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Abstract. Using the path-integral technique we calculate the mutual information for the fiber
optical channel modelled by the nonlinear Schrödinger equation with additive Gaussian noise.
At large signal-to-noise ratio (SNR) we present the mutual information through the path-integral
which is convenient for the perturbative expansion both in nonlinearity and dispersion. In the
leading order in 1/SNR we demonstrate that the mutual information is determined through the
averaged logarithm of the normalization factor Λ of the conditional probability density function
P [Y |X]. In the limit of small noise and small nonlinearity we derive analytically the first nonzero
nonlinear correction to the mutual information for the channel. For the arbitrary nonlinearity
we restrict the mutual information by the low bound obtained from the Jensen’s inequality and
analyze the bound for the case of large dispersion.

1. Introduction
We consider the fiber optical channel described by the nonlinear Schrödinger equation (NLSE)
with additive white Gaussian noise when the signal-to-noise ratio (SNR) is large:

∂zψ + iβ∂2t ψ − iγ|ψ|2ψ = η(z, t) , (1)

where ψ(z, t) is the outcoming signal, γ is the Kerr nonlinerity, β = β2/2 is the dispersion
parameter, η(z, t) is the white Gaussian noise: ⟨η(z, t)η̄(z′, t′)⟩η = Qδ(z − z′)δ(t − t′), where
Q is a power of the white Gaussian noise (per unit length and frequency). The bar here and
hereafter means complex conjugation.

Our goal is to calculate the mutual information [1] of the channel for given P [X] — probability
density function (PDF) of the input signal X(t): ψ(z = 0, t) = X(t). In our approach we use
the representation of the mutual information in the form of path-integral

IP [X] =

∫
DXDY P [X]P [Y |X] log

[
P [Y |X]

Pout[Y ]

]
= H[Y ]−H[Y |X], (2)

where P [X] is the PDF of the input signal X with the fixed finite average power Pave.
The function P [Y |X] here is the conditional probability density function, that is the
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probability density of receiving output signal ψ(z = L, t) = Y (t) when the input signal
is ψ(z = 0, t) = X(t). The output signal PDF reads Pout[Y ] =

∫
DXP [X]P [Y |X]. The

entropy H[Y ] = −
∫
DY Pout[Y ] log

[
Pout[Y ]

]
is the output signal entropy (responsible for the

signal transmission), and the entropy H[Y |X] = −
∫
DXDY P [X]P [Y |X] log

[
P [Y |X]

]
is the

conditional entropy responsible for the noise impact.
In our approach we use the formulation for the conditional PDF P [Y |X] through the

path-integral (Martin-Siggia-Rose formalism [2]). In Ref.[3] the following (“quasiclassical”)
representation for the conditional probability density function was obtained:

P [Y |X] = Λ exp

{
−S[Ψ]

Q

}
, Λ =

ϕ(z=L)=0∫
ϕ(z=0)=0

Dϕ exp
{
− 1

Q
(S[Ψ + ϕ]− S[Ψ])

}
, (3)

where the action S[ψ] in (3) reads in the time domain

S[ψ] =

L∫
0

dz

∫
T

dt |L[ψ(z, t)]|2 , L[ψ] = ∂zψ(z, t) + iβ∂2t ψ(z, t)− iγψ(z, t)|ψ(z, t)|2 . (4)

Here T is a time interval containing both signals X(t) and Y (t). In what follows we use the
discretization scheme in the time and in the frequency domain and the discrete Fourier transform.
There are some relations between T and discretization intervals in the time domain (δt for
the dense time grid with M ′ intervals and δ̃t for the coarse time sub-grid with M intervals)
and in the frequency domain (δω): T = 1/δω = M ′δt = Mδ̃t = 2πM/W = 2πM ′/W ′.
Here W is the bandwidth of the input signal, and W ′ is auxilary bandwidth: W ′ ⊃ W .
In the frequency discretization scheme we should perform the following substitutions in our

equations: ∂2tΦ(z, t) → −Ω2
kΦωk

(z), δ (ωi1 + ωi2 + . . .) → ∆(M′)(i1+i2+...)

