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Abstract 
Microbioreactors play a critical role in process development as they reduce reagent requirements and can 
facilitate high-throughput screening of process parameters and culture conditions. Here we have 
demonstrated and explained in detail, for the first time, the amenability of the automated ambr15 cell 
culture microbioreactor system for the development of scalable adherent human mesenchymal multipotent 
stromal/stem cell (hMSC) microcarrier culture processes. This was achieved by first improving suspension 
and mixing of the microcarriers and then improving cell attachment thereby reducing the initial growth lag 
phase. The latter was achieved by using only 50% of the final working volume of medium for the first 24 h 
and using an intermittent agitation strategy. These changes resulted in > 150 % increase in viable cell 
density after 24 h compared to the original process (no agitation for 24 h and 100 % working volume). 
Using the same methodology as in the ambr15, similar improvements were obtained with larger scale 
spinner flask studies. Finally, this improved bioprocess methodology based on a serum-based medium 
was applied to a serum-free process in the ambr15, resulting in > 250% increase in yield compared to the 
serum-based process. At both scales, the agitation used during culture was the minimum required for 
microcarrier suspension, NJS. The use of the ambr15, with its improved control compared to the spinner 
flask, reduced the coefficient of variation on viable cell density in the serum containing medium from 
7.65% to 4.08%, and the switch to serum free further reduced these to 1.06% and 0.54% respectively. The 
combination of both serum-free and automated processing improved the reproducibility more than 10-fold 
compared to the serum-based, manual spinner flask process. The findings of this study demonstrate that 
the ambr15 microbioreactor is an effective tool for bioprocess development of hMSC microcarrier cultures 
and that a combination of serum-free medium, control and automation improves both process yield and 
consistency. This article is protected by copyright. All rights reserved 
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1. Introduction 

Human mesenchymal multipotent stromal/stem cells (hMSCs) are considered a promising candidate for a 

cell-based therapies given their propensity for growth in vitro, relative ease of isolation, differentiation 

potential and their ability to secrete small molecules which can aid the regeneration of damaged tissue 

(Aggarwal and Pittenger 2005). However the translation of this promising research to clinical adoption will 

require, amongst other factors, the successful development of scalable, sustainable, robust and consistent 

cell manufacturing processes (Rafiq and Hewitt 2015). There is a commercial and clinical need to expedite 

cell therapy process development; small-scale, high-throughput platforms provide a means to achieve this. 

Such technologies can improve efficiency, reduce costs and accelerate time to market whilst minimizing 

development resources (Bareither and Pollard 2011; Pollard 2014; Rafiq and Hewitt 2015). Moreover, the 

high-throughput nature of these technologies are amenable for Quality by Design (QbD) tools such as 

factorial design of experiments (DoE) which have become an integral part of modern process development 

and manufacture.  

It is well established that multifactorial statistical experimentation is necessary to identify and understand 

the complex interaction between key variables and parameters to develop optimal cell culture conditions 

which maintain product quality attributes (Mitchell et al. 2014).  Multiple small-scale, high-throughput cell 

culture platforms have been developed to enable this type of experimentation, including spinner and shake 

flasks (ranging in minimum working volume from 50 – 250 mL), bench-top bioreactors (ranging in volume 

from 250 mL – 5 L) and more recently, microbioreactors. The latter term is a general one, covering 

multiple types of devices (ranging in volume from 500 µL to 30 mL) providing a range of scales and 

complexity including microtiter plates to parallel arrays of fully monitored, controlled and automated 

miniature bioreactors (Hsu et al. 2012; Nienow et al. 2013; Warr 2014).   

For hMSC process development, the majority of the small-scale work has been conducted in spinner 

flasks (Bardy et al. 2013; Dos Santos et al. 2011a; Eibes et al. 2010; Ferrari et al. 2012; Goh et al. 2013; 

Hewitt et al. 2011; Rafiq et al. 2013a; Schirmaier et al. 2014; Schop et al. 2010). Although spinner flasks 

are easy to use and require little training, these systems are restricted to surface aeration and are limited A
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with respect to experimental throughput. They also do not provide an environmental control capability as 

found in traditional benchtop bioreactors and are dependent on external control of humidity, temperature 

and oxygen concentration which is usually achieved by being placed within an incubator (Hsu et al. 2012; 

Jossen et al. 2014), which can have a significant laboratory footprint.  In addition, each vessel has to be 

manipulated individually and manually with regard to medium exchange, which for many vessels takes 

significant time often outside the controlled environment of the incubator.  To facilitate translation to the 

clinic, relevant, accurate, small-scale, high-throughput experimental models need to be developed which 

are representative of larger-scale, industrial systems that will eventually be used for product manufacture.  

To address the need for small-scale, high-throughput cell culture technology, numerous systems have 

been developed including microtiter plates (Legmann et al. 2009), microfluidic reactors (Zanzotto et al. 

2004) and small-scale automated bioreactors such as the ambr15 cell culture system (Lewis et al. 2010). 

The ambr15 system is an automated, high-throughput bioreactor platform which allows for 24 or 48 

individually controlled, single-use stirred-tank bioreactors (Figure 1). Each bioreactor has automated 

online monitoring and control for pH and dissolved oxygen (dO2). The ambr15 platform has demonstrated 

significant success for biologics production, where it was found to be equivalent with respect to cell growth 

and protein titre with larger scale stirred systems (Hsu et al. 2012; Lewis et al. 2010; Nienow et al. 2013).  

