full 

linewidth at half-height of ~13 ppm causes significant spectral overlap with the corresponding Q1 and 

Q3 chemical shift regions and precludes their independent observation if they are present at low 

concentrations. Importantly, only the average Qn species is required to calculate the O–(Si)–O 

coordination number given in the model. In previous 29Si NMR studies on bioactive glasses 

linewidths of ~ 12ppm corresponded to less than 3% Q1 or Q3. In pure SiO2 the network connectivity 

is 4 as shown in Figure 5 (left) and Figure 6. Each of the oxygen atoms are bridging (i.e. bonded to 

two silicon atoms). The addition of further oxygen atoms in the form of CaO depolymerises the Si-

O-Si network as shown in Figure 5 (right). A single additional oxygen atom per two Si tetrahedra 

reduces the network connectivity from Qn to Qn-1. As illustrated a single CaO for two silica units 

reduced the connectivity from Q4 to Q3. In the present system, given in Table 1, the glasses have a 

fixed Si:O ratio of 1:3 (due to a SiO2:CaO ratio of 1:1), i.e. there is one excess oxygen per silica, or 

two excess oxygen atoms per two silica units. It is therefore anticipated that the glasses would adopt 

a Q2 structure (Figure 6).  

The absence of any significant difference in chemical shifts between samples (Fig. 4), combined with 

the absence of any notable Si-Cl peak in the region ~2 Å (Fig. 3) strongly suggests that chlorine 

atoms do not bond directly to silicon atoms. In addition this shows that CaCl2 is not oxidised into 

CaO during the manufacturing process, as any oxidation would have changed the Si:O ratio (as 

shown in Figure 5) and therefore change the 29Si chemical shift. Coupled with knowledge of the Q 

speciation allows the average O–(Si)–O coordination number to be calculated. A bridging O atom 

has six next nearest neighbour O atoms whilst a non-bridging O has only three next nearest 

neighbour O atoms as shown in Figure 5. It can therefore be calculated that the average O–(Si)–O 

coordination number for a metasilicate (Q2) glass is 4.0. The complex overlapping region 2.2 < r (Å) 

< 2.8 has therefore been simplified by applying the network connectivity model and verified using 

29Si NMR. 
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Fits for GCl 6.6 and GCl 16.1, representative of low and high CaCl2 concentrations, are shown in 

Figure 7 and the corresponding fitting parameters are given in Table 2. Table 2 shows the Si-O peak 

at ~ 1.63 Å is constant for all of samples independent of the addition of CaCl2. As the CaCl2 

concentration increases, the disordering in SiO4 tetrahedra remains almost constant. The Si-O 

coordination number remains ~4.0(1) for all the samples, showing that each Si is surrounded by a 

tetrahedra of oxygen atoms. If Cl atoms had replaced O atoms within the tetrahedra a subsequent 

reduction in the Si-O coordination number would have been anticipated in order to accommodate 

the Si-Cl bonds. In addition there are no obvious features at ~ 2.0 Å where potential Si-Cl correlations 

would have been expected to occur. The Si-O distance agrees with mean Si-O distance of 1.63 Å in 

crystalline calcium chlorosilicate Ca2SiO2Cl2 and wollastonite Ca3Si3O9 [24, 25]. Whilst Rabinovich 

et al. [15] hypothesised that Cl- atoms are capable of replacing all the O atoms within the SiO4 

network at higher synthesis temperatures based on their polarizability no evidence of this is found 

here. Furthermore our results are in agreement with the 35Cl MAS NMR results of Sandland et al.[16] 

who reported chloride ions were primarily coordinated to Ca2+ in calcium silicate glasses with no 

significant Si-Cl bonds being detected. The present results are also in agreement with the recent 

molecular dynamic simulations of CaO-SiO2-CaCl2 glass by Swansbury et al. who reported an 

absence of direct Si-Cl bonding [26].   

