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Abstract Human knowledge curators are intrinsically bet-
ter than their digital counterparts at providing relevant
answers to queries. That ismainly due to the fact that an expe-
rienced biological brain will account for relevant community
expertise as well as exploit the underlying connections
between knowledge pieces when offering suggestions perti-
nent to a specific question, whereas most automated database
managers will not. We address this problem by proposing
an architecture for the autonomic curation of crowdsourced
knowledge, that is underpinned by semantic technologies.
The architecture is instantiated in the career data domain,
thus yielding Aviator, a collaborative platform capable of
producing complete, intuitive and relevant answers to career
related queries, in a time effective manner. In addition to pro-

B Alina Patelli
a.patelli2@aston.ac.uk

Peter R. Lewis
p.lewis@aston.ac.uk

Aniko Ekart
a.ekart@aston.ac.uk

Hai Wang
h.wang10@aston.ac.uk

Ian Nabney
i.t.nabney@aston.ac.uk

David Bennett
david@codevate.com

Ralph Lucas
ralph.lucas@goodcareersguide.co.uk

Alex Cole
alex.cole@goodcareersguide.co.uk

1 Aston University, Birmingham, UK

2 Codevate, Birmingham, UK

3 The Good Careers Guide, London, UK

viding numeric and use case based evidence to support these
research claims, this extended work also contains a detailed
architectural analysis of Aviator to outline its suitability
for automatically curating knowledge to a high standard of
quality.

Keywords Knowledge curation · Semantic technologies ·
Ontologies · Autonomic computing

1 Introduction

Decisionmaking in the digital world is supported by effective
knowledge processing. Given the size of the available digital
data repositories, manual curation is fast becoming unfeasi-
ble. Automated query answering platforms (leveraging data
from museum records [45], computerised tools for symp-
tom based medical diagnosis inference [32], archaeological
database processing [37], etc.) represent an attractive solu-
tion, however, several important issues remain unaddressed:

– The connections between different data entries are rarely
and insufficiently exploited, therefore the results pre-
sented in answer to user queries lack insight and are often
incomplete.

– The format that query results are presented in (com-
monly, lists of entries that syntactically match the search
keywords) is counter-intuitive and unable to provide a
coherent view of the relevant sub-field of the knowledge
base.

– The provided results are rarely filtered based on the user’s
profile and interests.

– The user has to address the problems above “manually”
by explicitly searching for additional results (maybe by
employing several query answering tools and collating
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their respective output), researching data connections and
matching them against personal interests, etc.—all time
consuming operations requiring intense effort.

We analyse these open problems in the career knowledge
management domain, where the available data is abundant,
heterogeneous, decentralised and dynamic. Yet, the work-
force is expected to effectively analyse it in order to make
informed decisions about the most suitable career path. For
this reason, we believe the career domain offers a repre-
sentative case study for investigating the proposed research
question, namely how to design an automated knowledge
curation platform capable of addressing all previously iden-
tified issues.

Theproposed solution isAviator, a career knowledgeman-
agement system available on the GCG (Good Careers Guide)
platform that stores, maintains and exposes the connections
between career fields, displays query results in the form of
an intuitively rendered graph (as opposed to a list), compares
available knowledge against expressed user preferences and
performs all these tasks automatically, thus saving a signifi-
cant amount of the users’ time.

Our initial work on Aviator [36] is extended here with
a detailed qualitative analysis of Aviator’s architecture—
carried out according to the architectural tradeoff analysis
method (ATAM). The suitability of Aviator in the career
domain notwithstanding, the proposed architecture is fit for
deployment in the general context of knowledge curation, as
the ATAM outcomes reveal.

The following section presents the motivation for this
research and more fully describes the problem that we
address. Section 3 focuses on the career knowledge domain
as a representative instance of the autonomic curation con-
text. After a brief description of Aviator’s hybrid architecture
(Sect. 4), the paper analyses the way that the proposed
platform implements the autonomic metaphor (Sect. 5). Evi-
dence to support all research claims is provided in Sect. 6,
whereas Sect. 7 contains the ATAM analysis. The final sec-
tions present an overview of related work and the paper’s
conclusions.

2 Motivation

Great strides have been made in recent decades to digitise
information [3,12,14,16,35], as paper-based systems have
been replaced by databases available over the web. In legacy
paper-based systems, the role of the curator1 was key. For
example, when presented with a university student’s query

1 A content specialist charged with an institution’s collections and
involved with the interpretation of heritage material—retrieved from
https://en.wikipedia.org/wiki/Curator.

about “modern art”, most librarians would be able to provide
all the books on the official reading list. However, expe-
rienced librarians would also recommend less known yet
relevant resources (websites, articles, critics’ reviews) found
useful by other library members on a similar academic quest.
It is usually the insight provided by this sort of material that
turns a good university essay into an excellent one. To pro-
vide an example from a safety-critical domain, let us think
of medical staff as curators of knowledge. Decisions about
patient treatment are based on the physician’s core specialist
knowledge about human anatomy as well as on specific case
studies, recent research and other clinicians’ experience in
similar or more loosely related domains. It is often the con-
nections between all those sources of knowledge that enable
medical professionals to formulate an accurate diagnosis.

Given the ever increasing volume of information across all
fields, the pool of resources the human curator should have
expert knowledge of has become intractable. The IT commu-
nity’s solution to this issue was to transfer all available data
from a paper support to a digital one. Ideally, the entirety
of the human curator’s knowledge should be captured by a
(library, medical, etc.) database, whereas the curation role
itself would be taken over by the database manager. Realisti-
cally, that aimwas achieved only to a certain extent: while the
core data (library cards, patient charts, known symptoms of
medical conditions, etc.) was successfully ported from hard
copy versions to databases, the experience of human cura-
tors, namely the connections they were able tomake between
different types of knowledge, was lost along with the sense
of (library, medical, etc.) community that used to factor into
the curator’s decision making process. As a result, running
a query for “modern art” in a digital database will no longer
return the additional resources that do not exactly match the
search keyword but that the human librarian had knowledge
of. Similarly, a diagnosis based only on the results returned
by a medical symptoms’ database will not account for spe-
cific yet relevant cases that human doctors would know of
and be able to interpret.

