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Summary

The insulin ⁄ insulin-like growth factor-like signaling (IIS) pathway

in metazoans has evolutionarily conserved roles in growth

control, metabolic homeostasis, stress responses, reproduction,

and lifespan. Genetic manipulations that reduce IIS in the

nematode worm Caenorhabditis elegans, the fruit fly Drosophila

melanogaster, and the mouse have been shown not only to

produce substantial increases in lifespan but also to ameliorate

several age-related diseases. In C. elegans, the multitude of

phenotypes produced by the reduction in IIS are all suppressed in

the absence of the worm FOXO transcription factor, DAF-16,

suggesting that they are all under common regulation. It is not yet

clear in other animal models whether the activity of FOXOs

mediate all of the physiological effects of reduced IIS, especially

increased lifespan. We have addressed this issue by examining

the effects of reduced IIS in the absence of dFOXO in Drosophila,

using a newly generated null allele of dfoxo. We found that the

removal of dFOXO almost completely blocks IIS-dependent

lifespan extension. However, unlike in C. elegans, removal of

dFOXO does not suppress the body size, fecundity, or oxidative

stress resistance phenotypes of IIS-compromised flies. In contrast,

IIS-dependent xenobiotic resistance is fully dependent on dFOXO

activity. Our results therefore suggest that there is evolutionary

divergence in the downstream mechanisms that mediate the

effects of IIS. They also imply that in Drosophila, additional factors

act alongside dFOXO to produce IIS-dependent responses in body

size, fecundity, and oxidative stress resistance and that these

phenotypes are not causal in IIS-mediated extension of lifespan.
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Introduction

The insulin ⁄ insulin-like growth factor (IGF)-like signaling (IIS) pathway of

metazoans regulates such diverse processes as growth, developmental

timing, body size, metabolism, stress responses, reproduction, and

lifespan (Kenyon, 2005; Giannakou & Partridge, 2007). Genetic manipula-

tions that inhibit IIS in the nematode worm Caenorhabditis elegans, the

fruit fly Drosophila melanogaster, and the mouse not only increase lifespan

but also delay the onset of age-related pathology and disease (Tatar et al.,

2003; Kenyon, 2005; Bonkowski et al., 2006; Cohen et al., 2006; Wes-

sells & Bodmer, 2007; Selman et al., 2008; Wessells et al., 2009). Direct

downstream targets of IIS in worms, flies, and mammals are the FOXO

(Forkhead bOX-containing protein, subfamily O) proteins, a highly con-

served family of transcription factors. Phosphorylation of FOXOs by the

insulin-activated protein kinases PKB ⁄ AKT and SGK leads to their seques-

tration within the cytoplasm and, as a result, transcriptional inactivation of

target gene expression (van der Horst & Burgering, 2007; Partridge & Bru-

ning, 2008). Several direct FOXO target genes have been identified that

function during cell cycle control, metabolism, apoptosis, and the regula-

tion of cellular stress responses (Greer & Brunet, 2005, 2008; Partridge &

Bruning, 2008; Salih & Brunet, 2008). Hence, the activation of FOXOs and

their target genes has been under intense study to identify the transcrip-

tional changes associated with IIS-dependent lifespan extension.

Lifespan extensions induced by decreasing the activity of the insu-

lin ⁄ IGF1-like receptor, DAF-2, or downstream components of the IIS

pathway in C. elegans are completely dependent upon the activity of the

worm FOXO transcription factor, DAF-16 (Kenyon et al., 1993). Thus,

mutation of daf-16 or reductions in its expression by RNAi can completely

abrogate the lifespan extension observed in mutants for daf-2, the worm

insulin ⁄ IGF receptor orthologue, or age-1, the worm phosphatidylinositol

3-kinase orthologue (Kenyon et al., 1993). In other model organisms,

FOXOs clearly play important roles during lifespan determination: overex-

pression of dFOXO protein in the adult fat body increases lifespan in Dro-

sophila (Tatar et al., 2003; Giannakou et al., 2004; Hwangbo et al.,

2004), while heterozygous knockouts for the insulin receptor substrates,

IRS1 or IRS2, are long lived and show increased activity of FOXO1 target

genes in murine models (Taguchi et al., 2007; Selman et al., 2008). Fur-

thermore, genetic variation in the Foxo3A gene is associated with longev-

ity in several different human populations (Kuningas et al., 2007; Willcox

et al., 2008; Flachsbart et al., 2009). However, it has yet to be shown in

these other animal models whether the effects of reduced IIS on lifespan

are directly dependent on FOXO activity.

In addition to lifespan extension, decreasing IIS in the worm produces a

number of other phenotypic responses that are all dependent upon DAF-

16, suggesting that may all be regulated by a common mechanism. For

example, daf-2-dependent reproductive delay and oxidative stress resis-

tance are completely suppressed by knockdown of daf-16 expression by

RNAi (Larsen, 1993; Honda & Honda, 1999; Dillin et al., 2002). Also,

DAF-16 mediates both stress resistance and reduced adult fecundity in

age-1 mutants (Larsen, 1993; Tissenbaum & Ruvkun, 1998; Honda &

Honda, 1999). dFOXO-dependent effects on IIS-mediated growth control

and germline stem cell (GSC) proliferation have been reported in

Drosophila (Junger et al., 2003; Puig et al., 2003; Hsu et al., 2008). Nev-

ertheless, in other animals, it remains unclear whether FOXOs mediate all

of the phenotypic effects of reduced IIS and thus whether this feature of

the signaling pathway has been conserved through evolution.

In this study, we have examined whether several IIS-dependent

phenotypes, including increased lifespan, reduced fecundity, increased

stress resistance, developmental delay, and growth inhibition, are
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dependent on dFOXO activity in Drosophila. We combined a newly gen-

erated null allele of dfoxo with several models of reduced IIS in Drosophila

including ubiquitous expression of a kinase-dead, dominant negative ver-

sion of the Drosophila insulin receptor both during development and spe-

cifically restricted to adulthood, late ablation of the dilp-producing

median neurosecretary cells (MNCs) and adult-specific ubiquitous expres-

sion of a dominant negative form of PI3 kinase, all of which show pheno-

types typical of reduced IIS. We found that mutation of dfoxo almost

completely blocked lifespan extension in these IIS-compromised flies.

However, removal of dfoxo failed to rescue IIS-mediated developmental

delay, small body size, reduced egg laying, and resistance to paraquat. In

contrast, increased resistance to the xenobiotic toxin, dichlorodiphenyltri-

chloroethane (DDT), was completely dependent on dFOXO activity. Our

results show that, unlike in C. elegans, where all phenotypic traits pro-

duced by reduced IIS are DAF-16 dependent, additional factors besides

dFOXO have evolved in Drosophila to mediate the full IIS response.