However, all applications of the ambr15 system thus far have focused exclusively on free suspension 

culture and yet many cell therapy candidates including hMSCs are anchorage-dependent. As such, the 

expansion of these cells in stirred-tank bioreactors, in most cases, requires the use of microcarriers.   

The aim of the work presented here is to show that the ambr15 microbioreactor system is a suitable scale-

down model for larger scale hMSC microcarrier culture. Since microcarrier suspension is considered 

critical for successful culture (Hewitt et al. 2011) and the shape of the ambr15 (rectangular cuboid of 

aspect ratio > 1 (Nienow et al. 2013), Figure 1) is not optimal for suspension, it was expected that 

modifications would be necessary; and this proved to be so. These changes are therefore discussed first, 

leading to significant improvements in performance. Once established, the modified ambr15 system and 

microbioreactors were then used for bioprocess development, whereby studies were conducted to 
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optimize hMSC microcarrier culture conditions resulting in improved cell yields. These findings were then 

validated in larger-scale vessels demonstrating equivalent cell growth, viability, identity and functionality.   

 

2. Materials and methods 

2.1 hMSC monolayer expansion 

Human MSCs from two donors were isolated from bone-marrow aspirate obtained by Lonza (Lonza, 

Walkersville, USA) after the donor provided informed consent. The local Ethical Committee approved the 

use of the samples for research. The hMSCs were isolated on the basis of plastic adherence and 

cryopreserved at passage 1 at a density of 2 x 106 cells/mL in 10 % dimethyl sulphoxide (DMSO) (v/v) 

(Sigma Aldrich, UK) and 90 % foetal bovine serum (FBS; Hyclone, Lot# RUF35869). To expand hMSCs 

for microcarrier experiments, hMSCs were cultured in monolayer as described in Rafiq et al. (2013b). In 

brief, the hMSCs were seeded at 5,000 cells/cm2 and cultured in DMEM (Lonza, UK) supplemented with 

10% (v/v) foetal bovine serum (FBS; HyClone) and 2 mM UltraGlutamine (Lonza, UK). Where cells were 

cultured under serum-free medium (SFM) conditions, the Prime-XVTM SFM hMSC medium was used 

(Irvine Scientific, USA) in accordance with the manufacturer’s instructions. As required, attachment 

surfaces were pre-coated with recombinant fibronectin (Irvine Scientific, USA) and the hMSCs underwent 

one adaptation passage in medium containing SFM Prime-XVTM medium. Viable cell number (via acridine 

orange uptake and DAPI exclusion) and mean cell diameter were determined using a NucleoCounter NC-

3000 automated mammalian cell counter (Chemometec, Denmark).  

2.2 Spinner flask microcarrier culture 

100 mL BellCo spinner flasks (BellCo, US), were used for all spinner flask experiments, with a 100 mL 

working volume and a vessel diameter (T) of 60 mm.  For all microcarrier cultures, Plastic P102-L 

microcarriers (Pall Life Sciences, UK) were employed (Rafiq et al. 2016). The same inoculation 

concentrations and culture methods were employed as described in Rafiq et al. (2016) except where 

improvements to the process were made (discussed in the results section). In brief, this method employed 

5 cm2 of microcarrier surface area per ml of medium and an inoculation density of 6,000 cells/cm2. The A
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spinner flasks were agitated at the just suspended speed (NJS) which was 30 rpm. When additional 

microcarriers were added as described in later experiments NJS increased to 45 rpm.  

2.3 ambr15 microcarrier culture 

Prior to inoculation, ambr15 vessels with up-pumping impellers were loaded onto the platform and 

stabilized with respect to pH (7.2), temperature (37ºC) and dO2 (100%). The original working volume was 

set to 15 mL and the original impeller speed for NJS was 300 rpm. This speed was subsequently increased 

to 400 rpm (as described later) due to clump formation, preventing effective suspension of the 

microcarriers as the culture progressed. The hMSCs were cultured at the same seeding and microcarrier 

concentration as the spinner flasks and cultured in complete growth medium. The liquid handling 

programme script was amended to enable the system to sample the vessel at a user-set volume rather 

than the standard factory setting which would sample from the bottom of the vessel.  

As with spinner flask culture, daily samples of the microcarrier culture were taken throughout culture for 

cell viability and supernatant analysis. Cells were counted whilst still attached to the microcarriers using 

the NC-3000 NucleoCounter (Chemometec, Denmark) as directed by the manufacturer. Two approaches 

for sampling were adopted during the course of this study. Firstly, 250 µL of the microcarrier carrier was 

sampled daily as the vessels were agitated, thus ensuring that a representative sample of the microcarrier 

culture was obtained. The volume removed was replaced when a medium exchange was performed. 

Additional studies were performed where entire vessels were sacrificed at each time point. This procedure 

was conducted to identify whether the daily removal of a 250 µL sample and replacement of medium 

during a medium exchange had any effect on the culture. It was found that the daily sampling method did 

not have any notable effect on the culture (data not shown).  

As described in Section 3.4, a strategy employed to improve culture in the ambr150 vessel involved 

aseptic siliconization of the vessel. This process was achieved by using a 0.2 µm syringe filter (Fisher 

Scientific, UK) and manually adding the siliconizing agent, Sigmacote (Sigma Aldrich, UK), to each vessel 

ensuring coverage of the entire vessel surface area before aspirating. Vessels were left overnight to dry in 

a fume hood and rinsed with distilled water after 24 h. A
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To achieve the higher cell densities described in Section 3.7, additional microcarriers were added to the 

vessels during the exponential phase of growth when the cells were reaching densities ~75,000 cells/cm2, 

a value which we have previously found to be ~80% confluence in T-flasks for Prime-XV SFM cultures. 

