Enhanced chlorhexidine skin penetration with 1,8-cineole

Casey, Anna L.; Karpanen, Tarja J.; Conway, Barbara R.; Worthington, Tony; Nighingale, Peter; Waters, Ruth and Elliott, Tom S.J. (2017). Enhanced chlorhexidine skin penetration with 1,8-cineole. BMC Infectious Diseases, 17 ,

Abstract

Background: Chlorhexidine (CHG) penetrates poorly into skin. The purpose of this study was to compare the depth of CHG skin permeation from solutions containing either 2% (w/v) CHG and 70% (v/v) isopropyl alcohol (IPA) or 2% (w/v) CHG, 70% (v/v) IPA and 2% (v/v) 1,8-cineole. Methods: An ex-vivo study using Franz diffusion cells was carried out. Full thickness human skin was mounted onto the cells and a CHG solution, with or without 2% (v/v) 1,8-cineole was applied to the skin surface. After twenty-four hours the skin was sectioned horizontally in 100 μm slices to a depth of 2000 μm and the concentration of CHG in each section quantified using high performance liquid chromatography (HPLC). The data were analysed with repeated measures analysis of variance. Results: The concentration of CHG in the skin on average was significantly higher (33.3% [95%, CI 1.5% - 74.9%]) when a CHG solution which contained 1,8-cineole was applied to the skin compared to a CHG solution which did not contain this terpene (P = 0.042). Conclusions: Enhanced delivery of CHG can be achieved in the presence of 1,8-cineole, which is the major component of eucalyptus oil. This may reduce the numbers of microorganisms located in the deeper layers of the skin which potentially could decrease the risk of surgical site infection.

Publication DOI: 10.1186/s12879-017-2451-4
Divisions: Life & Health Sciences > Biosciences
Related URLs:
Additional Information: © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Uncontrolled Keywords: chlorhexidine,enhanced skin permeation,1,8 cineole,Infectious Diseases
Published Date: 2017-05-17

Download

[img]

Version: Published Version

License: Creative Commons Attribution

| Preview

Export / Share Citation


Statistics

Additional statistics for this record