Results

Generation and characterization of a new dfoxo null allele

Several loss-of-function mutants for the Drosophila dfoxo transcription

factor have already been described. These include dfoxo21 and dfoxo25,

both of which contain chemically induced nucleotide transversions within

the dfoxo coding region, resulting in premature stop codons within the

proposed DNA-binding domain of the protein (Junger et al., 2003) and

dfoxoW24, which contains a P-element insertion within the first intron of

the dfoxo locus (Weber et al., 2005; Fig. 1A). Heteroallelic combinations

of these mutants produce viable adults but no detectable protein by wes-

tern blot analysis and are therefore considered to function as genetic nulls

(Junger et al., 2003; Giannakou et al., 2008; Min et al., 2008). We have

performed chromatin immunoprecipitation (ChIP) experiments on chro-

matin extracts prepared from dfoxo21 ⁄ dfoxo25 transheterozygous flies

using a specific dFOXO antibody, the epitope for which would still be

present within any translated mutant protein (Fig. 1A). dFOXO DNA bind-

ing was assessed using a promoter region of the Drosophila SH2B-encod-

ing gene, Lnk, which we have previously demonstrated to be bound by

dFOXO (Slack et al., 2010). Surprisingly, quantitative PCR (qPCR) after

dFOXO ChIP from dfoxo21 ⁄ dfoxo25 samples showed enrichment of the

Lnk promoter fragment relative to a control genomic region, similar to

wild-type controls (Fig. 1B). Thus, despite the apparent absence of

dFOXO protein in dfoxo21 ⁄ dfoxo25 mutants (Fig. 1C), there still appears

to be residual DNA-binding activity in these flies. This allelic combination

may therefore function more as a dominant negative rather than as a true

null. Interestingly, dominant effects of the dfoxo21 allele have been

observed in other studies (Nielsen et al., 2008).

We therefore generated a new deletion mutant of dfoxo by imprecise

excision of a P-element positioned upstream of the first noncoding exon of

the dfoxo gene. This deletion (dfoxoD94) spans over 20 kb of the dfoxo

locus, removing part of the predicted promoter region as well as several

(A)

(B)

(D)

(C)

Fig. 1 Molecular characterization of the dfoxoD94 deletion.

(A) Schematic representation of the dfoxo locus. Coding exons

are in black and noncoding exons are in white. The position of

the P-element insertion (dfoxoBG01018) used to generate the

dfoxoD94 deletion by imprecise excision and the breakpoints of

the dfoxoD94 deletion are shown along with the positions of

the dfoxo21, dfoxo25, and dfoxow24 mutations. The position of

the amplicon amplified by RT-PCR to detect dfoxo mRNA

expression is also indicated along with the position of the

sequences encoding the peptides from which the dFOXO

antibody was generated (marked by *). (B) Quantitative PCR

(qPCR) on the Lnk promoter normalized to a control genomic

region located 3¢ to the Lnk gene to determine the proportion

of DNA recovered after chromatin immunoprecipitation (ChIP)

using a specific anti-dFOXO antibody from chromatin extracts

prepared from wild-type, dfoxo21 ⁄ dfoxo25 and dfoxoD94

homozygous mutant flies. Relative DNA binding was

calculated as the proportion of chromatin recovered in the

ChIP divided by that in the total chromatin preparation. Data

are presented as mean fold change in DNA binding at the Lnk

5¢ region compared with the control Lnk 3¢ region ± SEM of

two (for dfoxo21 ⁄ dfoxo25) or three biological repeats.

(**P < 0.05, t-test). (C) Western blot analysis of dFOXO

protein expression in extracts prepared from wild-type,

dfoxo21 ⁄ dfoxo25 (21 ⁄ 25) heterozygotes and dfoxoD94

(D94 ⁄ D94) homozygous mutant flies. Blots were probed with

anti-tubulin as a control for protein loading. (D) RT-PCR

analysis of dfoxo transcript expression in 7-day-old male and

female wild-type (+) and dfoxoD94 homozygous mutant ())

flies. M indicates the marker lane. Amplification of the actin5C

transcript was used as a control for the RT-PCR protocol.
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coding exons. Homozygotes for the deletion were adult viable, and neither

dFOXO protein expression nor DNA-binding activity was detected in these

flies (Fig. 1B,C). However, the deletion removes the sequence encoding

the epitope site for the dFOXO antibody, and so we could not exclude the

possibility that some mutant protein is produced. We therefore examined

the expression of dfoxo mRNA by RT-PCR using primers that anneal out-

side of the deleted region and found that homozygous mutants were com-

pletely devoid of dfoxo transcript expression (Fig. 1D). Consequently, this

deletion appears to represent a true null allele of dfoxo.

dfoxoD94 homozygotes were delayed in egg–adult development time

and were also smaller in size than their controls, with significant reduc-

tions in both body weight and wing area (Fig. 2A,B). No obvious effects

on developmental time or body weight have been previously reported for

other dfoxo mutants, with only a small decrease in wing size described

for dfoxo21 ⁄ dfoxo25 transheterozygotes (Junger et al., 2003). Neverthe-

less, delayed egg-adult development and reduced body size were also

observed in transheterozygous dfoxo25 ⁄ dfoxoD94 flies as well as in hemi-

zygous Df(3R)ED5624 ⁄ dfoxoD94 flies using a deficiency that removes the

entire dfoxo locus (Supplementary Fig. S1), confirming that the observed

effects on developmental time and body size in dfoxoD94 homozygotes

are specific to the dfoxoD94 genetic lesion.

The small body size of dfoxoD94 homozygotes suggested that dFOXO

activity could potentially regulate cell growth or proliferation. To examine

this, we generated clones of dfoxoD94 mutant cells in an otherwise het-

erozygous animal by mitotic recombination. Both clone size and dfoxoD94

mutant cell size were normal (Fig. 2C), as has been observed with other

dfoxo alleles (Junger et al., 2003), suggesting that dFOXO does not act

cell-autonomously to restrict cell proliferation or growth. Hence, the

effects of the dfoxoD94 mutation on growth must occur via nonautono-

mous mechanisms. Similar to other dfoxo allelic combinations, homozy-

gous dfoxoD94 females were shorter lived than their controls (Fig. 2B) and

also laid fewer eggs (Fig. 2C).

The dfoxoD94 deletion was then combined with several mutations or

genetic manipulations that reduce IIS in Drosophila including a dilp2-3,5

triple mutant (Gronke et al., 2010), median neurosecretary cell (mNSC)

ablation (Broughton et al., 2005), chico1 mutants (Bohni et al., 1999),

and LnkDel29 mutants (Slack et al., 2010). All resulted in preadult lethality

when combined with homozygosity for dfoxoD94. Interestingly, the lethal-

ity of chico1; dfoxoD94 homozygotes was rescued by the expression of a

UAS-dfoxo transgene within the MNCs, suggesting that a dFOXO-depen-

dent transcriptional response specifically within the MNCs is both neces-

sary and sufficient for the viability of chico1 homozygotes.