One way to address this became available with the dawn
of Web 2.0 [34], a reinvention of the classic World Wide
Web, where online content is curated by non-expert users.
This is done by annotating web resources with tags, usually
as simple as words, that concisely capture one aspect of the
online content. For instance, a digital print of a Monet paint-
ing could be taggedwith “water lily” to describe its theme and
“blue” to refer to the predominant colour. This approach to
online contentmanagement proved very attractive, withweb-
sites such as YouTube, Delicious, Flickr [10] and Pinterest
[17] gaining increased popularity. The immediate advantage
is that separate resources are connected via user tags, thus
reinstating a sense of community, on the one hand, as well
as allowing for better, more powerful search algorithms, on
the other hand (if those additional library resources existed
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on a Web 2.0 website and were tagged with “modern art”,
they would be included in the query results alongside the
traditional matches).

However, an important problem remains. Left unchecked,
that is, under the exclusive control of the individual user, tags
may quickly become ambiguous (a different user may tag
the same Monet painting with “pond flowers”), conflicting
(a given viewer may be of the opinion that the predomi-
nant colour in the print is “green”, not “blue”) or incorrect
(the print may be wrongfully tagged with “Manet” instead
of “Monet”). Thus, the added value brought by commu-
nity curation turns against itself and sabotages the powerful
search algorithms it wasmeant to support. One possible solu-
tion lies with the Semantic Web [4], another iteration in the
WorldWideWeb’s transformation, where user tags are regu-
lated by an ontology [6,31,40]. An ontology stores concepts
and the properties connecting them in the form of a graph,
expressed in the light logic formalism of RDF (Resource
Description Framework) [11]. The lead advantage provided
by an ontology in the online curation context is disambigua-
tion: every concept is represented alongside its synonyms
(maintained by an expert, by the larger community, or, ide-
ally, by both) that can be used by search algorithms to identify
equivalent tags and eliminate conflicting ones.

Ontologies offer intrinsic support for some of the chal-
lenges identified in the introduction (they store synonyms,
therefore are capable of running “richer” queries, with a bet-
ter yield and they are structured as graphs—with concepts in
the role of nodes and properties acting as edges—knowledge
models that are intuitive and easy to explore in order to get a
comprehensive perspective of the relevant sub-field). How-
ever, taking user preferences into consideration in order to
produce relevant query results implies some supplementary
logic that ontologies do not provide native support for. Also,
running complete queries, allowing graph exploration and
filtering results based on user profile are all tasks that need
to be executed automatically, which is again beyond the core
capabilities of ontologies as standalone platforms.

3 The career management scenario

In this paper, we tackle the above challenges in the domain of
careermanagement platforms,which are a typical example of
a knowledge base in transition frompaper to the digitalworld.
Further, effective career management platforms are crucial
tools in providing support for informed decision making for
the entire workforce.

In its current form, the online career space comprises
knowledge from three sources:

– experts (National Careers Service, relevant Wikipedia
pages, etc.) providing general information

Expert knowledge

Provider knowledge

Explorer knowledge

Job search engine

List of jobs

Fig. 1 The career space managed by job search engines—expert and
explorer knowledge is ignored

about professional fields and theway they connect to each
other, for instance, the fact that “chemistry” is a sub-field
of “science”

– providers of either education (universities publishing
academic requirements for pursuing a given career,
HESA2 maintaining the latest JACS3 list) or jobs (com-
pany websites offering specific career / role description,
job adverts published via third party websites, such as
http://indeed.co.uk)

– explorers of online, career relevant content in search of
a new job or a better understanding of their professional
prospects and assigning tags or writing reviews in the
process.

The only form of automatic career knowledge manage-
ment available for explorers is provided by job search engines
(e.g., http://indeed.co.uk, http://jobs.ac.uk), as shown in Fig.
1. These take in one or more keywords and produce a list
of job adverts based on syntactically matching the provided
keywords against the text description of the jobs. Besides
the semantic incompleteness of the results (relevant jobs
may be omitted from the list if published under a syn-
onym of the search keyword that the explorer is unaware of),
such search engines disregard the first and third knowledge
sources altogether. The connections between career concepts
as well as the explorer community output (in the form of
tags and reviews) are thus obscured. Consequently, explor-
ers take the curator’s role upon themselves and sift through
HESA content to match their academic credentials against
job requirements, read generalist web pageswith broad scope
information about each role in the result list and consult
other explorers’ reviews and comments in order to make an
informed decision about applying for a given job or not.

We introduced Aviator4 [36], a career management plat-
form available on the Good Careers Guide platform that
allows explorers to tag career resources with concepts from

2 Higher Education Statistics Agency—https://www.hesa.ac.uk/.
3 JointAcademicCodingSystem—https://www.hesa.ac.uk/component
/content/article?id=1787.
4 https://gcg-test.codevate.com—log in with user name “johnsmith”
password “gcgtesting”.
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Change request

Change
plan

Meta-knowledge
(ontology)

Fig. 2 The career space (lower block) managed by an autonomic man-
ager (upper block). Adapted from [21]

an ontology and benefit from each other’s expertise. Aviator
addresses the previously identified issues by:

– offering completeness in the sense that all synonyms of
a career concept known to the system will be considered
when compiling the associated list of jobs

– providing perspective by displaying the career concepts
relevant to the user query as well as their connections
(the latter are unavailable in the classic list format that
job search results are displayed in)

– enhancing relevance via collecting all the tags that a reg-
istered user annotated online resources with and using
them to generate a personal ontology—this can be com-
pared against the ontology of the ideal candidate for a
given role, thus allowing jobs that do not match the user’s
career profile to be filtered out

– saving time gained by having queries answered in a
complete and automatic fashion, rather than manually
curating the relevant knowledge.