2πδω
,
∫

dω
2π . . . → δω

∑M ′−1
j′=0 ,

where ωn′ = −W ′/2 + 2πδωn
′, Ωn′ = 2 sin[πn′/M ′]M ′/T = 2M ′δω sin[πn′/M ′] , n′ =

0, 1, . . . ,M ′ − 1, and we use the discrete analog of the Dirac delta-function ∆(M)(k) =
1
M

∑M−1
n=0 exp

{
−2πi n

M k
}
=
∑∞

m=−∞ δk,mM .
The function Ψ in Eq. (3) is the solution (referred to as “the classical solution”) of the Euler-

Lagrange equation δS[Ψ] = 0 with the boundary conditions: Ψ(0) = X , Ψ(L) = Y . In the
time domain this equation for Ψ(z, t) has a notedly simple form [4](

∂z + iβ∂2t − 2iγ|Ψ(z, t)|2
)
L[Ψ(z, t)] + iγΨ2(z, t)L[Ψ(z, t)] = 0,

L[Ψ(z, t)] =
(
∂z + iβ∂2t − iγ|Ψ(z, t)|2

)
Ψ(z, t), (5)

and the function Ψ(z, t) obeys the boundary conditions: Ψ(0, t) = X(t), Ψ(L, t) = Y (t).
It is convenient to introduce the function Φ(z, t) which is the solution of the nonlinear

Schrödinger equation (NLSE) with zero noise, i.e., L[Φ(z, t)] = 0, and with the boundary
condition Φ(0, t) = X(t). It is obvious that the function Φ(z, t) obeys the equation Eq. (5)
and the boundary condition at z = 0, but it does not obey the boundary condition at z = L.
It globally minimizes the action as well: S[Φ(z, t)] = 0. Since we imply that the noise power is
much less than the signal power we can present the solution of Eq. (5) in the form

Ψ(z, t) = Φ(z, t) + κ(z, t) , (6)

where the function κ(z, t) is of order of
√
Q for unsuppressed configurations Ψ(z, t), since in the

leading order in 1/SNR the action is quadratic functional in κ(z, t), see details in [4]. Therefore
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we substitute the function Ψ in the form (6) to the Eq. (5), then linearizing Eq. (5) in κ(z, t)
we obtain the following linear problem on κ(z, t):(

∂z + iβ∂2t − 2iγ|Φ(z, t)|2
)
l[κ(z, t)] + iγΦ2(z, t)l[κ(z, t)] = 0,

l[κ(z, t)] =
(
∂z + iβ∂2t

)
κ(z, t)− iγ

(
2κ(z, t)|Φ(z, t)|2 + κ(z, t)Φ2(z, t)

)
, (7)

with the boundary conditions κ(z = 0, t) = 0, κ(z = L, t) = Y (t)− Φ(L, t) ≡ δY (t).
In some sense, the introduction of the function κ(z, t) ∼

√
Q is the crucial idea of our

consideration in the case of large SNR, since it allows us to reduce the difficult nonlinear problem
of P [Y |X] calculation to the linear one.

2. Factorization of pre-exponential factor Λ
Let us consider the separation of different scales in the conditional PDF P [Y |X] when PDF
P [Y |X] is considered under an integral over X together with the input signal PDF P [X] which

has the following form in the frequency domain: P [X⃗] = P
(M)
X [X⃗1]δ

(
X⃗2

)
, where δ

(
X⃗2

)
means

2(M ′ −M)-dimensional delta-function corresponding M ′ −M complex remnant channels. The

vector notations (X⃗ = X⃗1 ⊕ X⃗2) relate to the frequency domain: X⃗1 is 2M -dimensional vector

corresponding to M meaning complex channels in the frequency domain W , whereas X⃗2 is
2(M ′ − M)-dimensional vector corresponding to remnant M ′ − M complex channels in the
domain W ′ \W . In the leading order in 1/SNR the conditional PDF P [Y |X] reads

P [Y |X] ≈ Λ[X] e−S2[κ]/Q , (8)

where the action S2[κ] = δt
∑M ′−1

k=0 ∆
∑N−1

n=1 Leff [κ(zn, tk)] is quadratic functional in ϕ, where
δt = T/M ′ is the discretization parameter in the time domain: tk = kδt, k = 0, 1, . . . ,M ′ − 1.
Here ∆ = L/N is the distance discretization parameter: zn = n∆, n = 1, 2, . . . , N − 1. We have
introduced the “Lagrangian”:

