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Abstract: We experimentally validate an analytical description of four wave mixing generated in 

lumped amplification systems that employ optical phase conjugation. The experimental results 

show good agreement with theoretical predictions within an error margin of 0.5dB.  
OCIS codes: (190.4380) Nonlinear optics, four-wave mixing; (190.5040) Phase conjugation. 

 

1. Introduction 

Four wave mixing (FWM) effects in optical fibers limit the capacity of optical transmission systems. FWM has been 

theoretically described [1] for lumped optical transmission systems where it was used later to approximate nonlinear 

system performance [2]. Mid-link optical phase conjugation (OPC) [3] in system using lumped optical amplification 

can lead to significant compensation of inter/intra channel nonlinear mixing facilitating a higher system performance 

[4]. The level of nonlinearity compensation that can be achieved by mid-link OPC in lumped system is largely 

dependent on the level of power profile and dispersion symmetry in reference to the mid-link point. 

In this paper, we experimentally validate, for the first time, an analytical closed form description of FWM in 

lumped optical transmission system that deploys mid-link OPC. The experimental results show an agreement with 

the theoretical predictions, and the fact that mid-link OPC in lumped optical transmission system (two spans, 100km 

each) can significantly reduce the nonlinear noise generated from FWM products within 5GHz bandwidth.  

2.  Theory 

The power of FWM generated in a system is dependent on the result of the integration of the nonlinear Schrodinger 

equation (NLSE) over the distance of the link. In lumped optical amplified system, the FWM products power 

generated (at fFWM=fi+fj-fk) from the mixing of optical signals at frequency tones (fi, fj, and fk) can be written as:  
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with [5] and without [1] mid-link OPC respectively, where D is the degeneracy factor, γ and α are respectively 

the nonlinear and attenuation coefficients of the fiber, L is span length, N is the number of spans in the system, and 

phase matching coefficient Δβ which is linearly dependent on the dispersion coefficient of the fiber (β2) is defined 

as: Δβ=-4π2β2 (fi-fk)(fj-fk). From Eqns. (1) and (2), it is clear that the FWM efficiency with mid-link OPC oscillates 

(in Δβ) at half the rate of oscillation for the case without OPC, and vanishes as Δβ goes to zero when OPC is used.  

3.  Experimental setup and results 

To verify the theory, we used two 100km standard single mode fiber (SMF) spans with lumped optical 

amplification, with and without mid-link OPC, as shown in Fig. 1. We measured the power of the FWM products, 

using a 150MHz resolution optical spectrum analyzer (OSA), as a function of frequency separation between two 

continuous wave (CW) lasers. The two CW lasers were combined by a 3dB coupler (entering the fiber with 5dBm 

power each, at around 1553nm). For the case of lumped system without mid-link OPC, only an erbium doped fiber 

amplifier (EDFA) is placed in between the two matching spans to compensate for the loss of the first span. For the 

case of lumped system with mid-link OPC, an OPC was installed by the end of the first span (pre-amplified to 

compensate for the insertion loss of the OPC). The OPC employed dual pump, polarization insensitive spectral 

inversion with pumps located at 1540.7nm and 1570.1nm at perpendicular polarizations which were combined using 

a polarization beam combiner (PBC). Fiber Bragg gratings (FBGs) were used to reduce the ASE noise generated 



from the high power EDFAs that amplified pumps. The two pumps (counter dithered at 60MHz and 600MHz to 

increase stimulated Brillouin scattering SBS threshold) and signal input to the OPC were combined using a 3dB 

coupler, then both 27dBm pumps along with signal input pass through a 100m highly nonlinear fiber (HNLF) with a 

zero dispersion wavelength (ZDW) at 1557nm, dispersion slope of 0.024ps/nm2/km, nonlinear coefficient of 

28/W/km. At the output of the OPC, the conjugated signals were filtered using optical band pass filter (BPF). 

 
 

Fig. 2 shows a comparison between theoretical, numerical simulation (of the previously described system) using 

VPI Transmission Maker 9.5, and experimental FWM product power as function of frequency separation. The 

experimental results show a good agreement with the theoretical and numerical predictions within a margin of error 

of less than 0.5dB (at the peaks), the mismatching (at the FWM power nulls) between the experimental results and 

theoretical predictions is attributed to the limited OSA dynamic range and resolution and the CW lasers’ linewidth. 

For the case where a mid-link OPC is installed, we attribute the error at low frequency separation to a slight 

mismatch in the pump dither, resulting in residual dithering components on the mixing product. For the case of a 

system with mid-link OPC the strongly phase matched nonlinear FWM product within the first fringe. 

 
 

4.  Conclusion 

We experimentally verify the theoretical description of FWM for lumped optical transmission systems that deploy 

mid-link OPC. The experimental results show a good agreement with both theoretical and numerical predictions. 

Even in the presence of a long span length mid-link OPC can partially recover intra channel nonlinear effects 

corresponding to the first fringe of the four wave mixing efficiency characteristic. 
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Fig. 1 Experimental setup: (left) two span lumped system with/without mid-link OPC, (right) dual pump polarization insensitive OPC. 

Fig. 2 FWM power as a function of frequency separation: (left) without mid-link OPC, (right) with mid-link OPC. 