Microcarrier addition was based on the intention of achieving a mean ratio of 50 cells/microcarrier and was 

calculated based on the cell number in each vessel and the number of microcarriers in each vessel at the 

point of addition.    

 

2.4 Cell characterisation 

Multi-parameter immunophenotypic analysis of the hMSCs was determined by flow cytometry and the 

antibodies were selected on the basis of the panel recommended by the International Society for Cellular 

Therapy (ISCT) (Dominici et al. 2006).  This was performed using a Guava HT flow cytometer with 

excitation at 488nm and is described in detail in Chan et al. (2014).  Tri-lineage differentiation potential of 

the cells was determined by using the StemPro Adipogenesis kit, StemPro Chondrogenesis kit and 

StemPro Osteogenesis kit (Life Technologies, UK) in accordance with the manufacturer’s instructions on 

post-harvest hMSC samples to induce differentiation. Staining of the samples to determine differentiation 

was performed as described in (Rafiq et al. 2013b). CFU-f efficiency was determined by culturing the 

hMSCs in monolayer at a cell density of 10 cells/cm2 and with a complete medium exchange every 4 days. 

After 15 days in culture, hMSCs were washed with PBS (Lonza, Switzerland) and fixed with 4% 

formaldehyde (v/v) (Sigma, UK) for 30 minutes. 1% crystal violet (Sigma, UK) in 100% methanol (w/v) was 

used for colony staining. The samples were incubated at room temperature for 30 minutes in the 1% 

crystal violet solution. All stained colonies that comprised of more than 25 cells were recorded as CFUs. 

2.5 Harvesting of hMSCs in spinner flasks 

A detailed overview of the harvesting method and theoretical principles are provided in (Nienow et al. 

2014). Briefly, the harvesting procedure involved a two-step process: 1) detachment of the cells from the 

microcarriers using an increased agitation rate of 150 rpm for 7 min during enzymatic reagent exposure 

and 2) separation of the cells and microcarriers prior to cell concentration by filtration. After detachment 

and separation, > 95% cells with > 95% viability were recovered (Nienow et al., 2016).      A
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2.6 Harvesting of hMSCs in ambr15 microbioreactor 

The harvest procedure for the ambr15 was similar in principle to that for the spinner flask harvest (Nienow 

et al., 2016). However, the harvest was automated and performed by the device’s liquid handler. Given the 

time taken by the liquid handler to aspirate spent medium from each vessel (approximately 3 min/vessel) 

and the fact that 12 bioreactor vessels are operated on one culture station (and therefore limited to one 

speed for all 12 bioreactor vessels), only 2 vessels on each culture station were harvested at a time. This 

limit was imposed in order to avoid prolonged exposure to trypsin which can result in cell damage during 

extended waiting time. The agitation rate for harvesting was originally 650 rpm for 7 min during enzymatic 

reagent exposure (6 mL of either trypsin or TryplE was used - each were equally effective (Nienow et al., 

2016)). However, as discussed later, the speed was subsequently increased to 800 rpm to facilitate cell 

harvest from clumps formed during culture. In that case, post filtration, more than 95% viable cells were 

recovered (Nienow et al., 2016). 

2.7 Analytical techniques 

Analysis of glucose and lactate concentrations in the spent medium was performed using a Cedex Bio-HT 

(Roche, Germany). The specific growth rate, cumulative population doublings, specific metabolite 

consumption/production and coefficient of variation (CV) were calculated for all samples (Rafiq et al. 

2013b). 

2.8 Statistical analysis 

For comparison between two data sets, statistical significance was determined by using the Student’s two-

tailed t-test. For comparison of multiple data sets, significance was calculated by the one-way ANOVA test 

with the Tukey post hoc correction test; significance was determined at p < 0.05. GraphPad Prism 6 

(California, USA) was used for all statistical analysis. 

3. Results  

The objective of this work was two-fold: (1) to determine whether the ambr15 microbioreactor, designed for 

free suspension culture, could be adapted for small-scale, microcarrier culture; and (2), if so, could the A
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ambr15 platform then be used for serum-free bioprocess development, which could be reproduced in a 

larger scale vessel.  

3.1 Initial adaptation of the ambr15 microbioreactor geometry and software for microcarrier 

culture 

As hMSCs are anchorage-dependent and are traditionally grown on microcarriers when cultured in stirred-

tank bioreactors, it was first necessary to adapt the system to enable microcarrier culture to be undertaken 

successfully. This involved two key changes: (1) since the original ambr15 has a sparger which extends 

close to the base of the bioreactor, a spargeless vessel was used to prevent blockage and backflow of 

microcarriers into the sparger (Figure 1); and (2) amendments to the liquid handler software script to 

enable customisable liquid sampling points for medium exchange and sampling without removing 

microcarriers (Figure 1).  