Viable flies were obtained when the dfoxoD94 mutant was combined

with either overexpression of a dominant negative form of the Drosophila

insulin receptor (UAS-InRDN) under the control of the ubiquitous and con-

stitutive daughterless-GAL4 driver (daGAL) or late ablation of the mNSCs

by the expression of UAS-reaper (UAS-rpr) under the control of the InsP3-

GAL4 driver (InsP3GAL). In addition, we examined adult-onset ubiquitous

expression of UAS-InRDN as well as adult-onset ubiquitous expression of a

catalytically inactive, dominant negative form of PI3 kinase (UAS-

Dp110DN) using the inducible daughterless-GeneSwitch (daGS) driver.

daGS only drives transgene expression in the presence of the RU486 steroid

(A) (B)

(C)

(E)

(D)

Fig. 2 Phenotypic analysis of dfoxoD94 homozygous mutant

flies. (A) Egg-to-adult development time is delayed in both

males and females homozygous for the dfoxoD94 deletion

(dfoxo)) compared with wDahomey controls. Only the

eclosion period of the adult flies is shown. Data are shown as

percentage of flies eclosing. (For males, n = 114 for

wDahomey and n = 106 for dfoxo). For females, n = 107 for

wDahomey and n = 116 for dfoxo)). (B) Homozygous

dfoxoD94 flies (dfoxo)) have significantly reduced adult body

weights and smaller wing sizes than wDahomey controls. Data

are represented as means ± SEM (n = 10 for each

measurement, **P < 0.05, ANOVA). (C) Clonal analysis of the

effects of dfoxoD94 mutation on cell size and proliferation in

the developing wing disk. dfoxoD94 mutant cells were

generated by mitotic recombination and are marked by the

absence of GFP. No obvious differences were observed in

clone size nor in the size of in dfoxoD94 mutant cells within the

clone (GFP-negative cells) compared with adjacent

heterozygous cells (GFP-positive cells) outside of the clone.

(D) Survival curves of female flies homozygous mutant for

dfoxo) mutants (n = 99, median survival = 41 days,

maximum survival = 48 days) and wDahomey controls

(n = 94, median survival = 61 days, maximum

survival = 73 days). dfoxo) mutants are significantly shorter

lived than controls (P < 0.0001; Log-rank test). Representative

of two independent experiments. (E) Average number of eggs

laid per dfoxo) mutant 7-day-old female compared with age-

matched wDahomey controls. Data are presented as the mean

number of eggs laid per female over a 24-h period ± SEM.

Eggs were counted from ten separate vials, and each vial

contained ten females. dfoxo) females laid significantly fewer

eggs than wDahomey controls. (**P < 0.05, ANOVA).
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drug. Treatment with RU486 had no effect on the lifespan, fecundity, or

stress resistance of daGS ⁄ + flies themselves (Supplementary Fig. S2).

IIS-mediated longevity requires dFOXO activity

In the presence of dfoxo, daGAL > UAS-InRDN females lived significantly

longer than controls, with a 10–15% increase in median lifespan and

6–10% increase in maximum lifespan (Fig. 3A). In a dfoxo) background,

all groups were shorter lived compared with their wild-type counterparts,

yet daGAL > UAS-InRDN dfoxo) flies showed an age-related increase in

survival compared with both genetic controls (daGAL ⁄ + dfoxo) and UAS-

InRDN ⁄ + dfoxo)) (Fig. 3A). When all flies were considered in the analysis,

daGAL > UAS-InRDN dfoxo) flies were significantly longer lived than both

genetic controls (P < 0.001; log-rank test). However, no significant differ-

ences in survival were apparent between groups during the first 50 days

of the experiment (P = 0.55; log-rank test), whereas survival at ages

beyond 50 days was increased in daGAL > UAS-InRDN dfoxo) flies com-

pared with both controls (P < 0.0001; log-rank test) (Fig. 3A). Hence,

maximum lifespan, calculated as the median age of the oldest 10% of the

population to die, was significantly increased by approximately 8%

(A)

(B)

(C)

(D)
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(P < 0.0001; log-rank) for daGAL > UAS-InRDN dfoxo) flies (66 days,

n = 14) relative to both genetic controls (54 days, n = 11 for daGAL ⁄ +
dfoxo) flies and 59 days, n = 16 for UAS-InR-DN dfoxo) flies). This appar-

ent age-related difference in survival was observed in a second, indepen-

dent experiment, suggesting that ubiquitous and constitutive expression

of UAS-InRDN can increase survival later in life and hence extend maxi-

mum lifespan even in the absence of dFOXO activity.

InsP3GAL > UAS-rpr females also lived significantly longer than both

genetic controls (InsP3GAL ⁄ + and UAS-rpr ⁄ +) in the presence of dfoxo

with approximately 30% increase in median and approximately 20% in

maximum lifespan (Fig. 3B). Again, all groups were shorter lived in a

dfoxo) background, but in contrast to daGAL > UAS-InRDN flies,

InsP3GAL > UAS-rpr were not significantly longer lived than their genetic

controls in a dfoxo) background (Fig. 3B).

In both daGS > UAS-InRDN and daGS > UAS-Dp110DN flies, induc-

tion of transgene expression by RU486 increased lifespan in both geno-

types, with median lifespan increased by 24% and 7%, respectively, and

maximum lifespan increased by 5% for both genotypes compared with

uninduced flies of the same genotypes (Fig. 3C,D). No extension of life-

span was observed in either daGS > UAS-InRDN and daGS > UAS-

Dp110DN flies in a dfoxo) background upon RU486-induced transgene

expression compared with uninduced controls (Fig. 3C,D).

Taken together, these data show that loss of dFOXO activity is suffi-

cient to almost completely inhibit the longevity of IIS mutants in Drosoph-

ila. By contrast, treatment of dfoxo) females with the TOR kinase

inhibitor, rapamycin, significantly increased median lifespan by approxi-

mately 10%, as was observed in rapamycin-treated wDahomey control

females (Supplementary Fig. S3). Furthermore, dfoxo) females also

showed an increase in lifespan under dietary restriction (Supplementary

Fig. S4 and Table S1). Thus, loss of dFOXO activity specifically abrogates

the increase in lifespan from reduced IIS.