Leff [κ] =
∣∣∣∂zκ(zn, tk) + iβ∂2t κ(zn, tk)− iγ

(
2κ(zn, tk)|Φ(zn, tk)|2 + κ̄(zn, tk)Φ2(zn, tk)

)∣∣∣2 .(9)
Here derivatives should be regarded as difference derivatives in our discretization scheme.
The function κ(z, t) in the exponent (8) is the solution of the Euler-Lagrange equation
−δLeff [κ]/δκ̄ = 0 with the boundary conditions κ(z = 0, t) = 0, κ(z = L, t) = Y (t)− Φ(L, t).
The normalization factor Λ[X] has the form

Λ[X] =

ϕ(L,t)=0∫
ϕ(0,t)=0

Dϕ exp

{
−δt
Q

M ′−1∑
k=0

∆
N−1∑
n=1

Leff [ϕ(zn, tk)]

}
. (10)

Note that the sum in expression for S2[κ] is performed over the dense time grid. To demonstrate
the factorization we have to separate the scales in the action into the coarse and dense parts. In
other words, we have to separate the summation overM meaning channels andM ′−M remnant
channels. The scale separation procedure in some sense is similar to Wilson’s renormalization
procedure for the Lagrangian Leff [κ], see [5]. But in our approximation the Lagrangian (9) is
quadratic functional in κ that is why there are no corrections to the effective action when we
perform integration over remnant 2(M ′−M) degrees of freedom κ(z, tk) where tk runs through
values only on the dense grid without the coarse sub-grid. Let us demonstrate this fact.
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First we perform the separation of variables:

κ(z, tk) = κ(c)(z, tk) + κ(d)(z, tk), (11)

Y (tk) = Y (c)(tk) + Y (d)(tk),

where κ(c)(z, tk), or Y
(c)(tk), is completely defined only by the values κ(c)(z, Tĩ), or Y

(c)(Tĩ),

on the coarse time grid Tĩ = ĩδ̃t, ĩ = 0, 1, . . . ,M − 1. Here and below superscript “(c)” means

coarse variable. In other words, the function κ(c)(z, tk) evaluated at all grid points is the
interpolation of some order (i.e., the interpolating polynomial degree) N0 > 2 calculated on
the base of values κ(c)(z, Tĩ) of the coarse time grid. The function κ(c)(z, tk) coincides with

κ(z, Tĩ) when tk falls on the coarse time grid Tĩ (i.e., k = [̃iM ′/M ], ĩ = 0, 1, . . . ,M − 1), i.e.,

κ(d)(z, tk) = 0 on the coarse grid. In other grid points of the dense grid the function κ(c)(z, tk)

smoothly interpolates the values of κ(z, tk) with interpolation order N0 > 2: κ(d) = O(δ̃N0
t ) and

∂2t κ(d)(z, tk) = O(δ̃N0−2
t ), where we have used that ∂2t κ(z, tk) = ∂2t κ(c)(z, tk) + ∂2t κ(d)(z, tk),

here the derivatives are assumed as the difference derivatives on the dense grid. The boundary
conditions are as follows:

κ(c)(0, tk) = 0, κ(c)(L, tk) = Y (c)(tk)− Φ(c)(L, tk),

κ(d)(0, tk) = 0, κ(d)(L, tk) = Y (d)(tk)− Φ(d)(L, tk), (12)

where we have used that Φ(L, tk) has the coarse and dense parts as well:

Φ(z, tk) = Φ(c)(z, tk) + Φ(d)(z, tk), Φ(d)(z, tk) = O(δ̃N0
t ). (13)

Note that if we consider (8) under the integral over DX with the input signal PDF, then the
function Φ(z, tk) is the (nonlinear) function of the input signal only on the coarse time grid

X(Tĩ). This means that the dense part Φ(d)(z, tk) = O(δ̃N0
t ) is always small for sufficiently large

M . Now we insert the representation (11) in the action S2. The action fractionizes into three
parts