3.2 Initial hMSC microcarrier studies in the modified ambr15 microbioreactor 

Human MSCs were cultured on microcarriers in both the ambr15 microbioreactor and spinner flasks with 

an equivalent surface area of microcarriers to volume of medium ratio provided in both systems.  Growth 

in the spinner flask was significantly better throughout the course of the culture, with a final viable cell 

density of 1.78 x 105 ± 0.26 cells/mL being achieved by 192 h in culture compared with 0.73 x 105 ± 0.09 

cells/mL in the ambr15 (Figure 2). After completion of the culture, the vessels were visually inspected and 

it was found that the vast majority of microcarriers were clumped around the base of the impeller (Figure 

2B). This large microcarrier clump was not extracted during the harvest procedure. Therefore any cells 

growing within this clump were unlikely to have been included in the count resulting in a low and 

unrepresentative number. 

3.3 Strategies to avoid clumping around the base of impeller  

Strategies were considered as to how the extensive clumping around the base of the impeller (Figure 2B) 

could be avoided; and also, if any clumps were to form, how the cells could be successfully harvested. A
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Firstly, it was decided that a three-fold approach would be implemented involving a change in agitation 

strategy. The agitator configuration was changed from up-pumping to down-pumping, a preferred mode for 

solid suspension without sparging (Nienow 1997b) . Additionally, the agitation of the culture was stopped 

every 6 hours for 1 minute over the first 24 hours which prevented microcarrier clumps forming around the 

base of the impeller. Finally, the agitation rate during harvest was increased from 650 rpm to 800 rpm in 

order to increase the harvest of cells from any microcarrier clumps that formed.  

With this change in the process, there was no noticeable clumping around the base of the impeller (Figure 

2D) and all the cells on microcarriers in the vessel were extracted for harvest and counted. This change 

significantly improved the cell density achieved in the ambr15 with a final viable cell density of ~ 1.20 x 105 

cells/mL by 192 h being recorded. Although the ambr15 demonstrated a similar trend in the growth 

compared to the spinner flask, there was still a significantly lower final viable cell density achieved in the 

former. After examination, it was noted that clumping was still an issue. Instead of a large clump forming 

around the base of the impeller as previously (Figure 2B), clumps of microcarriers (albeit smaller in size) 

were now forming in the corners of the microbioreactor vessel (Figure 2D).      

3.4 Achieving equivalent hMSC growth in ambr15 and spinner flasks  

Microcarriers clumping in the corners of the ambr15 vessel suggested that increased agitation intensity 

was required not only during harvest but also during culture so it was increased from 300 rpm to 400 rpm. 

This speed was selected as it facilitated suspension of microcarriers for the duration of the culture period. 

In addition to further prevent microcarriers/cell clumps forming in the vessel corners, the internal surfaces 

of the microbioreactor and impeller were aseptically siliconized.  

This combination of methods significantly improved the microcarrier suspension with them being well 

suspended throughout the course of the culture with significantly less clumping (Figure 2F). As a result, 

the hMSC final viable cell density achieved in the ambr15 culture was 1.51 ± 0.06 cells/mL by 192 h 

(Figure 2E) which was similar to that of the spinner flask value of 1.59 x 105 ± 0.06 cells/mL.  
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3.5 Bioprocess development using the ambr15 microbioreactor system 

The other key aim was to determine whether the system could be used for improved bioprocess 

performance and if this improvement could be validated in a larger-scale system. We identified that a 

critical aspect of the culture which required optimisation was the inoculation and initial cell attachment 

period. The growth curves in Figure 2E show a consistent, significant decrease in cell number post-

inoculation over the first 24 hours for both ambr15 and spinner flasks, which results in an extended lag 

phase in both systems. Following investigation of a range of factors, it was found that two parameters had 

the most significant impact in reducing the lag period: the initial medium volume (volume of medium at the 

start of the culture) and intermittent agitation over the first 24 hours. The adjustments in the two 

parameters formed what is subsequently referred to as the ‘improved culture process protocol’. This 

improved process differed from the original one in that the initial working volume was reduced by 50% (7.5 

mL in the ambr15) for the first 24 hours before being increased to the maximum working volume of 15 mL. 

The improved process also involved an intermittent agitation regime which consisted of 5 minutes agitation 

followed by 25 minutes without agitation for the first 3 hours of culture – after this time, the culture was 

agitated continuously.  

This ‘improved process’ was directly compared with the ‘original process’ which retained medium volume 

at the maximum working volume, 15 mL, and had a 1 hour static period post-inoculation which was 

followed by continuous agitation for the duration of the culture (Figure 3A). Instead of the viable cell 

density dropping to ~ 0.10 x 105 cells/mL after 24 hours  as was the case with the original process (Figure 

3A), the viable cell density for the improved process increased to 0.36 x 105 cells/mL. This reduced the lag 

phase by 48 hours and resulted in significantly higher cell proliferation rate with a final viable cell density of 

2.72 x 105 ± 0.09 cells/mL by 192 h. Compared to the original ambr15 process, the improved process 

resulted in > 70% increase in yield and this increase is reflected in the specific growth rate, cumulative 

population doublings and doubling times measured (Figure 3B-D). 
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3.6 Validation of the ‘improved bioprocess’ with the spinner flask culture system  

Having developed an improved ambr15 process, similar conditions were employed in the spinner flasks. 