Loss of dFOXO activity fails to rescue IIS-mediated fecundity

defects

IIS plays a complex role during oogenesis in Drosophila: autonomous IIS

within the germline directly controls germline cyst development, vitello-

genesis, and the rate of GSC divisions (LaFever & Drummond-Barbosa,

2005; Hsu et al., 2008; Hsu & Drummond-Barbosa, 2009), while IIS via

dilps indirectly controls the proliferation of the follicle cells (LaFever &

Drummond-Barbosa, 2005). We therefore examined the effects of dfoxo

removal on egg laying in IIS-compromised females.

daGAL4 > UAS-InRDN females showed reduced egg laying compared

with both daGAL ⁄ + and UAS-InRDN ⁄ + controls in both wild-type and

dfoxo) genetic backgrounds (Fig. 4A). Similar results were observed for

InsP3GAL > UAS-rpr females: egg laying was reduced compared with

both InsP3GAL ⁄ + and UAS-rpr ⁄ + controls in both wild-type and dfoxo)
backgrounds (Fig. 4B). Ubiquitous adult-specific induction of UAS-InRDN

or UAS-Dp110DN expression also decreased female fecundity and, again,

this decrease in female egg laying was still observed in a dfoxo) back-

ground (Fig, 4C,D). Taken together, these data show that removal of

dfoxo is not sufficient to rescue the reduced fecundity of IIS-compromised

females. Furthermore, in a dfoxo) mutant background, InsP3GA-

L > UAS-rpr females laid significantly fewer eggs than their dfoxo)
genetic controls (P < 0.05, t-test) and both daGS > InRDN dfoxo) and

daGS > Dp110DN dfoxo) females treated with RU486 laid significantly

fewer eggs than their uninduced controls (P < 0.001, ANOVA), suggesting

that loss of dFOXO activity and reduced IIS in these flies acted additively

to reduce egg laying.

Mutation of dfoxo can reverse the reduction in GSC proliferation

caused by the loss of chico function, demonstrating that dFOXO is

required in the GSCs for at least some of the effects of lowered IIS on

reproduction (Hsu et al., 2008). To further examine the effects of dFOXO

activity more specifically within the germline, we generated flies overex-

pressing a dFOXO transgene in the GSCs, using the maternal GAL4 driver,

mata-GAL4. Despite significant overexpression of dFOXO protein in the

ovaries of these females, they were still fertile with no overall gross mor-

phological defects in ovarian structure (Fig. 4E). However, egg laying by

these females was reduced by approximately 30% (Fig. 4E), demonstrat-

ing that increased dFOXO activity specifically within the germline is suffi-

cient to reduce egg production.

In daGAL4 > UAS-InRDN females, the dominant negative insulin recep-

tor is expressed in all somatic cells but not in the germline. Therefore, the

reduction in egg laying in these females must be mediated via indirect

Fig. 3 Effects of dfoxo removal on the survivorship of IIS-compromised flies. (A) Survival curves of female flies overexpressing a dominant negative version of the insulin

receptor (daGAL > UAS-InRDN) and their genetic controls (daGAL ⁄ + and UAS-InRDN ⁄ +) in both wild-type and dfoxo) backgrounds (representative of two independent

experiments). In a wild-type background: for daGAL > UAS-InRDN median survival = 71 days, maximum survival = 82 days, n = 93; for daGAL ⁄ + median survival = 61 days,

maximum survival = 77 days, n = 114; for UAS-InRDN ⁄ + median survival = 64 days, maximum survival = 75, n = 115. The survival of daGAL > UAS-InRDN flies was

significantly different from each of the controls (P < 0.0001; log-rank test). No significant difference in survival was detected between the two controls (P = 0.6, log-rank

test). In a dfoxo) background: for daGAL > UAS-InRDN median survival = 53 days, maximum survival = 64 days, n = 114; for daGAL ⁄ + median survival = 49 days,

maximum survival = 59 days, n = 109; for UAS-InRDN ⁄ + median survival = 49 days, maximum survival = 57 days, n = 106. The survival of daGAL > UAS-InRDN dfoxo) flies

is significantly different from each of the controls (P < 0.001; log-rank test). No significant difference in survival was detected between the two controls (P = 0.5, log-rank

test). (B) Survival curves of female flies with late ablation of the median neurosecretary cells (InsP3GAL > UAS-rpr) and their genetic controls (InsP3GAL ⁄ + and UAS-rpr ⁄ +) in

both wild-type and dfoxo) backgrounds. In a wild-type background: for InsP3GAL > UAS-rpr median survival = 82 days, maximum survival = 100 days, n = 99; for InsP3 ⁄ +
median survival = 60 days, maximum survival = 82 days, n = 94; for UAS-rpr ⁄ + median survival = 62 days, maximum survival = 82 days, n = 93. The survival of

InsP3GAL > UAS-rpr flies was significantly different from each of the controls (P < 10)12, log-rank test). No significant difference in survival was detected between the two

controls (P = 0.8, log-rank test). In a dfoxo) background: for InsP3GAL > UAS-rpr median survival = 44 days, maximum survival = 58 days, n = 94; for InsP3 ⁄ + median

survival = 41 days, maximum survival = 56 days, n = 108; for UAS-rpr ⁄ + median survival = 44 days, maximum survival = 59 days, n = 95. The survival of InsP3GAL > UAS-

rpr flies was not significantly different from either of the controls (P > 0.2, log-rank test). (C) Survival curves of female daGS > UAS-InRDN flies induced to ubiquitously

express the dominant negative insulin receptor by feeding RU486-containing food from day 3 of adulthood (wild-type +RU486: median survival = 83 days, maximum

survival = 95 days, n = 94; dfoxo) +RU486: median survival = 46 days, maximum survival = 70 days, n = 81) compared with uninduced controls (wild-type )RU486:

median survival = 67 days, maximum survival = 90 days, n = 97; dfoxo) )RU486: median survival = 44 days, maximum survival = 65 days, n = 79). The survival of wild-

type daGS > UAS-InRDN +RU486 was significantly different from the )RU486 control (P < 10)6, log-rank test). The survival of dfoxo) daGS > UAS-InRDN +RU486 was not

significantly different from the )RU486 control (P = 0.2, log-rank test). (D) Survival curves of female daGS > UAS-dp110DN flies induced to ubiquitously overexpress a

dominant negative form of Dp110 by feeding RU486-containing food from day 3 of adulthood (wild-type +RU486: median survival = 80 days, maximum survival = 97 days,

n = 91; dfoxo) +RU486: median survival = 51 days, maximum survival = 65 days, n = 95) compared with uninduced controls (wild-type )RU486: median

survival = 75 days, maximum survival = 92 days, n = 103; dfoxo) )RU486: median survival = 54 days, maximum survival = 65 days, n = 97). The survival of wild-type

daGS > UAS-dp110DN +RU486 was significantly different from the )RU486 control (P < 0.001, log-rank test). The survival of dfoxo) daGS > UAS-dp110DN +RU486 was

not significantly different from the )RU486 control (P = 0.4, log-rank test). Representative of two independent experiments.
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(A) (B)

(C)

(E)

(F)

(D)