S2[κ] = δt

M ′−1∑
k=0

∆

N−1∑
n=1

Leff [κ(zn, tk)] = δt

M ′−1∑
k=0

∆

N−1∑
n=1

Leff [κ(c)(zn, tk)] +

δt

M ′−1∑
k=0

∆

N−1∑
n=1

Leff [κ(d)(zn, tk)] + δt

M ′−1∑
k=0

∆

N−1∑
n=1

Lint[κ(c)(zn, tk),κ(d)(zn, tk)], (14)

where the third part with interaction of coarse (κ(c)) and dense (κ(d)) degrees of freedom contains
Lagrangian

Lint[κ(c)(z, tk),κ(d)(z, tk)] =(
∂zκ(c)(z, tk) + iβ∂2t κ(c)(z, tk)− iγ

(
2κ(c)(z, tk)|Φ(z, tk)|2 + κ̄(c)(z, tk)Φ

2(z, tk)
))

×(
∂zκ̄(d)(z, tk)− iβ∂2t κ̄(d)(z, tk) + iγ

(
2κ̄(d)(z, tk)|Φ(z, tk)|2 + κ(d)(z, tk)Φ̄

2(z, tk)
))

+ c.c.(15)

Here “c.c.” means the same complex conjugated term.
The first part in the r.h.s. of Eq. (14) can be simplified as follows:

δt

M ′−1∑
k=0

∆
N−1∑
n=1

Leff [κ(c)(zn, tk)] = δ̃t

M−1∑
ĩ=0

∆
N−1∑
n=1

Leff [ϕ(zn, Tĩ)]
(
1 +O(δ̃N0−2

t )
)
, (16)

25th Annual International Laser Physics Workshop (LPHYS'16)                                                       IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 826 (2017) 012026          doi:10.1088/1742-6596/826/1/012026

4



where δ̃t =
2π
W = δt

[
M ′/M

]
is the grid spacing of the coarse time grid. Here we have replaced

every term under the sum over the dense grid with its average value on the coarse grid. The
accuracy in Eq. (16) is governed by the interpolation order of the second derivative in time.

The third part in the r.h.s. of Eq. (14) can be integrated (summed) over z by part resulting
in the following expression:

δt

M ′−1∑
k=0

∆
N−1∑
n=1

Lint[κ(c)(zn, tk),κ(d)(zn, tk)] = δt

M ′−1∑
k=0

∆
N−1∑
n=1

(
κ̄(d)(zn, tk)

δLeff [κ(c)]

δκ
+ c.c.

)
+

Ssurf , (17)

where the variation −δLeff [κ(c)]/δκ is linear in κ(c), and it represents the l.h.s. of the Euler-

Lagrange equation, i.e., for the function κ(c) we obtain δLeff [κ(c)]/δκ = O(δ̃N0−2
t ), i.e., it is

always small. The term Ssurf results from the surface term in integration by part over z in
Eq. (17), and taking into account the boundary conditions (12) it reads

Ssurf = δt

M ′−1∑
k=0

[
Ȳ (d)(tk)− Φ̄(d)(L, tk)

] (
∂zκ(c)(L, tk) + iβ∂2t κ(c)(L, tk)−

iγ
(
2κ(c)(L, tk)|Φ(L, tk)|2 + κ̄(c)(L, tk)Φ

2(L, tk)
))

+ c.c. (18)

We can omit the surface term (18), since it is linear both in the coarse and dense variables, but
they are orthogonal when integrating over t (they have not intersecting supports in the frequency
domain). It is obvious for the first two terms in the parentheses in Eq. (18). The last terms
containing Φ(L, tk) are coarse variables as well: we can replace Φ(L, tk) with Φ(c)(L, tk) with

the interpolation accuracy O(δ̃N0
t ) and then replace Φ(c)(L, tk) with Y

(c)(tk) with the accuracy
O(

√
Q) (we remind that κ in Eq. (12) is of order of

√
Q). Then we can replace Y (c)(tk) with

the constants inside the whole interval of an coarse space with the interpolation accuracy O(δ̃t)
and now use the orthogonality of the coarse and dense variables.