This change meant using an equivalent microcarrier concentration to medium volume ratio and fill level to 

the ambr15 and an identical intermittent agitation strategy. Figure 4 shows the culture of hMSCs in both 

the ambr15 and the spinner flask using the ‘improved process’. The viable cell densities throughout the 

culture are almost identical, following the same trend of a reduced lag phase and a final viable cell density 

of ~ 2.5 x 105 cells/mL; the viable cell densities at 192 h of both the ambr15 and the spinner flasks were 

found not to be significantly different (Figure 4A). The similarity between the ambr15 and the spinner flask 

using the improved process was also reflected in the specific growth rates, cumulative population 

doublings and doubling times measured (Figures 4B-D). In addition to the growth kinetics, the metabolic 

activity of the cells in each culture system was similar; with the specific glucose consumption ~ 10 

pmol/cell/day and 10.5 pmol/cell/day (Figure 5A), specific lactate production ~ 19 pmol/cell/day and 20 

pmol/cell/day (Figure 5B), specific ammonia production ~ 2.8 and 3.0 pmol/cell/day (Figure 5C) and LDH ~ 

29 and 30 U/cell/day (Figure 5D) in the ambr15 and spinner flask respectively. The similarity between the 

two systems is further demonstrated by the functionality with respect to colony forming unit efficiency 

(Figure 6A) and morphological characteristics of the cells with respect to both mean cell diameter (Figure 

6B) and cell growth on the microcarriers (Figure 6C and 6D).  

Cell identity and quality with respect to the immunophenotypic expression, differentiation and CFU-f 

potential was assessed and cells on microcarriers taken from the ambr15 microbioreactor are shown as 

brightfield (Figure 7A) and fluorescent images (Figure 7B); cells in suspension after detachment are 

shown in Figure 7C. In addition, hMSCs from both the ambr15 microbioreactor and the spinner flasks that 

had been harvested at the end of each culture were also assessed in accordance with the ISCT criteria 

(Dominici et al. 2006), which demonstrated their trilineage differentiation potential towards the osteogenic, 

chondrogenic and adipogenic pathways (Figure 7D-F respectively for the ambr15) and confirmation of 

their immunphenotype (Figure 7G). As in our earlier work, the cells from the spinner flasks also met these 

criteria (Rafiq et al, 2013a) (data not shown). A
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Although the growth kinetics and metabolic activity of the cells were similar between the two systems, it 

was notable that there was a greater level of variation in the spinner flask compared to the ambr15 system 

across all of the measured parameters including cell density, mean cell diameter and specific metabolite 

production/consumption (Figure 8). In all cases, the coefficient of variation (CV) was lower using the 

ambr15 system compared to the spinner flasks, demonstrating that the ambr15 was a more consistent 

system for the growth of hMSCs on microcarriers (Figure 8), presumably because of the tighter control of 

pH and dO2. 

3.7 Serum-free expansion of hMSCs in ambr15 and spinner flasks  

The process was then adapted to culture the hMSCs in serum-free medium. Figure 9 illustrates a 

significant increase in yield obtained with both the ambr15 and the spinner flask when using the serum-

free medium. The final viable cell density obtained with both the ambr15 and spinner flask in the serum-

free medium was > 8.1 x 105 cells/mL whilst the equivalent serum-based medium studies yield was ~ 2.2 x 

105 cells/mL, resulting in > 250% increase in yield (Figure 9A). To accommodate, the increase in growth 

and requirement for surface area, additional microcarrier surface area was provided at 72 h and 120 h (as 

indicated by the arrows on Figure 9A). Additional surface area was aseptically transferred to the culture to 

obtain a mean ratio of 50 cells/microcarrier. The amount added was calculated from the cell number 

obtained from sampling each vessel and the number of beads in the culture at the time of addition.  

Though there were distinct differences in performance with the different media, as with the study 

described in Section 3.6, the growth kinetics in the ambr15 and the spinner flask were similar in both 

media; as represented by the viable cell densities (Figure 9A), the specific growth rates (Figure 9B), the 

cumulative population doublings (Figure 9C) and the doubling time (Figure 9D). Likewise, when the study 

was repeated with an additional BM-hMSC donor, the growth kinetics between the ambr15 and the 

spinner flasks were similar (Supplementary Figure 1). The overall cell yield between the two donors was 

different; however such differences between the two donors were also exhibited in monolayer cultures 

(data not shown) and is attributed to donor-to-donor variation. 
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Metabolite analysis of the serum-based and serum-free medium expansion demonstrated a decrease in 

the glucose concentration, particularly towards the latter stages of the cultures which may have 

contributed to the decrease in cell concentration in SFM conditions (Supplementary Figure 2). There is a 

concomitant increase in the concentration of both lactate and ammonia. However, these do not reach 

levels which may inhibit cell growth (Schop et al. 2010). The hMSCs cultured in SFM in the ambr15 and 

spinner flask (data not shown) retained their ability to differentiate toward the adipogenic, ostogenic and 

chondrogenic lineages and the expected immunphenotypic expression (Supplementary Figure 3).  

When comparing the extent of variation between the two systems (ambr15 and spinner flask) and the 

media (serum-based and serum-free), the ambr15 serum-free system was the most consistent process 

with a CV of 0.54% whilst the equivalent serum-based process in the ambr15 resulted in a CV of 4.08% 

(Figure 10). The process which demonstrated the greatest level of variability was the spinner flask serum-

based process which had a CV of 7.65% and the equivalent serum-free spinner flask process had a CV of 

1.06% (Figure 10).     

4. Discussion  

With increasing reagent and medium costs and the need for high-throughput capability, there is a demand 

for automated systems which can operate at lower working volumes and offer greater levels of 

parallelization. Clearly, the ambr15 cell culture system potentially provides significant advantages over 

these other existing small-scale bioreactor systems suitable for microcarrier culture because of its higher-

throughput capability (up to 48 microbioreactor vessels can be run simultaneously), lower working volume 

requirements (7 – 15 mL) and automated liquid handling and culture operation.  