The Ca-O environment is split into non-bridging and bridging correlations at ~ 2.37(2) and 2.75(1) Å 

respectively with ONB coordination numbers decreasing from 5.2(2) to 3.5(2) and OB decreasing from 

1.4 to 1.0(2) upon the addition of CaCl2 as shown in Figure 8. Values for the lowest content Cl glass, 

GCl3.3, are in reasonable agreement with previous reports for a range of calcium silicate bioactive 

glasses [27-29] where values ONB and OB coordination numbers of 5.3 and 1.3 were reported. Ca-

Cl correlations were observed ~ 2.78(1) Å in broad agreement with distances reported for crystalline 

Ca2SiO3Cl2 (equivalent to x = 0.33 in our system) where values of 2.76, 2.77, 2.81 and 2.82 Å were 

observed[24].  

As expected, the average number of Cl atoms surrounding Ca significantly increases (from 0.3 to 

2.1) as the concentration of CaCl2 increases, while the average number of O atoms decreases in 

anti-correlation (Figure 8). Despite these structural changes, the average total number of atoms 
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surrounding a calcium atom remains constant at ~6.8(1) which is in good agreement with the calcium 

polyhedra reported for crystalline Ca2SiO3Cl2.  

The diffraction data provides an average of the structure and gives mixed Ca-O/Cl polyhedra as 

anticipated. For example, in crystalline Ca2SiO3Cl2 mixed calcium polyhedra were observed where 

each calcium atom was bonded to 4 oxygen atoms and 3 chlorine atoms thereby giving a total Ca 

coordination number of 7 [24]. However whilst there is no evidence of phase separation from this 

study it is worth noting that Swansbury et al. have recently reported that phase separation can occur 

for CaCl2 concentrations above 16.1. Small angle scattering would be needed to unambiguously 

determine any phase separation. However it is interesting to note that when the Ca-O/Cl coordination 

numbers are scaled by the relative concentrations of O and Cl (to mimic phase separation) then the 

Ca-ONB and Ca-OB coordination numbers are constant for all the glass samples at 5.5(1) and 1.5(1) 

respectively and Ca-Cl coordination number is constant at 6.2(1). This scaling enables a direct 

comparison with previous structural data on the Ca-ONB and Ca-OB coordination numbers reported 

for halide free bioactive glass systems [8, 9]. As expected the Ca-ONB and Ca-OB coordination 

numbers results after scaling are reasonably close to those of GCl3.3 the lowest content CaCl2 glass. 

As anticipated the Ca-Cl correlations are best resolved for glasses containing larger concentrations 

of CaCl2. It is clear that the accuracy of the Ca-Cl peak clearly influences the overall fit as shown in 

supplementary Figure 1 and that the Ca-Cl fit is highly robust for the higher CaCl2 concentration 

glasses. 

Bond valence parameters can also be used to verify the local environment of calcium [30]. Using the 

bond valence method the valence of a cation can be calculated using  

ܸ	 ൌ ∑ ݒ ൌ 	∑ ݔ݁ 
	ೃ
ೕ
షೝೕ


൨          (9) 

where ݒ is the bond valence between atom i and j, B is an empirical constant (0.37) and ܴ is the 

bond valence parameter for the atom pair i,j. ܴ values of RCaO =1.967 Å and RCaCl = 2.37 Å are 

given by Bresse and O’Keefee [31]. ݎ values for rCa-ONB, rCa-OB and rCa-Cl determined from the neutron 

diffraction (Table 2) allow the Ca valence to be calculated. Values of ~ 2.0(1) were calculated for all 
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glass compositions further verifying the reliability of the Ca-O and Ca-Cl bond distances and 

coordination numbers obtained from neutron diffraction fitting. 

 

Conclusions. 