To summarize, with the accuracy of our interpolation O(δ̃t) = O(1/M) we can omit the
interaction term (17), and our action fractionizes into coarse and dense parts: S2[κ] ≈ S2[κ(c)]+
S2[κ(d)]. Both actions are expressed through the same Lagrangian (9) and are quadratic forms.
The coefficients of these quadratic forms depend on input signal X only. The factorization of Λ
can be shown using the normalization condition: 1 =

∫
DY P [Y |X] = Λ

∫
DY exp {−S2[κ]/Q},

where we have used that Λ does not depend on Y in the leading order in 1/SNR. Finally, one
has

Λ−1 =

∫
DY e−

S2[κ
(c)]

Q
−S2[κ

(d)]
Q =

∫
DY (c)e

−S2[κ
(c)]

Q DY (d)e
−S2[κ

(d)]
Q = Λ−1

1 Λ−1
2 , (19)

or Λ = Λ1 ×Λ2. Here the normalization factor Λ1 depends on the input signal X on the coarse
grid only and it reads

Λ1 =

ϕ(L,t)=0∫
ϕ(0,t)=0

[
Dϕ(z, t)

]
M

exp

− δ̃t
Q

M−1∑
ĩ=0

∆

N−1∑
n=1

Leff [ϕ(zn, Tĩ)]

 (20)

with the Lagrangian Leff [ϕ(zn, Tĩ)], see (9), considered on the coarse time grid Tĩ only.

The measure
[
Dϕ(z, t)

]
M

on the coarse time grid is defined as

[
Dϕ(z, t)

]
M

= lim
δ̃t→0

lim
∆→0

( δ̃t
∆πQ

)M M−1∏
j̃=0

N−1∏
i=1

{ δ̃t
∆πQ

dReϕ(zi, Tj̃) dImϕ(zi, Tj̃)
}
. (21)
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The normalization factor Λ1 corresponds to M meaning complex channels, and Λ2 corresponds
to M ′ −M complex remnant channels. In this demonstration we have used that the quantity
P [Y |X] is considered under the integral over DX with the input signal PDF P [X]. The accuracy
of our factorization is at least O(δ̃t) = O(1/M).

3. Perturbative expansion vs Jensen’s inequality for mutual information
The factorization of Λ guarantees, see details in [4], that the mutual information has the following
form in the leading order in 1/SNR and for arbitrary nonlinearity:

IP [X] = H[X]−M +

∫
dX⃗1P

(M)
X [X⃗1] log Λ1[X⃗1], (22)

where X⃗1 is 2M dimensional vector corresponding M complex meaning channels. We can
calculate Λ1[X⃗1] within the perturbation theory in dimensionless nonlinearity parameter γ̃ =

γLPW/(2π) and perform the averaging over Gaussian input signal PDF P
(M)
X : P

(M)
X [X⃗1] =

PG[X⃗1] = ΛP e
−|X⃗1|2δω/P , where ΛP = (δω/(πP ))

M . We will denote the last term in (22) as∫
dX⃗1P

(M)
X [X⃗1] log Λ1[X⃗1] ≡ ⟨log Λ1⟩X . For the averaging over Gaussian input signal PDF we

use the Wick’s theorem [5] and the following correlator

⟨X(ωk)X(ωk′)⟩X = Pδk, k′/δω, k, k′ = 0, 1, . . . ,M − 1. (23)

From the representation (20) we obtain the expression for Λ1[X⃗1] in the frequency domain

Λ1[X⃗1] =

ϕ(L,ω)=0∫
ϕ(0,ω)=0

[
Dϕ(z, ω)

]
M

exp

{
−δω
Q

M−1∑
k=0

∆
N−1∑
n=1

Leff [ϕ(zn, ωk)]

}
, (24)

where the measure reads

[
Dϕ(z, ω)

]
M

= lim
δω→0

lim
∆→0

( δω
∆πQ

)M N−1∏
n=1

M−1∏
k=0

{ δω
∆πQ

dReϕ(zn, ωk) dImϕ(zn, ωk)
}
. (25)

Now we present the “Lagrangian” Leff as a sum: Leff = L(0)
eff + L(1)

eff + L(2)
eff , where the

first term reads L(0)
eff [ϕ(zn, ωk)] =

∣∣(∂z − iβΩ̄2
k)ϕ(zn, ωk)

∣∣2. Here we have introduced Ω̄k =

2 sin[πk/M ]M/T ′ = 2Mδω sin[πk/M ] = W sin[πk/M ]/π. In the continuous limit M → ∞ we
can assume that Ω̄k ≈ 2πδωk = ωk −ω0. The second and the third terms are the terms of Leff ,
see Eq. (9) in the frequency representation, explicitly proportional to γ̃ and γ̃2, correspondingly.