4 Architecture description

Looking at Aviator’s architecture from a high-level stand-
point, there is a parallel to be drawn to IBM’s standard
autonomic element model [21,26]. Specifically, the role
of the curator is fulfilled by an autonomic manager (the
upper block in Fig. 2), where the knowledge component
of the underpinning control loop (referred to as MAPE-K,
namely monitor analyse plan execute—knowledge) is an
ontology.

OC

OS

KT

searcher

visualiser

Ontology server

tagger

ontology

Web server

domain
knowledge

1

2

3(OS)

4 6

OE updater7reasoner

8

OT tags5(OT)

Fig. 3 Aviator architecture: line arrows represent “uses” relationships
between components, block arrows illustrate the data flow through the
system;KT knowledge translator,OS ontology segmenter,OT ontology
tailor, OE ontology editor, OC ontology classifier

The monitor collects information from providers (new
jobs posted on http://indeed.co.uk) and explorers (tags,
reviews, ontology edits). The analyse module verifies the
consistency of the underlying knowledge base, accepting/re-
jecting edits accordingly, and maintains the list of tags used
by every registered system user. The plan component runs
either a simple query (to retrieve the segment of career knowl-
edge that the user is interested in exploring) or a compound
one (essentially, a separate query for each tag) to compile
a personal ontology. The results of the query are displayed
in the execute phase as a graph in the system’s visualiser.
The knowledge informing the operation of the MAPE loop
is represented in the form of an ontology, initially extracted
from a legacy document containing expert knowledge about
career concepts, their properties (synonyms and connections)
and the relevant JACS codes. The ontology is maintained via
user edits and displayed (in segments) in response to user
queries.

At a more finely grained architectural level, the two main
Aviator components (illustrated in Fig. 3) are the web server
hosting the user interface and the ontology server provid-
ing a feature rich semantic platform capable of running
user requested services (e.g., incremental graph exploration,
graph editing, personal ontology generation). The ontology
server performs the functions of the autonomic manager
(upper block in Fig. 2): monitoring is realised by import-
ing expert and provider domain knowledge (flow arrow 1
in Fig. 3) as well as explorer input (flow paths 7 and 8);
analysis, planning and execution are implemented by the
ontology segmenter, tailor and editor (the exact mapping is
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Fig. 4 Aviator: searcher and visualiser components

presented in Sect. 5); the knowledge base is the ontology
itself.

4.1 The web server

The searcher takes a keyword from the user and matches it
against ontology concepts. The ontology nodes related (via a
maximumof two links) to thematching concept are displayed
in the visualiser (the visualisation plug-in used by Aviator is
Cytoscape5). To illustrate the process, Fig. 4 shows the result
of the search for keywords “quantitative methods”.

The website tagger (Fig. 5) displays as a menu to the left
of the page being annotated and allows users to assign tags
(i.e., concepts from the ontology) to its content. If the page
has been previously reviewed by other users, that information
is available in themenu as well. Every ontology concept used
as a tag by a specific user is stored in the tags collection.

The updater (available only to administrators) allows the
editing of the ontology by adding/deleting concepts and their
connections through a dedicated graphical interface. Figure
6 illustrates the process of creating a new link (asserting a
new ontology property) connecting “biological computing”
(the Source) to “applied biological sciences” (the Destina-
tion). The systemdisplays a list of existing ontology concepts

5 http://www.cytoscape.org/.

currently related to the source and destination (e.g., “biolog-
ical computing” currently has two parents, “biology” and
“applied computing”), which is meant to inform the user’s
decision with respect to the most appropriate type of link to
assert. In the example in Fig. 6, “biological computing” is
made the child of “applied biological sciences” (the other
two options are parent or sibling).

4.2 The ontology server

The ontology is expressed inOWL6 and extracted from a data
repository (marked domain knowledge in Fig. 3) provided by
a domain expert. Besides career related concepts, the ontol-
ogy also stores relevant JACS subject identifiers, thusmaking
theAviator ontology compatiblewithHESAandUCAS stan-
dards for UK higher education. The relationships between
career nodes are expressed via three semantic properties,
namely hasParent, hasSibling and hasSynonym.
The ontology is created by the knowledge translator from
expert provided career data (flow arrow 2 in Fig. 3) and is
modified by the ontology editor, which is in charge of imple-
menting user updates (flow arrow 8 in Fig. 3). Ontology
content is fed into the ontology segmenter and the ontol-

6 http://www.w3.org/2001/sw/wiki/OWL.
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Fig. 5 Aviator: the tagger component used to annotate http://nasajobs.
nasa.gov

Fig. 6 Aviator: the updater component

ogy tailor, responsible with creating custom graph views in
response to user requests (flow arrow 4).

The knowledge translator (KT in Fig. 3) populates the
ontology by transforming domain knowledge into semantic
contents. This process corresponds to data flow stages 1 and
2 in Fig. 3.

The ontology segmenter (OS) and the ontology tailor (OT )
are represented in the same block in Fig. 3, as they share input
4 (feeding from the ontology) and output 6 (displaying the
generated results in the visualiser). Input 3, namely the key-

word used in the search, is specific to the OS only. Input 5,
that is, the collection of tags (ontology concepts) that the cur-
rent user annotated career webpages with, feeds exclusively
into OT. In terms of actual operation, OS matches a search
keyword against an existing ontology concept c (input 3) and
runs a DL query over the ontology (input 4) to extract a set
of nodes related (over a maximum of two connections) to c
via hasParent or hasSibling properties. The result-
ing ontology segment is fed into the visualiser (output 6)
where it is displayed as a graph. The ontology tailor (OT )
performs the same operation as the OS, only in batch mode,
once for every element in tags (input 5). Each query will
produce a graph, their ensemble forming the current user’s
personal ontology (output 6). These are useful for job seek-
ers as they represent visual descriptions of their professional
interests, in other words, a history of their job related web
browsing.