Here, we have demonstrated, after some modifications, that the ambr15 microbioreactor can be used 

successfully for hMSC culture on microcarriers. Importantly, we also demonstrate that it can be used to 

improve a microcarrier bioprocess. These results were achieved by first improving the mixing and 

suspension of the microcarriers in the vessel. In detail, this required recognising the challenges presented 

by the geometry of the ambr15 vessel (Figure 1B), in particular the propensity for microcarriers to settle 
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and form aggregates initially under the impeller and then subsequently in the corners of the vessel. The 

strategy employed involved siliconizing the vessel prior to use, changing the mode of agitation from up-

pumping to down-pumping and increasing the agitation speed (from 300 to 400 rpm) to ensure full 

suspension (Nienow 1997b) during the expansion/culture phase. In addition, attachment of cells to 

microcarriers was improved by lowering the initial fill volume by 50% and providing an intermittent agitation 

regime. These process changes have improved our baseline bioreactor process and aligns with process 

development work conducted by others where such strategies have been employed successfully to 

improve cell attachment to microcarriers (Carmelo et al. 2015; Frauenschuh et al. 2007; Yuan et al. 2012).   

In addition to ensuring full suspension, these changes limited the extent of clumping around the base and 

corners of the vessel and together with the increase in agitator speed during harvesting (from 650 rpm – 

800 rpm), ensured that as many cells as possible (>95%) were harvested.   

Collignon et al. (2010) specified criteria for impeller selection specifically for microcarrier culture which 

included: 1) maintaining microcarriers in complete suspension; and 2) effective homogeneity of culture 

medium. The down-pumping mode is generally preferred for solid particle suspension including 

microcarriers (Ibrahim and Nienow 2004) and enables them to be suspended at a lower mean specific 

energy dissipation rate than other impellers. In addition, they give similar mixing times to other impellers at 

the same mean specific energy dissipation rates (Nienow 1997a). Here, this mode effectively ensured that 

the microcarriers did not settle, clump together or form aggregates on the base and in the corners of the 

microbioreactor vessel.  

There is always concern regarding damage to both free suspension cells and cells on microcarriers in 

stirred bioreactors and this aspect of the current work has recently been discussed in detail (Nienow et al. 

2016) . The usually accepted criterion for damage on microcarriers has been that the size of the 

Kolmogorov scale of turbulence, λK  should not be less than about 2/3rd the size of microcarrier (Croughan 

et al. 1987); the microcarriers used in this study (Plastic P102-L) have a diameter ranging from 112-212 

µm. In this case, even with a down-pumping agitator at NJS (= 400 rpm), the maximum local specific 

energy dissipation rate, which defines the minimum Kolmogorov scale was estimated to be 0.142 W/kg to A
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give a Kolmogorov scale (λK)JS of 52 µm. Though smaller than the usually accepted scale, the cells were 

still able to grow to confluence and maintained their quality attributes with respect to differentiation 

potential, CFU-f formation and immunophenotype (Figures 4, 7 & 9). However, at the speed used for 

harvesting (800 rpm), the Kolmogorov scale was reduced to 24 µm (Nienow et al., 2014), which is greater 

than the size of cells once they become detached from the microcarriers during harvesting. In that case, 

they should not be damaged and once again the cells maintained all their quality attributes (Nienow et al., 

2016).   

In addition to ensuring adequate suspension of microcarriers, the strategies implemented reduced the 

amount and extent of clumping (Figure 2B and 2C). A large clump such as those observed in Figure 2 

would have a severely reduced specific surface area available for mass transfer of nutrients and 

metabolites to and from the cells, thereby potentially limiting cell growth; and causing possible 

nutrient/oxygen deprivation at the centre of the clump. Previous work by Jorgensen and Tyers (2004) has 

demonstrated that cells which experience such deprivation remain in the G1 phase of the cell cycle for 

longer, thus resulting in a decrease in proliferation potential. In addition, Ferrari et al. (2012) indicate the 

detrimental effect of cell aggregation due to the reduced proliferative capacity and highlight the potential 

for populations with unwanted heterogeneity. They propose a method of avoiding cell aggregation by the 

inclusion of additional fresh microcarriers during the culture process. This concept is supported by our 

findings (Figure 9) and that of Dos Santos et al. (2011b), where the addition of fresh microcarriers to the 

process was necessary to ensure the continued proliferative capacity of the cells and to avoid clumping or 

aggregation of cells. The addition of fresh microcarriers spreads the cells more widely on the total 

increased microcarrier surface available, promoting bead to bead transfer and increasing the area of the 

cells in direct contact with the medium and available for mass transfer. In addition, it reduces the likelihood 

of cells forming large cell aggregates or large cell-microcarrier clumps if the additional microcarriers are 

provided during the exponential phase of culture, prior to cells reaching confluence.  