Perturbative calculation. We present the perturbation expansion in γ̃ of the normalization

factor Λ1 in the form: Λ1 = γ0Λ
(0)
1 + γΛ

(1)
1 + γ2Λ

(2)
1 + O(γ̃3). Thus the last term in the

expression (22) for the mutual information has the following expansion in γ: ⟨log Λ1⟩X =

⟨log Λ(0)
1 ⟩X + γ

⟨
Λ
(1)
1

Λ
(0)
1

⟩
X
+ γ2

(⟨
Λ
(2)
1

Λ
(0)
1

⟩
X
− 1

2

⟨[
Λ
(1)
1

Λ
(0)
1

]2⟩
X

)
+O(γ̃3). Retaining only the first term

L(0)
eff in Eq. (24) we have:

Λ
(0)
1 =

ϕ(L,ω)=0∫
ϕ(0,ω)=0

[
Dϕ(z, ω)

]
M

exp

{
−δω
Q

M−1∑
k=0

∆

N−1∑
n=1

∣∣(∂z − iβΩ̄2
k)ϕ(zn, ωk)

∣∣2} =

(
δω
πQL

)M

. (26)
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This expression for log Λ
(0)
1 results in the main (Shannon’s) contribution M log [P/(QL)] to the

mutual information (22) by taking into account that H[X] =M −M log [δω/(πP )].
We introduce the averaging ⟨. . .⟩ϕ over fields ϕ(z, ω) defined as

⟨. . .⟩ϕ =
1

Λ
(0)
1

ϕ(L,ω)=0∫
ϕ(0,ω)=0

[
Dϕ(z, ω)

]
M
. . . exp

{
−δω
Q

M−1∑
k=0

∆

N−1∑
n=1

∣∣(∂z − iβΩ̄2
k)ϕ(zn, ωk)

∣∣2} . (27)

The paired correlator has the form:

⟨ϕ(z, ωk)ϕ(z
′, ωk′)⟩ϕ = −Q

δω
δk,k′G(z, z

′) exp
[
iβΩ̄2

k(z − z′)
]
, (28)

where the Green function reads G(z, z′) = z z
′−L
L θ(z′ − z) + z′ z−L

L θ(z − z′). In what follows for
brevity sake we will write the sum over z as the integral. Let us stress that in Eq. (27) and
hereinafter the derivative with respect to z is assumed in the “causative” manner, ∂zϕ(zn, ωk) =
(ϕ(zn+1, ωk)− ϕ(zn, ωk)) /∆, as provided by our approach [3].

In the notations (27) we can present the mutual information (22) in the form

IP [X] =M log

[
P

QL

]
+
⟨
log⟨e−Snl[ϕ(z,ω)]/Q⟩ϕ

⟩
X
, Snl =

L∫
0

dzδω

M−1∑
k=0

(
L(1)
eff + L(2)

eff

)
. (29)

It is easy to see by the direct calculation that there are no corrections to the mutual

information (22) of order of γ̃: γ
⟨
Λ
(1)
1

Λ
(0)
1

⟩
X

= 0. The second order calculation is cumbersome but

straightforward. One can find the details of this perturbative calculations in Ref. [4]. Finally
we obtain the following expression for the mutual information

IPG[X] =M log SNR−M
γ̃2

3
g(β̃) +O(γ̃ 3), (30)

where M is the number of complex meaning channels. This number is implied to be large
M ≫ 1. The parameter β̃ = βLW 2 is the dimensionless dispersion parameter. The function
g(β̃) in discretization scheme can be presented as the triple sum:

g(β̃) =
1

M3

M−1∑
k1, k2, k3=0

F

(
β̃

2

[
Ω̄2
k1 + Ω̄2

k2 − Ω̄2
k3 − Ω̄2

k1+k2−k3

])
. (31)