The ontology editor (OE) receives the modification sug-
gested by the user (e.g., a concept/link addition/deletion)
through the updater (input 7) and asserts it in the ontology
(output 8). There are three types of edits currently avail-
able through the ontology administration interface: turning a
node into a synonym and vice versa, adding a new concept
(the parents, siblings, children and synonyms of the added
node need to be specified as well) and adding/deleting a link.
The addition of a new link via the updater (making “biolog-
ical computing” a child of “applied biological sciences”) is
illustrated in Fig. 6. Given the sensitive nature of the edit
operation (that allows end users to modify the knowledge
base), the updater is currently only available to administra-
tors.

The reasoner is meant to maintain the logical consistency
of career related knowledge as well as infer new knowl-
edge to support the ontology search process. The ontology
classifier (OC) is the component in charge of deploying
the reasoner whenever necessary (e.g., before committing
changes to the ontology, to ensure logical consistency is
maintained).

5 Autonomic curation

This section explains how autonomic curation of crowd-
sourced knowledge is implemented in the context of the
above architecture.

While the system is running, the components in Fig. 3
interact in a way that can be described as a MAPE-K loop
(Fig. 2). Thus, the Aviator platform may be viewed as an
autonomic system [26], where the careers’ knowledge space
(authored by experts, providers and explorers) is themanaged
resource (curated knowledge) and the remaining components
of the ontology servermake up the autonomicmanager (cura-
tor). The goal of the system is to offer completeness of
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search results, provide a perspective of the wider careers
field, enhance the relevance (with respect to personal pro-
fessional interests) of career related searches and save the
user a significant amount of time by automating all above
tasks (see Sect. 3). These four sub-goals represent a mix of
qualitative and quantitative benefits and it makes little sense
to aggregate them in a conventional objective function. How-
ever, an initial evaluation of these sub-goals is provided in
Sect. 6.

The components of the autonomic manager are described
in the following.

5.1 Monitor

The Aviator system monitors:

S1 provider knowledge (new jobs posted on http://indeed.
co.uk)

S2 explorer knowledge (new tags utilised by registered
users to annotate, via the tagger in Fig. 5, online career
resources)

S3 expert knowledge (expressed by editing the ontology,
namely adding, deleting or redefining ontology concepts
and properties via the updater in Fig. 6).

The web server provides the “software sensors” to capture
changes in the three knowledge sub-spaces and pass them to
the appropriate ontology server components. Themonitoring
behaviour of theAviator system is described by the following
pseudo-code.

List sensors contains S1 through S3, method
isActive() returns whether sensor s has detected a
change and analyse() is the method that represents the
analyse phase.

5.2 Analyse

Analysis mostly consists in discriminating between the sev-
eral types of monitored requests (via the getType()
method), translating the sensor data (retrieved by
getOutput()) to the right format and selecting the appro-
priate plan. The second analyse() input represents the
author of the change detected by sensor s. The pseudo-code
describing the analysis phase is presented below.

In the case of S1, the sensor data returned by method
getOutput() is the new job post. Method parse()
extracts the post’s keywords, which are then matched
against ontology concepts (line 7). The new job post is
included in the list associated to each previously identified
concept c (line 8). Method clearVisualiser() resets
the graph display (Fig. 4), whilst plan1() and plan2()
refer to the selected plans. The administrator privileges of the
detected change’s author are either confirmed or invalidated
by method isAdmin().

5.3 Plan and execute

In order to generate a user’s personal ontology (the responsi-
bility of OT in Fig. 3), it is necessary to retrieve all concepts
used as tags throughout the user’s web exploration history
and run a semantic query for each of them. The latter task
is performed by the OS (see Fig. 3) by delegating to the
reasoner. The query output is the matching concept’s vicin-
ity (view in the plan1 pseudo-code) or null (in case the
keyword did not match a concept). Method display()
compounds the views generated for each tag and displays
them in the visualiser. The same plan is used to explore the
general career ontology (the centrepiece in Fig. 2), in which
case the tags input is replaced by the keyword typed in the
searcher and the for loop on line 3 becomes unnecessary as
lines 4 and 5 need only be executed once.

Edits formulated by users are performed on a temporary
copy of the ontology which is afterwards submitted to the
reasoner for consistency checking. The reasoner output will
then be analysed (case S3 in analyse()) and acted upon

123

http://indeed.co.uk
http://indeed.co.uk


Cluster Comput

by either committing the changes to the public ontology or
dismissing them altogether. The associated plan is:

Line 4 above describes the function of the OE. The rea-
soner will return the updated ontology along with a flag
indicating whether logical consistency is met or not.

The “software effector” executes the steps of plan2 on
the ontology and those of plan1 on the front-end display,
namely the visualiser in Fig. 3 (the latter operation is sup-
ported by the Cytoscape plugin). Specifically, the effector
executes one of two management actions: commits changes
to the ontology after a reasoner-approved edit or displays a
sub-view (either single query output or personal ontology)
of the graph in the visualiser.

6 Case study evaluation

The claimed benefits of autonomic curation of crowdsourced
career knowledge are completeness, perspective, relevance
and time. This section evaluates Aviator’s capacity of prac-
tically realising these four benefits. A brief analysis of the
platform’s realtime operation is also provided.

6.1 Completeness

Let us assume that a user is interested in getting a job in
advertising. The results list provided by http://indeed.co.uk
for that keyword used on its own7 contains 864 job adverts.
However, the ontology features several synonyms for the con-
cept “advertising” (Fig. 8), which, when considered together
(via “Advanced search”, in the textbox labeled “With at least
one of these words”), form a query that yields a result list
with 882 entries. To get access to these 18 extra jobs, the
user would need to manually compile a list of all “adver-
tising” synonyms, a task successfully automated by Aviator.
The difference is even more striking if, by chance, the user
searches for “creative director”, which produces 21 results
(thus, a negative difference of 861 jobs relative to the Aviator
query).