The improved process that was developed using the ambr15 resulted in improved attachment and a 

reduction in the lag phase. This improvement was achieved by two key aspects, namely providing only 50 A
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% of the final working volume of medium for the first 24 h in conjunction with an intermittent agitation 

strategy. These strategies resulted in > 150 % increase in viable cell density after 24 h compared to the 

original process (no agitation for 24 h and 100 % working volume). We posit that these changes had a 

significant impact on the initial attachment as it exposed the full surface of the microcarrier to the cells and 

reduced the distance and therefore time taken for the cells to reach the microcarrier surface. The 

intermittent agitation also resulted in fewer microcarrier-cell clumps and reduced cell aggregation. Studies 

have demonstrated that intermittent agitation provides sufficient mass transfer, and prevents the formation 

of aggregate formation, but more importantly, it also exposes the full surface of the microcarrier to the cells 

(Carmelo et al. 2015; Frauenschuh et al. 2007; Hervy et al. 2014; Ting et al. 2014; Wang and Ouyang 

1999; Yeatts et al. 2013; Yuan et al. 2012). In addition to improving cell attachment and growth, 

intermittent agitation can have a favourable effect on functionality. For example, Ting et al. (2014) 

demonstrate that for human embryonic stem cell (hESC) cultures, intermittent agitation is preferred to both 

static and continuous agitation and results in a greater cardiomyocyte differentiation efficiency. With 

respect to the initial medium volume, our findings are similar to those of Dos Santos et al. (2011b), who 

also found that by adding only 50 % of the final working volume during the first 24 h (the attachment 

period), there was an increase in cell attachment resulting in a reduced lag phase.  

Regulatory approval of any therapeutic is dependent, in part, on the development of consistent 

manufacturing processes (FDA 2009), and therefore process development efforts should be directed 

toward minimizing  variation. This will also increase cost-effectiveness of cell-based therapy manufacture. 

Our earlier work in T-flasks (Heathman et al. 2015b) and spinner flasks (Heathman et al. 2015a) showed a 

significant process improvement with serum-free medium compared to a serum based medium (> 250 % 

increase in yield in the serum-free medium). Here, the same effect on process yield (Figure 9) and 

consistency (Figure 10) has been demonstrated in the ambr15. Previous studies have also demonstrated 

that process automation can improve consistency for both hMSCs and hESCs, but this work has been 

predominantly limited to monolayer culture (Thomas et al. 2007; Thomas et al. 2009). A similar 

improvement has been shown here with the better control provided by the ambr15 improving process A
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consistency compared to spinner flasks in both serum containing (Figures 8) and serum-free media 

(Figure 10).  

Clearly, both changes are important and Figure 10 gives some indication of the synergy from using both. 

For example, whilst the use of the automated ambr15 systems, with its improved control compared to the 

spinner flask, reduces the CV on cell density in the serum containing medium from 7.65% to 4.08%, the 

switch to serum free reduces these two values to 1.06% and 0.54% respectively; a total of 12 replicates 

were used to calculate the CV.  Thus the combination of both serum-free and automated processing 

improves the consistency more than 10-fold. This improvement has clear advantages for both autologous 

and allogeneic bioprocess development with reduced costs and improved efficiency. Additionally, if 

processes can be effectively scaled down, this enables larger amounts of data to be collected during 

development, thereby improving process understanding which facilitates validating future comparability 

studies if process changes need to be made. If the data collection and analysis of development efforts can 

be automated, this will lead to significant time and cost savings and will reduce errors. Moreover, the 

significant increase in yield associated with serum-free expansion reduces the process time required to 

achieve a particular batch size, which should also reduce overall process cost.  Although not widely 

explored in the literature, it is thought that the use of a serum-free medium improves yield and consistency 

in comparison to serum-based cultures due to the activation of specific growth factors in the former, in 

particular platelet-derived growth factors (Heathman et al. 2015b; Veevers-Lowe et al. 2011).   

Although this study focused on culture parameters such as intermittent agitation and initial medium 

volume, the major utility of the ambr15 microbioreactor system is its use as an effective high-throughput 

process development platform. This feature will enable the study of other key culture parameters such as 

pH, dO2 concentration, growth media, dissociation reagents and cell and microcarrier inoculation density 

amongst others, thereby expediting adherent cell/microcarrier process development. 
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5. Conclusions 

Microbioreactors play an important role in process development of therapeutics including cell-based 

therapies by reducing the cost and time associated with development. This study describes the approach 

taken to make the ambr15 microbioreactor amenable for hMSC microcarrier culture and the subsequent 

bioprocess development using the system. The improved process developed using the ambr15, which 

included an intermittent agitation strategy and 50 % final working volume for the first 24 h, significantly 

increased the yield and was subsequently validated using a larger-scale spinner flask culture. Moving 

toward serum-free expansion using the improved process increased the yield by > 250 % in comparison to 

serum-based culture and, in conjunction with the automated capability of the ambr, improved process 

consistency 10-fold compared to manually-operated spinner flask serum-based culture. Cell identity and 

quality with respect to immunphenotypic expression, multipotency and CFU-f potential was retained with 

the improved process, although impact on specific CQAs for different cell therapy products would need to 

be addressed depending on the intended clinical indication. Nonetheless, this study demonstrates that the 

ambr15 microbioreactor system is an effective tool for bioprocess development and optimisation of hMSC 

microcarrier culture processes.  
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Figure captions 

Figure 1. Overview of the ambr15 microbioreactor. (A) The ambr15 automated platform including liquid 

handler and culture stations and (B) the ambr15 microbioreactor spargeless vessel.  