Fig. 4 Effects of dfoxo removal on the female fecundity. (A–D) Average number of eggs laid per 7-day-old female or after 7 days of RU486 treatment. Data are presented as

the mean number of eggs laid per female over a 24-h period ± SEM. Eggs were counted from ten separate vials, and each vial contained ten females. (A) Females with

constitutive and ubiquitous expression of the dominant negative insulin receptor. In both wild-type and dfoxo) backgrounds, daGAL > UAS-InRDN females laid significantly

fewer eggs than both daGAL ⁄ + and UAS-InRDN ⁄ + controls (**P < 0.05, t-test). There was no significant difference between daGAL > UAS-InRDN and daGAL > UAS-InRDN

dfoxo) flies. (B) Females with late ablation of the median neurosecretary cells. In both wild-type and dfoxo) backgrounds, InsP3GAL > UAS-rpr laid significantly fewer eggs

than both InsP3GAL ⁄ + and UAS-rpr ⁄ + controls (**P < 0.05, t-test). (C) Females induced to ubiquitously overexpress the dominant negative insulin receptor by feeding

RU486-containing food from day 3 of adulthood. In both wild-type and dfoxo) backgrounds, daGS > UAS-InRDN females induced with RU486 (+RU486) laid significantly

fewer eggs uninduced controls ()RU486) (**P < 0.05, t-test). (D) Females induced to ubiquitously overexpress dominant negative Dp110 by feeding RU486-containing food

from day 3 of adulthood. In both wild-type and dfoxo) backgrounds, daGS > UAS-Dp110DN females induced with RU486 (+RU486) laid significantly fewer eggs uninduced

controls ()RU486) (**P < 0.05, t-test). (E) dFOXO protein expression in the germline. Western blot analysis of dFOXO protein expression in ovaries overexpressing two

independent dFOXO transgenes (dfoxo-p8 and dfoxo-p13) within the germline under the control of the mataGAL4 driver. Blots were probed with anti-tubulin as a control for

protein loading. Ovaries from these females overexpressing dFOXO protein in the germline look structurally wild-type, but egg production is significantly reduced. Eggs were

collected from 7-day-old females over a 24-h period and counted. Data are presented as the mean number of eggs laid per female over these 24-h periods ± SEM

(**P < 0.05, ANOVA). (F) Quantitative RT-PCR analysis of yolkless mRNA expression in female flies of the indicated genotypes normalized to actin5C. Data are presented as

means ± SEM (n = 5). yolkless expression is upregulated in daGAL > UAS-InRDN females compared with controls (**P < 0.05, t-test) in both wild-type and dfoxo)
backgrounds.
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responses of the germline to somatic signals. IIS can indirectly affect egg

production through the regulation of yolk protein uptake into the

oocycte during vitellogenesis (Richard et al., 2005). It is therefore possible

that dFOXO transcriptional activity is required for the expression of yolk

protein transcripts themselves. However, we found no significant differ-

ence in the expression of yolk protein 2 (YP2) in daGAL4 > UAS-InRDN

females, in either a wild-type or dfoxo) background, indicating that YP2

expression is unresponsive to both IIS itself and dFOXO activity. In con-

trast, transcription of the yolk protein receptor, yolkless, whose expres-

sion is normally restricted to the oocyte, was significantly increased in

daGAL4 > UAS-InRDN females compared with controls (Fig. 4F). How-

ever, this increase in yolkless expression was still present in dfoxo)
mutants (Fig. 4F) and so occurs independently of dFOXO-mediated

transcriptional regulation.

dFOXO is not required for IIS-mediated oxidative stress

resistance

Genetic interventions that inhibit IIS often result in enhanced resistance to

various stresses including oxidative stress (Clancy et al., 2001; Broughton

et al., 2005). We therefore examined the effects of paraquat, an intracellu-

lar ROS generator, on the survival of daGAL4 > UAS-InRDN, InsP3GA-

L > UAS-rpr and daGS > Dp110DN flies. In a wild-type background,

daGAL4 > UAS-InRDN, InsP3GAL > UAS-rpr and daGS > Dp110DN flies

all survived for significantly longer on food supplemented with 20 mM

paraquat compared with their respective controls (Fig. 5A,B,C). Interest-

ingly, we still observed a small but significant and proportionally similar

increase in the survival of daGAL4 > UAS-InRDN dfoxo), InsP3GA-

L > UAS-rpr dfoxo) and daGS > Dp110DN dfoxo) flies over their

(A) (B) (C)

Fig. 5 Functions for dFOXO during IIS-mediated oxidative stress resistance. (A) Survival curves in response to 20 mM paraquat of female flies overexpressing a dominant

negative version of the insulin receptor (daGAL > UAS-InRDN) and their genetic controls (daGAL ⁄ + and UAS-InRDN ⁄ +) in both wild-type and dfoxo) backgrounds

(representative of two independent experiments). In a wild-type background (top panel): for daGAL > UAS-InRDN median survival = 3.5 days, maximum survival = 4.9 days,

n = 100; for daGAL ⁄ + median survival = 1.5 days, maximum survival = 1.5 days, n = 90; for UAS-InRDN ⁄ + median survival = 1.5 days, maximum survival = 4.9, n =.80.

The survival of daGAL > UAS-InRDN flies was significantly different from each of the controls (P < 10)6; Log-rank test). In a dfoxo) background (bottom panel): for

daGAL > UAS-InRDN median survival = 1.9 days, maximum survival = 3.5 days, n = 49; for daGAL ⁄ + median survival = 1.5 days, maximum survival = 2.9 days, n = 80; for

UAS-InRDN ⁄ + median survival = 1.5 days, maximum survival = 2.4 days, n = 70. The survival of daGAL > UAS-InRDN dfoxo) flies was significantly different from each of

the controls (P < 0.05; log-rank test). (B) Survival curves in response to 20 mM paraquat of female flies with late ablation of the median neurosecretary cells (InsP3GAL > UAS-

rpr) and their genetic controls (InsP3GAL ⁄ + and UAS-rpr ⁄ +) in both wild-type and dfoxo) backgrounds. In a wild-type background (top panel): for InsP3GAL > UAS-rpr

median survival = 2.1 days, maximum survival = 3.9 days, n = 95; for InsP3GAL ⁄ + median survival = 1.5 days, maximum survival = 2.1 days, n = 88; for UAS-rpr ⁄ + median

survival = 2.1 days, maximum survival = 1.9, n = 99. The survival of InsP3GAL > UAS-rpr flies was significantly different from each of the controls (P < 10)15; log-rank test).