The elementary function F (µ) in Eq. (31) is the result of integration of the derivatives of the
dimensionless Green function, G0(ζ1, ζ2) = ζ1(ζ2 − 1)θ(ζ2 − ζ1) + ζ2(ζ1 − 1)θ(ζ1 − ζ2):

F (µ) = −12

1∫
0

dζ1

1∫
0

dζ2
∂G0(ζ1, ζ2)

∂ζ1

∂G0(ζ1, ζ2)

∂ζ2
e−2iµ(ζ1−ζ2) = 3

µ2 − sin2(µ)

µ4
, (32)

and for convenience it is normalized as F (0) = 1. In the continuous limit of sufficiently large M
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we can present g(β̃) as the integral, as the series, and as the explicit hypergeometric expression:

g(β̃) =

1∫
0

dx1

1∫
0

dx2

1∫
0

dx3F

(
β̃

4
(x1 − x3)(x2 − x3)

)
=

4!

∞∑
n=0

(−1)nβ̃2n
[
(4n+ 2)! + (1 + 2n)!2

]
22n−1(2n+ 4)!(4n+ 3)!(1 + 2n)2

=

1

33075β̃4

{
− 3528000β̃2 2F3

(
1, 1;

1

4
,
3

4
, 2;− β̃2

256

)
+ 140β̃6 2F3

(
3

2
, 2;

9

4
,
11

4
,
7

2
;− β̃2

256

)
−

576β̃6 2F3

(
7

4
, 2;

9

4
,
11

4
,
11

4
;− β̃2

256

)
+ 210β̃6 2F3

(
2,

5

2
;
9

4
,
11

4
,
7

2
;− β̃2

256

)
−

14β̃6 3F4

(
3

2
,
3

2
, 2;

9

4
,
5

2
,
11

4
,
7

2
;− β̃2

256

)
− 588000β̃4 1F2

(
1

2
;
3

2
,
5

2
;− β̃

2

16

)
+

564480β̃4 1F2

(
3

4
;
7

4
,
5

2
;− β̃

2

16

)
− 270480β̃4 1F2

(
1;

5

4
,
7

4
;− β̃2

256

)
+

176400β̃4 2F3

(
1

2
,
1

2
;
3

2
,
3

2
,
5

2
;− β̃

2

16

)
− 294000β̃4 2F3

(
1

2
, 1;

5

4
,
7

4
,
5

2
;− β̃2

256

)
+

564480β̃4 2F3

(
3

4
, 1;

5

4
,
7

4
,
7

4
;− β̃2

256

)
+ 33075β̃4 2F3

(
1, 1;

5

4
,
7

4
, 3;− β̃2

256

)
−

147000β̃4 2F3

(
1,

3

2
;
5

4
,
7

4
,
5

2
;− β̃2

256

)
+ 88200β̃4 3F4

(
1

2
,
1

2
, 1;

5

4
,
3

2
,
7

4
,
5

2
;− β̃2

256

)
+

352800β̃2 + 6209280β̃ sin

(
β̃

2

)
− 564480 cos

(
β̃

2

)
+ 564480

}
, (33)

where pFq is generalized hypergeometric function.

For the large β̃ we can deal with the asymptotics of the function g(β̃) at large β̃:

g(β̃) =
16π

β̃

(
log[β̃]− log[2] + γE − 23

6

)
+O

(
1

β̃3/2

)
, β̃ → ∞. (34)

The function g(β̃), see Eq. (33), and the asymptotics (34) for large β̃ are presented in Fig. 1.

For β̃ = 0 we have g(β̃ = 0) = 1 and we arrive at the result [6] for the nondispersive channel
in expansion in γ̃:

I
(β=0)
P [X] =M log SNR− M

2

∞∫
0

dτe−τ log

(
1 +

τ2γ̃2

3

)
=M log

[
SNR

]
−M

γ̃2

3
+O(γ̃4). (35)

Let us estimate the mutual information IP [X] for typical fiber optical links [7]: β = 20ps2/km,

L = 1000 km, γ = 1.31(Wkm)−1, W = 100GHz, Pnoise = QLW/(2π) = 5.3 × 10−4mW. For

these parameters one has β̃ = βLW 2 ≈ 200, and g(β̃) ≈ 0.42. From Eq. (30) we obtain

IP [X] ≈M
{
log [SNR]− 7× 10−8 × SNR2

}
. (36)
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Figure 1. The function g(β̃) (the
solid black line), see Eq. (33), and the

asymptotics of g(β̃) for large β̃ (red
dashed line), see Eq. (34).
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Figure 2. The spectral efficiency iP [X] =
IP [X]/M corresponding to Eq. (30) for

different β̃: Shannon’s result (the solid black

line), β̃ = 200 (red long-dashed line), β̃ = 0

(blue dashed line), β̃ = 800 (red chain line).