Since the lists of jobs found for each of the “advertising”
synonyms are overlapping, the complete query performed
by Aviator merely broadens the result set (the jobs at the
intersection of the results’ lists would be identified by any of
the individual queries). However, the added benefit brought

7 All http://indeed.co.uk search results in this paper refer to searches
conducted in May 2016 in the Birmingham area with a radius of 25
miles.

by Aviator queries becomes more evident in cases where
there is no overlap between the lists obtained for each career
synonym. For instance, “business intelligence” and “business
information management”, taken as two individual queries,
yield 252 and, respectively, 3 results. When aggregated in a
single query (in the Aviator ontology, they are synonyms),
the result set contains all 255 results, showing that the lists
generated for the individual queries are completely distinct.
In such a situation, without Aviator support, a user who is
unaware of the synonymy relationship would be deprived of
the entirety of jobs associated to either one field or the other.
Thus, Aviator replicates the domain expertise of a curator,
in automatically referring the user to other jobs of interest,
even though they were outside of the user’s specific search.

6.2 Perspective

Entering a keyword in the Aviator searcher will pro-
duce a graph containing relevant ontology nodes as well
as their connections (this can be tested by navigating
to https://gcg-test.codevate.com/explore and exploring the
graph returned for any preferred ontology concept). Display-
ing the output of a query as a graph provides the user with
an overarching perspective of the field of interest, which is
not available (or, at best, severely obscured) when present-
ing query results in the form of a list (such as relevant job
adverts are formatted by http://indeed.co.uk, for instance).
Moreover, from a human computer interaction perspective,
research shows that displaying knowledge as graphs is more
informative than lists (indented trees) [15,24]. Another, indi-
rect, advantage of displaying a career connectivitymap rather
than a list is the possibility of uncovering new, potentially
relevant careers that the user may not have considered oth-
erwise. For instance, searching for “biophysics” produces
a graph featuring the expected connections (“biology” and
“physics” are parents of the search topic) as well as unex-
pected ones (“astrobiology” is also a child of “biology” and
“physics” and may be of interest, even if merely borderline,
to a personwith expertise in “biophysics”). This new connec-
tion is another example of something that might frequently
have been pointed out by an expert curator, but would have
been difficult to spot in a list of job adverts returned from a
keyword search.

6.3 Relevance

A personal ontology comprises all Aviator concepts used
as tags by a given registered system user. Those concepts,
along with their one-step neighbours, are connected to a
central node (labeled “Me” in Fig. 7) and displayed in the
visualiser (https://gcg-test.codevate.com/explore/personal).
Besides acting as a personal career profile (reflecting users’
professional interests throughout their use of Aviator), a per-
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Fig. 7 Aviator: a personal ontology example

Fig. 8 Synonyms for “advertising” in the Aviator ontology

sonal ontology can serve as a benchmark when searching for
jobs.

Specifically, let us assume that a fictional organisation,
CompX, registers an Aviator account and publishes the per-
sonal ontology for the ideal candidate they would like to
hire to fill a given role. In this example, CompX’s personal
ontology contains all the nodes in Fig. 7 (where “Me” is also
replaced with “CompX”), apart from the “project manage-
ment” branch. Let us also assume that John, a young engineer
and owner of the personal ontology in Fig. 7, wants to find out
if CompX’s job offer is a good fit for him. Upon seeing the
degree of overlap between his personal ontology and the one
published by CompX, John can make an informed decision
with respect to either applying for the job or not. Specifically,
John may decide to keep looking for roles that also require
project management skills or “sacrifice” his interest in that
field and apply for the CompX job. By performing this com-
parison against a wide range of ideal candidate ontologies,
users are supported in applying only for those jobs that are
relevant to their professional interests.

6.4 Time

Using Aviator to manage career data saves the end user’s
time mainly in two ways. Firstly, by storing a list of syn-
onyms for each ontology concept, Aviator supports broader
scope queries. To achieve a similar result, the explorer would

Table 1 Ontology operations duration

Operation Runtime (s)

(a) One-off operations

KT (1→2) 2

KT (2→1) 3.6

OS (4) 0.9

Node links Query runtime (ms)

(b) Queries

< 50 132

50–100 532

>100 1231

have to manually compile the synonym list from various
sources, a time consuming activity thus rendered unneces-
sary. Secondly, comparing personal ontologies against those
describing ideal candidates for available roles protects the
end user from having to explicitly investigate the overlap
between a given job description and personal professional
interests.

6.5 Scalability

In support of Aviator’s scalability to knowledge bases of dif-
ferent sizes, we provide numerical evidence of the platform’s
realtime performance. The main semantic operations and
their execution times are listed in Table 1. Table 1(a) shows
the duration of all operations that get run only once per user
session: knowledge translation, both fromxlsx toRDF/OWL,
KT(1→2), and vice-versa, KT(2→1), and ontology load-
ing prior to running a semantic query, OS(4). The associated
execution times are measured on a DigitalOcean server: 4
CPUs @ 8GB RAM for the ontology server and 2 CPUs
@ 4GB RAM for the web server. Table 1(b) lists average
query execution times measured for three types of nodes:
loosely connected (with less than 50 first and second order
children, parents and siblings), well connected (between 50
and 100 related concepts)—this is the category 75% of ontol-
ogy nodes fall under—and highly connected (with over 100
neighbours). The number of node neighbours is the only
parameter considered since it has the most significant impact
of the computational cost of semantic queries. The values
in column two represent the average execution times for
100 ontology nodes from each of the three categories. As
expected, query runtime increases as node connectivity goes
up, however, for 75% of all possible queries, the execution
time is under one second. The most computationally expen-
sive operation performed by Aviator, ontology classification,
employs the FaCT++ reasoner [47] and takes, on average,
91s.
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7 Aviator architecture evaluation

In order to evaluate the suitability of the proposed platform
for autonomic knowledge curation, in general, we carried
out an architecture analysis. The tool used for this purpose,
namely, the architecture trade-off analysis method (ATAM)
[25] is the industry standard approach for assessing soft-
ware applications’ design against their intended purpose. It
provides a well structured procedure to evaluate an archi-
tecture’s fitness taking into account a set of non-dominant
quality attributes (in the sense that improving one attribute
will implicitlyworsen another). ATAMhas been successfully
used for analysing software architectures in cloud comput-
ing [30], with a special focus on the security aspect [13],
for investigating the design of service-oriented systems for
serious games [8] as well as a starting point for bespoke
approaches considering the impact of uncertainty on soft-
ware requirements and architectures [29], the importance of
enterprise information systems availability [33] or the sus-
tainability of software architectures [50].