In a dfoxo) background (bottom panel): for InsP3GAL > UAS-rpr median survival = 2.1 days, maximum survival = 2.5 days, n = 78; for InsP3GAL ⁄ + median

survival = 1.5 days, maximum survival = 2.1 days, n = 77; for UAS-Rpr ⁄ + median survival = 1.5 days, maximum survival = 2.1 days, n = 76. The survival of

InsP3GAL > UAS-rpr dfoxo) flies was significantly different from each of the controls (P < 10)12; log-rank test). (C) Survival curves in response to 20 mM paraquat of female

flies induced to overexpress dominant negative Dp110 (daGS > UAS-Dp110DN) using RU486 (+RU486) and their uninduced controls ()RU486) in both wild-type and dfoxo)
backgrounds. In a wild-type background (top panel): for +RU486 median survival = 2.6 days, maximum survival = 6.5 days, n = 100; for )RU486 median

survival = 1.6 days, maximum survival = 3.6 days, n = 100. The survival of +RU486 flies was significantly different from the uninduced controls (P < 10)9; log-rank test). In a

dfoxo) background (bottom panel): for +RU486 median survival = 1.3 days, maximum survival = 2.6 days, n = 85; for )RU486 median survival = 1.1 days, maximum

survival = 2.2 days, n = 0.84. The survival of +RU486 flies was significantly different from the uninduced controls (P < 0.001); log-rank test).
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Fig. 6 Functions for dFOXO during IIS-mediated dichlorodiphenyltrichloroethane (DDT) resistance. (A) Survival curves in response to DDT of female flies overexpressing a

dominant negative version of the insulin receptor (daGAL > UAS-InRDN) and their genetic controls (daGAL ⁄ + and UAS-InRDN ⁄ +) in both wild-type and dfoxo) backgrounds.

In a wild-type background: for daGAL > UAS-InRDN median survival = 4.9 days, maximum survival = 4.9 days, n = 76; for daGAL ⁄ + median survival = 2.4 days, maximum

survival = 3.5 days, n = 97; for UAS-InRDN ⁄ + median survival = 2.4 days, maximum survival = 3.5, n = 100. The survival of daGAL > UAS-InRDN flies was significantly

different from each of the controls (P < 10)24; log-rank test). In a dfoxo) background: for daGAL > UAS-InRDN median survival = 1.8 days, maximum survival = 2.4 days,

n = 55; for daGAL ⁄ + median survival = 1.8 days, maximum survival = 2.4 days, n = 89; for UAS-InRDN ⁄ + median survival = 1.8 days, maximum survival = 2.1 days,

n = 65. The survival of daGAL > UAS-InRDN dfoxo) flies was not significantly different from each of the controls (P > 0.1; log-rank test). (B) Survival curves in response to

DDT of female flies with late ablation of the median neurosecretary cells (InsP3GAL > UAS-rpr) and their genetic controls (InsP3GAL ⁄ + and UAS-rpr ⁄ +) in both wild-type and

dfoxo) backgrounds. In a wild-type background: for InsP3GAL > UAS-rpr median survival = 3.6 days, maximum survival = 4.5 days, n = 92; for InsP3GAL ⁄ + median

survival = 2.6 days, maximum survival = 3.1 days, n = 83; for UAS-rpr ⁄ + median survival = 2.6 days, maximum survival = 2.6 days, n = 94. In a dfoxo) background: for

InsP3GAL > UAS-rpr median survival = 1.9 days, maximum survival = 2.6 days, n = 90; for InsP3GAL ⁄ + median survival = 1.6 days, maximum survival = 2.6 days, n = 90;

for UAS-Rpr ⁄ + median survival = 1.6 days, maximum survival = 2.3 days, n = 94. The survival of InsP3GAL > UAS-rpr dfoxo) flies was not significantly different from each

of the controls (P > 0.08; log-rank test). (C) Survival curves in response to DDT of female flies induced to overexpress dominant negative Dp110 (daGS > UAS-Dp110DN)

using RU486 (+RU486) and their uninduced controls ()RU486) in both wild-type and dfoxo) backgrounds. In a wild-type background (top panel): for +RU486 median

survival = 3.3 days, maximum survival = 4.0 days, n = 88; for )RU486 median survival = 2.9 days, maximum survival = 4.0 days, n = 99. The survival of +RU486 flies was

significantly different from the uninduced controls (P < 0.001; log-rank test). In a dfoxo) background (bottom panel): for +RU486 median survival = 2.3 days, maximum

survival = 2.9 days, n = 76; for )RU486 median survival = 2.3 days, maximum survival = 2.9 days, n = 85. The survival of +RU486 flies was not significantly different from

the uninduced controls (P = 0.6; log-rank test).
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respective controls (Fig. 5A,BC), showing that in the absence of dFOXO

activity, reductions in IIS can still increase resistance to paraquat treatment.

IIS-dependent xenobiotic metabolism is dFOXO-dependent

In both worms and flies, long-lived IIS mutants show increased expression

of genes involved in xenobiotic metabolism (McElwee et al., 2007), and

IIS mutants in Drosophila show increased survival in the presence of the

xenobiotic toxin, DDT (Gronke et al., 2010). In a wild-type background,

daGAL4 > UAS-InRDN, InsP3GAL > UAS-rpr and daGS > Dp110DN flies

survived for longer in the presence of DDT compared with their controls

(Fig. 6A,B,C). In a dfoxo) background, all experimental and control

groups showed increased sensitivity to DDT and unlike with para-

quat treatment, daGAL4 > UAS-InRDN dfoxo), InsP3GAL > UAS-rpr

(A)

(B)

(D)

(C)

Fig. 7 Effects of dFOXO removal on IIS-mediated developmental delay and growth inhibition. (A) Egg-to-adult development time is delayed in females overexpressing the

dominant negative insulin receptor (daGAL > UAS-InRDN) irrespective of the presence or absence of dfoxo. Only the eclosion period of the adult flies is shown. Data are

shown as percentage of flies eclosing. (n = 118 for daGAL > UAS-InRDN, n = 110 for daGAL > UAS-InRDN dfoxo); n = 120 for daGAL ⁄ +, n = 102 for daGAL ⁄ + dfoxo);

n = 107 for UAS-InRDN ⁄ +, n = 82 for UAS-InRDN ⁄ + dfoxo)). (B) Body weights and wing areas as indicators of adult fly body size in females overexpressing the dominant

negative insulin receptor (daGAL > UAS-InRDN). Data are presented as means ± SEM (n = 10 for each measurement). daGAL > UAS-InRDN females in both wild-type and

dfoxo) backgrounds are significantly reduced in body size compared with control flies (daGAL ⁄ + and UAS-InRDN ⁄ +) (**P < 0.05, t-test). (C) Body weights and wing areas as

indicators of adult fly body size in females with late ablation of the median neurosecretary cells (InsP3GAL > UAS-rpr). Data are presented as means ± SEM (n = 10 for each

measurement). InsP3GAL > UAS-rpr females in both wild-type and dfoxo) backgrounds are significantly reduced in body size compared with control flies (InsP3GAL ⁄ + and

UAS-rpr ⁄ +) (**P < 0.05, t-test). (D) Removal of dFOXO rescued the growth inhibition effects of overexpressing the dominant negative insulin receptor in a tissue-restricted

manner. UAS-InRDN was specifically expressed in the developing eye using eyGAL. This resulted in a smaller eye compared with control (middle panel compared with left

panel). This tissue-restricted growth inhibition was fully rescued in homozygous dfoxoD94 (dfoxo)) mutant flies (right panel).
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dfoxo) and daGS > Dp110DN dfoxo) flies did not show any increased

resistance to DDT over their respective controls (Fig. 6A,B,C). Thus,

removal of dFOXO activity not only increased sensitivity to DDT treatment

but completely abrogated the increased resistance to DDT of IIS-compro-

mised flies.