 

Figure 2. Growth of hMSCs from donor 1 cultured on microcarriers in serum-based medium in the ambr15 

and spinner flasks with (A) the viable cell density in the initial run where clumping around the ambr15 

vessel impeller was a significant issue (B), the arrow illustrates microcarrier-cell clump formation around 

the base of the ambr15 impeller shaft. (C) The viable cell density following changes to the agitator 

configuration (from up-pumping to down-pumping) and an increase in harvest agitation rate from 650 to 

800 rpm which encouraged cell detachment from larger microcarrier clumps. (D) Reduced clumping 

around the ambr15 impeller shaft but clumping in corners of the ambr15 vessel illustrated by the arrow. (E) 

Viable cell density after further changes to avoid clumping including increasing the culture agitation rate 

from 300 to 400 rpm and aseptically siliconizing the vessel prior to use. (F) Improved microcarrier 

suspension as indicated by the arrow with little/no clumping. Data show mean ± SD, n = 8. (*) Significance 

was determined at p < 0.05.   

 

Figure 3. Comparison of hMSC donor 1 growth kinetics in ambr15 with the original and improved process   

cultured on microcarriers in serum-based medium, showing (A) the viable cell density, (B) specific growth 

rate, (C) the cumulative population doublings and (D) the doubling time. Data show mean ± SD, n = 12. 

 

Figure 4. Validation of the improved ambr15 bioprocess with the larger-scale spinner flask for hMSC donor 

1 cells showing (A) the viable cell density for donor 1, (B) specific growth rate, (C) the cumulative 

population doublings and (D) the doubling time. Data show mean ± SD, n = 8. 

 

Figure 5. Specific metabolic activity for hMSC donor 1 cells with the ambr15 improved process and 

validated by the larger-scale spinner flask. The data show (A) the specific glucose consumption, (B) A
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specific lactate production, (C) the specific ammonia production and (D) the specific LDH production. Data 

show mean ± SD, n = 8. 

 

Figure 6. Characterisation of hMSC donor 1 cells cultured with the ambr15 improved process and 

validated by the larger-scale spinner flask. The data show (A) colony forming unit efficiency, (B) mean cell 

diameter, fluorescent staining illustrating viable (green) and non-viable (red) cells cultured in (C) the 

ambr15 and (D) spinner flask at different points during culture.  

 

Figure 7. Functional characterisation of hMSC donor 1 cells harvested from the improved ambr15 

bioprocess. The data show (A) brightfield image of hMSCs growing on Plastic P102-L microcarriers in the 

ambr15 microbioreactor vessel, (B) fluorescent staining of same cell-microcarrier image depicted in (A) 

with viable (green) and non-viable (red) cells. (C) Single cells following detachment of hMSCs from the 

microcarriers using the ambr15 microbioreactor. Tri-lineage differentiation potential of hMSCs harvested 

from the ambr15 showing (D) Adipogenic, (E) osteogenic and (F) chondrogenic differentiation of hMSCs. 

(G) Multiparameter flow cytometry showing dual gating of CD90, 105, 73, 34 and HLA-DR for hMSCs post-

harvest from the ambr15 microbioreactor. 

 

Figure 8. Comparison of extent of variation between the ambr15 and spinner flask for serum-based hMSC 

donor 1 microcarrier culture with data showing (A) viable cell density, (B) mean cell diameter, (C) specific 

glucose consumption, (D) specific lactate production, (E) specific ammonia production and (F) specific 

LDH production. Data show coefficient of variation (CV), n = 12. 

 

Figure 9. Growth kinetics of hMSC donor 1 cells for serum-free (SFM) and fetal bovine serum (FBS)-based 

media in both the ambr15 and spinner flasks with data showing (A) the viable cell density, (B) specific 

growth rate, (C) the cumulative population doublings and (D) the doubling time. Data show mean ± SD, n 

= 12. The arrows in (A) indicate the point at which additional microcarriers were added to the culture for 

both the SFM and FBS processes. A
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Figure 10. Extent of viable cell density variation in the ambr15 and spinner flask for hMSC donor 1 cells for 

both serum-free (SFM) and fetal bovine serum (FBS)-based cultures. Cell density values for FBS are 

aligned with the left y-axis and the SFM values with the right y-axis. Data show coefficient of variation 

(CV), n = 12. 

 

Supplementary Figure Captions 

Supplementary Figure 1. Growth kinetics of hMSCs donor 2 cells using serum-free (SFM) and fetal bovine 

serum (FBS)-based media in both the ambr15 and spinner flasks with data showing the viable cell density. 

Data show mean ± SD, n = 12. The arrows in indicate the point at which additional microcarriers were 

added to the culture for both the SFM and FBS processes. 

 

Supplementary Figure 2. Nutrient and metabolite flux for hMSC donor 1 cells expanded on microcarriers in 

the serum-based and serum-free cultures in both the ambr and spinner flasks. Glucose, lactate and 

ammonia concentrations in (A) FBS-containing medium in the ambr, (B) in FBS-containing medium in 

spinner flasks, (C) in serum-free medium in the ambr and (D) serum-free medium in the spinner flasks. 

Data show mean ± SD, n = 12.  

 

Supplementary Figure 3. Functional characterisation of hMSCs from donor 1 harvested from the serum-

free ambr15 bioprocess. The data show the tri-lineage differentiation potential of hMSCs harvested from 

the ambr15 showing (A) Adipogenic, (B) osteogenic and (C) chondrogenic differentiation of hMSCs. (D) 

Multiparameter flow cytometry showing dual gating of CD90, 105, 73, 34 and HLA-DR for hMSCs post-

harvest from the ambr15 microbioreactor serum-free process. 
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