When applied to the Aviator domain, ATAM enabled the
identification and management of the following factors.

7.1 Business drivers

The architecture should allow heterogeneous information
integration, intuitive navigation of that information and per-
sonalisation of reports and search results.

7.2 Architectural plan

The proposed architecture is an ontology supported auto-
nomic manager. It addresses the previously identified busi-
ness drivers in that autonomic managers are specifically
designed for unsupervised, realtime operation, ontologies
store heterogeneous information uniformly (thus supporting
integration) as semantic graphs (intuitively navigable struc-
tures) and reasoners support semantic querying, a powerful
instrument for providing insightful, personalised results.

7.3 Architectural approaches

To assess the robustness of the plan, several alternatives were
investigated with respect to the architecture of the autonomic
system (identified as the main discrimination criteria in the
literature [20,21,26]) as well as the type and structure of the
knowledge layer (presented as significant decision factors
within the ontology engineering process [38,42]).

With respect to the autonomic management system, the
following options were considered:

– hierarchical vs flat autonomic system
– distributed (networked) vs local autonomic system

– off-the-shelf autonomic development platform (such as
IBM’s Autonomic Computing Toolkit [22]) vs bespoke
implementation.

In what concerns the type of the knowledge layer, several
options were analysed as alternatives to ontologies:

– relational database
– NoSQL database (object oriented or graph model)
– formal model (e.g., temporal logic).

Selecting the type of knowledge to effectively support the
manager’s decisions is not a trivial task [21,27]. Conse-
quently, the structure of the knowledge layer was discussed
in terms of the options below.

– inclusion vs exclusion of plans and policies from themain
knowledge repository

– inclusion vs exclusion of system states in the knowledge
repository

– multifaceted properties vs RDF triple representation—
〈subject, predicate, object〉.

For an extensive analysis, one may consider architectural
combinations across the three categories of approaches
presented above (e.g., compare a hierarchical autonomic
manager with a relational database serving as its knowledge
layer against a distributed manager informed by a NoSQL
database). However, based on the quality attributes preferred
by the stakeholders (see Sect. 7.4 below), it was possible
to eliminate one of the candidates for each item in the lists
above without considering cross-category combinations.

7.4 Quality attributes and usage scenarios

The stakeholders, namely the technical architect, the product
owner, the project manager, the lead developers and a focus
user group, established a set of relevant quality attributes.
They are described below in order of priority (low to high)
and illustrated with practical scenarios.

7.4.1 Proactivity

Systems in charge of autonomic knowledge curation should
make and implement decisions with minimum human inter-
vention. Heterogeneous information should be collated,
interpreted and displayed in the absence of human super-
vision.
Usage scenarios8 Users are exploring and tagging career
related resources, while their annotations are captured by

8 All usage scenarios in this section refer to the career knowledge cura-
tion case study.
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a sensor and integrated in the underlying knowledge base
without interrupting their browsing. New job postings and
relevant user reviews are captured automatically. Adminis-
trator edits operated on the ontology are accepted or rejected,
algorithmically, given the credibility scores of their authors.

7.4.2 Adaptive transparency

In some application spaces (e.g., autonomic medical diag-
nosis or realtime navigation systems), the knowledge base
should be hidden from the end user tominimise disruption. In
others, as is the case with Aviator, allowing user access to the
knowledge stored by the autonomic manager is highly bene-
ficial, especially when understanding the underlying data is
vital to the type of service provided.
Usage scenarios Career advice seekers benefit from having
access to graph-organised data about various professions.
This exposes the way career nodes relate to each other, to
jobs, to relevant university courses, etc., thus providing users
with a perspective of the field.

7.4.3 Realtime operation

The systems underpinned by the proposed architecture must
respond to change without significant lags. Although some
career knowledge base maintenance may be performed
offline (for instance, complete consistency checks usually
take place once a day), data must be collected as it is pub-
lished on job sites or annotated by career resource explorers.
Usage scenarios. People doing online research about careers
annotate a webpage while a new job is advertised on http://
indeed.co.uk—both streams of data are captured by the
appropriate sensors and included in the knowledge base as
they become available.

7.4.4 Structural simplicity

No additional level of complexity (at hardware or software
levels) should be necessary to allow the system to meet a
satisfactory standard of quality. This is of paramount impor-
tance, because simplicity supports flexibility, making the
architecture adaptable to various problem domains.
Usage scenarios Career information management (by the
system) and exploration (by the user) does not require a com-
plicated “translation” layer to turn the language of the user
into one interpretable by the machine. Besides a web server
configuration that is appropriate for the expected user load,
the manager does not require additional hardware to run on.

7.5 Architectural approaches’ analysis

The proposed architectural plan (Sect. 7.2) was analysed in
various configurations (listed in Sect. 7.3), with respect to

the identified quality attributes. The resulting tradeoffs (that
is, the quality attributes improved by a certain architecture
as opposed to the ones damaged by it) were evaluated and a
decision was made either in favour or against each architec-
tural approach.