dFOXO-independent effects on developmental delay and

growth

daGAL > UAS-InRDN females were delayed in egg–adult development

time by over 24 h compared with both the daGAL ⁄ + and UAS-InRDN ⁄ +
controls (Fig. 7A). They also showed a significant reduction in both body

weight and wing size (Fig. 7B). Removal of dfoxo did not rescue either

the developmental delay or reduced body size of daGAL > UAS-InRDN

females (Fig. 7A,B). InsP3GAL > UAS-rpr females were not delayed in

their development time but were significantly smaller than both InsP3 ⁄ +
and Uas-rpr ⁄ + controls (Fig. 7C). Again, InsP3GAL > UAS-rpr females

were still significantly smaller than controls in a dfoxo) mutant back-

ground (Fig. 7C). Thus, global removal of dfoxo is not sufficient to rescue

the small body size of IIS mutant flies. Interestingly, when we restricted

the expression of the dominant negative insulin receptor to the develop-

ing eye using eyGAL4 (which produces a smaller eye under wild-type con-

ditions), we observed a complete rescue of growth inhibition in the

dfoxoD94 mutant background (Fig. 7D). It is therefore possible that

dFOXO activity is required for the production of systemic growth factors

that are required for proper organismal growth.

Candidates for systemic growth factors regulated by dFOXO are the

Drosophila insulin-like peptides or dilps. Three of these peptides (dilp-2,

dilp-3, and dilp-5) are expressed in the MNCs of the Drosophila brain.

Ablation of the MNCs or genetic deletion of all three MNC-expressed dil-

ps produces small flies owing to systemic effects on IIS-mediated growth

(Ikeya et al., 2002; Broughton et al., 2005; Gronke et al., 2010). Further-

more, expression of dilp3 has been shown to be dependent on dFOXO

activity (Broughton et al., 2008). In dfoxoD94 mutants, the expression of

all three MNC-expressed dilps was significantly reduced compared with

control flies (Fig. 8A).

Effects of dfoxo deletion on dFOXO target gene expression

The translational regulator 4E-BP (encoded by Thor) has been well docu-

mented as a direct target of dFOXO (Junger et al., 2003; Puig et al.,

2003). 4E-BP expression is upregulated when dFOXO is activated either in

response to low IIS or upon exposure to stressors such as paraquat. We

therefore examined the effects of the dfoxoD94 mutation on 4E-BP expres-

sion under various conditions in which dFOXO activity would normally be

induced. Thus, 4E-BP expression was upregulated in both daGAL4 > UAS-

InRDN flies and wild-type flies exposed to 20 mM paraquat (Fig. 8B,C).

Surprisingly, 4E-BP expression was also increased to a comparable level in

dfoxoD94 homozygous mutants themselves. However, in dfoxoD94 homo-

zygotes, no further increases in 4E-BP expression were observed in

daGAL4 > UAS-InRDN flies or upon exposure to paraquat (Fig. 8B,C).

Discussion

As a result of the pleiotropic effects of IIS on animal physiology, extension

of lifespan by reduced IIS is often accompanied by other phenotypic

responses, including reduced or delayed reproduction, growth inhibition,

increased stress resistance, and metabolic dysregulation. In C. elegans, all

of the phenotypic outcomes of reduced IIS are under a common regula-

tory mechanism, because they are all dependent on the transcriptional

activity of the FOXO transcription factor, DAF-16 (Kenyon et al., 1993;

Dillin et al., 2002). In Drosophila and mammals, many of the same physi-

ological traits are affected by reduced IIS, but a requirement for FOXO

transcriptional activity in mediating all of the phenotypic responses to

reduced IIS, especially lifespan extension, in these other animal models is

less well understood. In this study, we have combined a novel deletion

(A)

(B)

(C)

Fig. 8 Gene expression changes in the absence of dFOXO activity. (A) Quantitative

RT-PCR analysis of dilp-2, dilp-3, and dilp-5 mRNA expression in female heads

isolated from flies of the indicated genotypes normalized to actin5C. Expression of

all three dilp transcripts is significantly decreased in dfoxo) flies compared with

controls. Data are presented as means ± SEM (n = 5; P < 0.05, t-test). (B)

Quantitative RT-PCR analysis of 4E-BP mRNA expression normalized to actin5C in

female flies treated with 20 mM paraquat. In wild-type flies, 4E-BP mRNA

expression was significantly upregulated in response to paraquat treatment. In

dfoxoD94 homozygous mutant flies, 4E-BP expression was upregulated in

comparison with wild-type flies but no further increase in 4E-BP expression was

observed when dfoxoD94 mutants were treated with paraquat. Data are presented

as means ± SEM (n = 5; P < 0.05, t-test). (C) Quantitative RT-PCR analysis of 4E-BP

mRNA expression in female flies of the indicated genotypes normalized to actin5C.

In a wild-type background, 4E-BP mRNA expression was significantly upregulated in

daGAL > UAS-InRDN females compared with each of the genetic controls

(P < 0.05, t-test). In dfoxoD94 homozygous mutants, 4E-BP mRNA expression is

upregulated in both controls and experimental flies (P < 0.05, t-test). However, no

further increases in expression were detected in daGAL > UAS-InRDN in a dfoxo

mutant background over wild-type background.
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mutant of dfoxo that is devoid of dfoxo mRNA expression with several

models of reduced IIS in Drosophila to investigate the consequences of

dfoxo removal on lifespan, fecundity, development, growth, and stress

resistance.

In C. elegans, IIS-mediated lifespan extension is entirely dependent on

the activity of DAF-16, and genetic manipulations that reduce IIS cannot

extend the lifespan of daf-16 mutant or RNAi-treated worms (Kenyon

et al., 1993; Dillin et al., 2002). We have observed similar results in Dro-

sophila in that mutation of dfoxo completely blocked the lifespan exten-

sion associated with late ablation of the MNCs as well as adult-specific

expression of either a dominant negative form of the Drosophila insulin

receptor or a dominant negative form of Dp110. However, we did

observe an age-specific increase in survival late in life in dfoxo mutants

with ubiquitous expression of the dominant negative insulin receptor dur-

ing development. In these flies, no differences in survival were observed

until after the flies were aged 50 days, after which experimental flies con-

sistently out-lived controls, resulting in a significant extension of their

maximum lifespan. While these effects on survival were reproduced in

independent replicate experiments, they were not observed with any

other IIS manipulation, suggesting that developmental expression of the

dominant negative insulin receptor may produce effects that are not nec-

essarily linked to reduced IIS. It is, however, intriguing to note that at least

one genetic manipulation that reduces IIS in Drosophila can still increase

lifespan in the absence of dFOXO activity. In contrast to its effects in IIS-

mediated lifespan extension, dfoxo mutants still showed increased sur-

vival in response to treatment with rapamycin, a specific TOR kinase

inhibitor, and in response to dietary restriction. Thus, the inhibition of life-

span extension by the removal of dfoxo appears to be specific to the

downregulation of IIS.