Si-O coordination numbers around 4.0(1) were recorded for samples. No structural features were 

observed in T(r) at ~ 2.0 Å as would be expected for Si-Cl distances. We therefore conclude that Cl 

does not bond directly to Si and does not influence the network connectivity. Furthermore the 

chemical shift of 29Si NMR remains constant ~ -81ppm, confirming that SiO4 tetrahedral are 

unaffected by Cl addition, and that the Si-O-Si network connectivity is maintained independent of the 

addition of CaCl2 into the glass. For the present materials, a meta-silicate Q2 network is present. The 

addition of CaCl2 does not impact the connectivity, and would therefore not be expected to impact 

upon dissolution of the silicate network. However, as the concentration of CaCl2 increases the 

number of Ca-O bonds decreases as calcium coordinates to more Cl, and it is therefore anticipated 

that calcium will dissolve more rapidly from such glasses. 
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Figure captions 

Fig. 1. Density and molar volume as a function of CaCl2 concentration. 

Fig. 2. Reciprocal space functions i(Q) for the glasses. Q space extends to 50 Å-1 only 0 < Q (Å-1) < 

30 is shown for clarity. 

Fig. 3. Real space functions T(r). Data sets are offset for clarity.   

Fig. 4. 29Si NMR chemical shifts. Data sets are offset for clarity. 
 

Fig. 5. A schematic of the structural changes in a silicate upon the addition of oxygen atoms in the 

form of CaO. 

Fig. 6. Illustration of the Q species based on the number of bridging oxygen atoms (O-Si-O). As 

shown a bridging oxygen (OB) has 6 next nearest neighbour oxygen atoms compared to just 3 for a 

non-bridging oxygen (O-). 

Fig. 7. The real space total diffraction patterns, T(r) and the individually fitted pair correlation 

functions for GCl6.6 and GCl16.1. 

Fig. 8. The average coordination number of bridging and non-bridging oxygen atoms and chlorine 

atoms surrounding a calcium atom. 
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Supplementary Figure 1. The real space total diffraction pattern and corresponding fit for GCl27.4. 

The CaCl peak has been omitted from the left hand side figure and it is clear that the model breaks 

down at ~ 2.5 Å. In contrast the right hand side figure includes the CaCl peak and as shown the fit 

is significantly better and the total fit and experimental data are in agreement to ~ 2.8 Å.   

 

Table 1.  Nominal compositions, melt temperatures and densities of the glass series. 

 

 

 

 

 

 

 

Table 2. Neutron diffraction structural parameters obtained by fitting T(r). 

Glass SiO 
 

CaONB O-(Si)-O  CaOB  CaCl 

 r(Å) N σ(Å) 
 

r(Å) N σ(Å) r(Å) N σ(Å)  r(Å) N σ(Å)  r(Å) N σ(Å) 

GCl 3.3 1.63 4.0 0.06 
 

2.37 5.2 0.13 2.65 4.1 0.10  2.76 1.3 0.08  2.79 0.3 0.10 

GCl 6.6 1.63 4.0 0.06 
 

2.37 5.0 0.13 
 

2.65 4.0 0.10  2.75 1.4 0.10  2.78 0.6 0.12 

GCl 9.3 1.63 4.1 0.06 
 

2.38 4.8 0.14 2.66 4.0 0.10  2.74 1.2 0.11  2.78 0.7 0.10 

GCl11.9 1.63 4.0 0.05 
 

2.37 4.8 0.14 2.66 4.1 0.10  2.76 1.2 0.12  2.77 0.9 0.10 

GCl16.1 1.63 4.1 0.05 
 

2.37 4.5 0.13 2.64 4.0 0.10  2.75 1.1 0.13  2.78 1.2 0.11 

GCl27.4 1.63 4.1 0.06 
 

2.36 3.5 0.13 2.65 3.9 0.10  2.75 1.0 0.14 
 

2.79 2.1 0.12 

 

 

Glass code   Nominal glass composition (mol %) Melting  
temp. (°C) 

Density 
(g/cm3)  SiO2 CaO CaCl2 

GCl 3.3 0.484 0.484 0.033 1530 2.99 

GCl 6.6 0.467 0.467 0.066 1480 2.96 

GCl 9.3 0.453 0.453 0.093 1490 2.91 

GCl 11.9 0.441 0.441 0.119 1480 2.94 

GCl 16.1 0.419 0.419 0.161 1470 2.82 

GCl 27.4 0.363 0.363 0.274 1445 2.75 
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