With respect to the autonomic system’s architecture:

– A hierarchical autonomic system (comprising several
managers on different levels of abstraction, controlled by
hierarchical superiors) would improve the coordination
of tasks throughout the system, potentially enabling the
processing of a wider range of events (new jobs being
posted, user reviews being added to career web pages,
etc.) and a more accurate response (increased proactiv-
ity). However, that would also damage realtime operation
given the lags implied by the communication between
managers on different layers of the hierarchy. Since the
latter quality attribute takes priority over the former, a flat
architecture was adopted.

– A distributed autonomic systemwould help process large
volumes of information faster (beneficial in terms of
proactivity and realtime operation) yet the additional
hardware and software inherent to a networked design
would compromise simplicity. Thus, the architecture will
contain one autonomic manager (as opposed to several
spread across a grid), yet, the underpinning algorithms
will be modular (configured as services) and capable of
running on a PC as well as on a web server.

– A third party autonomic development platform would
most likely improve proactivity (according to the way
professional frameworks, such as ACT [22] or ABLE [5],
are advertised).At the same time, “one-size-fits-all” solu-
tions tend to be heavyweight and difficult to configure,
which damages the simplicity and adaptive transparency
quality attributes (at the time of writing, ACT does not
allow the exposure of the underlying knowledge base to
the user). Consequently, the proposed architecturewill be
built from modular tools, that are flexible both in opera-
tion as well as in the way they can be assembled together.

In what concerns the type of the knowledge layer, relational
databases provide no native support for hierarchical knowl-
edge (crucial when modelling related careers) and do not
facilitate learning (only explicitly asserted facts are consid-
ered to be true, under the closed world assumption [40]).
Therefore, this sort of system would have a limited capabil-
ity of making decisions without being prompted (proactivity
would be low). NoSQL or a formal model prove more flexi-
ble, yet would require a bespoke inference engine to support
learning (damages simplicity). Also, a supplementary trans-
lation layer would be necessary to allow non-specialist users
to understand knowledge expressed in a mathematical/logi-
cal formalism. The final decisionwas in favour of ontologies,

123

http://indeed.co.uk
http://indeed.co.uk


Cluster Comput

as they are equipped with embedded inference engines (rea-
soners) and lend themselves well to intuitive visualisation
techniques, by exploiting the graph-like structure of RDF.

Thediscussion around the structure of the knowledge layer
revealed that:

– Storing plans andpolicies in the ontologywould allow the
system to reason on these two components, thus increas-
ing the accuracy of responses to complex triggers from
the managed resource (i.e., the online career knowledge
space). At the same time, the additional reasoning com-
plexity would damage realtime operation and simplicity.
Hence, in the proposed architecture, the two components
are stored separately from the main knowledge reposi-
tory.

– The availability of system states in the knowledge base
would improve the efficiency of autonomic tasks such
as analysis and planning (thus increasing proactivity
and improving realtime operation). Yet a complete state
model of the managed resource is not always possible to
extract, not to mention the ensuing increase in the size
of the knowledge base (hence decreasing proactivity and
damaging realtime operation). Since this design alterna-
tive seems to be both beneficial and detrimental relative
to the same quality attributes, the final conclusion was to
include a state model in the knowledge repository of the
reference architecture, yet instantiate it onlywhenneeded
in the context of a given application (e.g., modelling the
states of the managed resource in a discrete, small sized
domain, such as automatically configuring an industrial
actuator, is straightforward, whereas the same task in the
context of career knowledge management is not compu-
tationally feasible).

– The inclusion of multi-faceted properties yields the same
discussion as in the case of system states. Including them
would allow for a more accurate representation of the
managed resource with benefits in terms of proactivity,
and, at the same time, would add a layer of complexity
to the ontology, damaging the same quality attribute. As
previously, the final decisionwas to provide the reference
architecture with amechanism formulti-faceted property
formulation, with an optional practical realisation.

7.6 Additional usage scenarios

A prototype implementing the proposed architecture in the
career knowledge curation problem domain was piloted dur-
ing several advisory group meetings, where Good Careers
Guide employees and Aston University students experi-
mented with the platform and gave feedback. The additional
usage scenarios that were formulated with this opportunity
prompted minor operational changes (e.g, while exploring
the knowledge base in the form of a graph, the edges should

not be labelled with the type of relationship they represent, as
that would clutter the display). However, those were accom-
modatedwithout anymodifications to the architecture agreed
upon in the previous ATAM step.

7.7 Discussion

The proposed architecture therefore meets the trade-offs pre-
ferred by the stakeholders. This fact notwithstanding, another
note-worthy candidate was carefully considered during the
ATAM analysis, namely an autonomic manager informed by
a NoSQL database. More flexible than a relational database,
this sort of knowledge layer would increase the response
time of the platform as a whole without requiring any sup-
plementary computational resources (thus meting both the
realtime operation and structural simplicity criteria). Yet,
NoSQL databases provide limited support for intrinsic learn-
ing [28] (lagging behind ontologies in that respect) and are
not as easily translatable to an intuitive visual form such as
a graph—thus damaging the proactivity and adaptive trans-
parency attributes. However, these two are of lower priority
than realtime operation and structural simplicity—the true
reason behind rejecting the NoSQL knowledge layer was the
type of learning it enabled. Specifically, the online career
knowledge space is dynamic, subject to continuous transfor-
mation. In order to remain relevant, the proposed career data
management platform requires a knowledge base capable of
absorbing such changes with minimum computational costs.
Out of the knowledge modelling alternatives available at the
moment, ontologies are shown to have the most promising
potential for organic growth, synchronous to the natural fre-
quencies of the domain being modelled.

8 Related work

Autonomic curation of online knowledge has received lim-
ited attention from the research community. Contributions
usually target specific applications, such as curating meta-
data associated to digital records with the purpose of cata-
loging those for long-term storage [2,43]. A similar idea to
that underpinning Aviator is used to allow the community-
led curation of artworks in a digital gallery [18], however, the
curation process has to do with the users’ artistic preference
rather than semantic content. None of these contributions use
an ontology to store the knowledge piece of the autonomic
manager nor give any insight into the MAPE-K loop they
employ.