For these parameters we present the spectral efficiency iP [X] = IP [X]/M for different dispersion

parameters β̃ in Fig. 2. Increasing parameter β̃ the first nonlinear correction, see Eq. (30), and

the asymptotics, see Eq. (34), goes to zero as γ̃2 log(β̃)/β̃. Therefore for larger β̃ the result
(30) is closer to Shannon’s result than the result (35) in wider region in SNR.

Low bound from the Jensen’s inequality. From the direct calculation using Eq. (28) and
Wick’s theorem [5] we have the following average for the action part with nonlinearity terms

−
⟨⟨Snl[ϕ(z, ω)]⟩ϕ

Q

⟩
X

= 5γ2
∫
T

dt

L∫
0

dzG(z, z)
⟨
|Φ(z, t)|4

⟩
X
. (37)

In the first nonvanishing order for small γ̃ we have −
⟨
⟨Snl[ϕ(z, ω)]⟩ϕ/Q

⟩
X

= −5
3Mγ̃2 +O(γ̃4).

The relation (37) plays significant role since it delivers the low bound for the capacity. Indeed,
from the Jensen’s inequality we have

⟨exp
[
−Snl[ϕ(z, ω)]

Q

]
⟩ϕ ≥ exp

[
−
⟨Snl[ϕ(z, ω)]⟩ϕ

Q

]
, (38)

and it means that we can find the low bound for the mutual information:

IP [X] ≥M log [SNR]−
⟨⟨Snl[ϕ(z, ω)]⟩ϕ

Q

⟩
X
. (39)

The representation (39) is convenient for the nonperturbative analysis. For instance, it is

useful for the arbitrary nonlinearity at large or at small β̃, i.e., when the explicit expression for
the NLSE solution Φ(z, t) is known. Let us consider large dispersion parameter β̃. From the

asymptotic representation of the NLSE solution [8] we obtained that for large z, z ≫ z0 = L/β̃,

Φ(z, t) ∼ 1√
4πβz

X(ω =
t

2βz
) exp

{
−i t

2

4βz
− i

π

4
+ i

γ

4πβ

∣∣∣∣X(ω =
t

2βz
)

∣∣∣∣2 log [ zz0
]}

.(40)
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This equation demonstrates that for the case of large β̃ ≫ 1 the low bound, i.e., r.h.s. of
Eq. (39), tends to the Shannon limit. The same result is obvious in the perturbative expansion

(30) from the asymptotics (34): see Fig. 2. Physically it means that in the case of large β̃ the
dispersion leads to signal spreading in time domain. It results in the amplitude decreasing and
thereby effectively decreasing of the nonlinear term in the equation (1).

4. Concluding remarks
We h derived the analytical expression for the mutual information IP [X] of the channel modelled
by the nonlinear Schrödinger equation with the additive Gaussian noise at large SNR. We used
the path-integral approach to the calculation of the conditional probability density function
based on Martin-Siggia-Rose formalism. In the leading order in 1/SNR we obtained the general
representation (in the case of arbitrary nonlinearity and dispersion) for the mutual information
for the Gaussian input signal PDF. The correction to Shannon’s result has the form of the
averaged logarithm of the normalization factor Λ of the conditional PDF P [Y |X] expressed in
terms of the path-integral. In the case of small nonlinearity (in expansion in γ̃ = γLPave . 1) we
obtained the first nonvanishing correction to Shannon’s result. It is of order of γ̃2 and decreases
for increasing dispersion parameter. Using Jensen’s inequality we obtained the low bound for
the mutual information in the case of arbitrary nonlinearity and dispersion.
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