On the other hand, the area of online career support has
proven more popular. Several career support platforms make
use of ontologies to store and maintain relevant knowledge.
The Enterprise Ontology [48] stores the vocabulary for the
business enterprise domain. Career ontologies in the ICT
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field are either aimed at facilitating the access of school
leavers to the ICT curriculum, jobs, skills, etc. [9] or focus
on improving the ontology search process (complete with a
metric formeasuring the relevance of ontology concepts with
respect to user keywords) [39].Other approaches [1,19] build
ontologies from secondary school student data (psychologi-
cal test results and exam marks) as well as expert provided
career data (only broad domains, such as literature, human-
ities, mathematics, are considered). By matching student
data against career requirements, the systems will recom-
mend the best fitting field of professional practice [1] or the
necessary courses to take in order to meet a given degree’s
promotion criteria [19]. A career advice platform is used as
a case study to illustrate knowledge maturing [51], namely
the process of transforming highly conceptualised entities
into formal, explicitly linked concepts. The platform suggests
the inclusion of knowledge graph visualisation components
and analyses the benefits of effective retrieval of relevant
information, yet the discussion is exclusively carried out at a
design level. Another approach [52] uses knowledge graphs
to allow an easier understanding of mathematical concepts
andmainly focuses on how tomanually build the graph rather
than extract it from a legacy repository.

We also analyse a body of work dealing with knowl-
edge graphs, not necessarily strictly related to the careers
domain, but inherently relevant to Aviator (ultimately, a
knowledge graph in its own right). Wikipedia is one of the
leaders in this category, given the successful exploitation of
Wikidata, an ontology used to extract connections between
concepts in various languages. Since the data is not explic-
itly exposed to the end-user, there is an overall scarcity of
programmatic interfaces to the Wikipedia ontologies [46].
The Google Knowledge Graph [41] adds a semantic layer
to the classic search engine (the right hand side menu next
to the Google search results list is functionally similar to
an Aviator sub-graph). However, clicking on a node only
displays local information, without expanding the search to
another view.On the other hand,GoogleKnowledgeGraph is
a powerful, broad spectrum tool, whereas the Aviator ontol-
ogy is topical in the field of careers, thus better suited to
resolve specific queries. A study [44] of how knowledge
diversity influences the retrieval of specific ontology data,
in the presence of a size restriction, has a possible applica-
tion for phase two of our platform. Link strengths may be
used to define the distance between concepts, thus provid-
ing a metric to measure diversity. An excellent survey of
techniques for building, mining and expanding knowledge
graphs [7] is exemplified on Freebase, the ontology behind
Google’s Knowledge Graph. Graph Query by Example [23]
is a system that uses knowledge samples as a starting point
for building queries, in an effort to simplify their structural
complexity (illustrated on Freebase and DBpedia). Finally,
various relation extraction techniques are suggested [49] in

an attempt to transform data from linguistic resources such
as WordNet into knowledge graphs.

In summary, the reviewed ontology based career support
platforms target narrow professional domains (such as ICT),
provide guidance that mainly consists in advanced semantic
search features and allow limited support for incorporating
non-expert input. In contrast, Aviator employs an ontology
spanning over several career fields and offers a rich set of
features (career graph navigation and editing, exploration
history tracking, etc.). Knowledge graph contributions pro-
vide some visualisation of the underpinning ontology, yet
are either too specific [7,44,49] or designed for too broad a
domain of applications (Google Knowledge Graph) to match
the flexibility (node expansion, community edits) and cus-
tomisation (personal ontologies) of Aviator.

9 Conclusion

Aviator is a career knowledge management platform that is
relevant to the more general context of automatic knowledge
curation. It exposes the underlying data in navigable, editable
views of manageable size, accepts external edits after consis-
tency verification and offers personalised snapshots of users’
engagement with the system. This enables Aviator to pro-
vide a flexible (as broad or as specific as desired) perspective
of the field, as opposed to classical career advice platforms
where the subtle connections between professions, jobs, edu-
cational resources, etc. are obscured by the sheer volume of
provided data. Additionally, the Aviator ontology reflects the
views of a larger community than that of domain experts and
also provides the means to customise the career researching
experience of its end users.

Aviator is powered by a hybrid architecture where seman-
tic tools address knowledge consistency and retrieval issues,
whilst the autonomic components manage ontology changes.
In this setting, the ontology has several roles: it aligns com-
munity curated information (one form of alignment is storing
synonyms for each ontology concept), it supports the render-
ing of relevant knowledge in the form of a navigable graph
and it ensures the logic correctness of the knowledge model,
via reasoner performed classification.

From an architectural standpoint, Aviator has been anal-
ysed with ATAM in order to expose the process behind
selecting the most suitable platform design with respect to
stakeholders’ requirements. The analysis revealed that the
structure involving an autonomic manager informed by an
ontology met the relevant system goals better than the sec-
ond best architecture, featuring a NoSQL database to support
the knowledge layer.

Future work will be directed towards gathering and
analysing Aviator user data (tag usage, graph exploration
trends, personal ontology evolution). This will enable fur-
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ther platform validation as well as help study part of the
career-interested community’s dynamics. The latter outcome
may prove useful for formulating education/training poli-
cies and labour force recruitment strategies. The second
planned development is related to the introduction of numer-
ical weights to model the strength of node connections, e.g.,
“science” is tightly connected to “physics” (link strength
100) but loosely connected to “astrology” (link strength 5).
The analyse phase of the MAPE-K control loop will use
these weights to display only the nodes connected via strong
links to a search keyword. In a broader context, the possibil-
ity of applying the autonomic knowledge curation approach
embodied by Aviator to other representative domains (e.g.,
Pinterest) will also be investigated.
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