In worms, DAF-16 is also required to mediate the reduction in brood

size associated with the genetic perturbation of daf-2 or age-1 expression

(Tissenbaum & Ruvkun, 1998). However, we have found that in Drosoph-

ila, removal of dFOXO activity fails to rescue the reduction in egg laying

associated with reduced IIS and consequently the reduced fecundity of

IIS-compromised females does not appear to be dFOXO-dependent. In

fact, low IIS and removal of dFOXO activity actually had additive effects,

causing further reductions in egg laying than reduced IIS alone. The nat-

ure of the genetic manipulations used in our study to reduce IIS exclude

direct reductions within the germline itself, and so the observed effects

on female fecundity must be mediated by disruption of somatic signals to

the germline. Our data would suggest that these somatic signals act inde-

pendently of dFOXO. In support of this, we observed dFOXO-indepen-

dent effects on the expression of the vitellogenic gene, yolkless, with

reduced somatic IIS. Our study also highlights important differences

between worms and flies in the timing requirements for IIS during repro-

duction. In C. elegans, daf-2 RNAi initiated at egg hatching caused a

delay in reproduction, whereas daf-2 RNAi during adulthood had no

effect (Dillin et al., 2002). Our data have shown that reductions to IIS spe-

cifically during adulthood by expression of the dominant negative insulin

receptor or dominant negative Dp110 are sufficient to reduce female

fecundity.

A role for dFOXO within the germline itself during oogenesis, however,

cannot be excluded. Previous studies have shown that the effects of low

IIS on GSC proliferation can be reverted by a reduction in dFOXO activity,

suggesting that at least some aspects of oogenesis are regulated by

dFOXO (Hsu et al., 2008), and we have shown here that overexpression

of dFOXO alone specifically within the germline is sufficient to reduce egg

laying. Hence, dFOXO-dependent and dFOXO-independent processes

may mediate the full effects of reduced IIS on oogenesis. The proliferation

of the GSCs in response to diet has been shown to be regulated via both

dFOXO-dependent and dFOXO-independent processes (Hsu et al.,

2008). Moreover, the Ras-binding domain of Drosophila PI3K is required

for maximal PI3K activity during egg laying (Orme et al., 2006). There-

fore, signaling via both dFOXO and Ras ⁄ Mapk may together mediate the

full IIS response during oogenesis. Removal of dFOXO alone would hence

be insufficient to rescue IIS-mediated defects in egg laying.

In C. elegans, DAF-16 regulates the expression of several oxidative

stress responsive genes such as sod 3, mtl-1, ctl-1, and ctl-2 (Honda &

Honda, 1999; Murphy et al., 2003). Furthermore, oxidative stress resis-

tance in daf-2 mutant worms is entirely dependent on the presence of

DAF-16 (Honda & Honda, 1999). In contrast, we have found that all of

the models of reduced IIS tested in this study showed increased resistance

to the intracellular ROS generator, paraquat, even in the absence of

dFOXO. dFOXO-independent effects may therefore contribute, at least in

part, to the increased survival of IIS-compromised flies in response to

paraquat treatment. Thus, IIS-dependent oxidative stress resistance can

be uncoupled from IIS-dependent lifespan extension based on their

requirements for dFOXO, suggesting that they are mediated via nonover-

lapping mechanisms. Hence, oxidative stress resistance is not causal in IIS-

mediated lifespan extension. By comparison, increased resistance to the

xenobiotic toxin, DDT, was completely abolished in dfoxo mutants, sug-

gesting that it is entirely dependent upon dFOXO activity. Furthermore,

dfoxo mutants were more sensitive to DDT treatment than wild-type con-

trols, indicating that dFOXO activity is required for survival in the presence

of DDT. Our findings that IIS-dependent DDT resistance and lifespan

extension require dFOXO suggests that enhanced xenobiotic metabolism

may contribute to longevity in long-lived IIS mutant flies. Interestingly,

transcriptome analyses of IIS mutants from worms, flies, and mammals

have shown that the regulation of cellular detoxification is an evolution-

ary conserved function of long-lived IIS mutants in all three model organ-

isms (McElwee et al., 2007).

Perhaps our most surprising observation was that in combination with

several IIS mutants, removal of dFOXO caused developmental lethality,

for example, chico; foxo double mutants were lethal at prepupal stages.

Furthermore, we were able to rescue the lethality of chico; foxo double

mutants by the expression of dFOXO within the MNCs. Thus, a dFOXO-

dependent transcriptional response specifically within the MNCs is

required for the viability of chico mutants. The MNCs express the Dro-

sophila insulin-like peptides dilp-2, dilp-3, and dilp-5, and we have shown

that dFOXO is required for the basal expression of all three MNC-

expressed dilps because their expression is reduced in dfoxo mutant

heads. This raises the possibility that dFOXO activity itself may regulate

systemic IIS, supported by our observations that removal of dFOXO activ-

ity has nonautonomous effects on growth. Nonautonomous inhibition of

both somatic and GSC divisions has also been reported for other dfoxo

mutants (Junger et al., 2003; Hsu et al., 2008).

In C. elegans, the group of genes identified as direct targets of DAF-16

and that are differentially expressed in response to IIS are enriched for IIS

pathway genes, suggesting that when IIS is low, DAF-16 increases insulin

sensitivity by upregulating the expression of IIS pathway genes (Schuster

et al., 2010). It is probable that a similar feedback mechanism operates in

Drosophila, mediated by dFOXO transcriptional regulation. In a previous

study, we identified the dilps among several Drosophila IIS pathway genes

that show increased expression in an IIS mutant, suggestive of such tran-

scriptional feedback (Slack et al., 2010).

Several dFOXO target genes have been well characterized in Drosoph-

ila, including the translational regulator 4E-BP. We have demonstrated

that 4E-BP expression is upregulated in response to both reduced IIS and

paraquat exposure in a dFOXO-dependent manner. Interestingly, 4E-BP

expression was also increased upon removal of dFOXO itself. It is possible
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that dFOXO functions to restrict basal 4E-BP expression under normal

conditions. Alternatively, the effects on 4E-BP expression upon removal

of dFOXO may be indirectly mediated via dFOXO-dependent effects on

the activity of other transcription factors. 4E-BP has recently been shown

to be a potential target for the Drosophila FoxA transcription factor, fork-

head (FKH), in response to low TOR signaling (Bulow et al., 2010). 4E-BP

expression is suppressed by the loss of FKH activity and elevated upon

FKH overexpression (Bulow et al., 2010). dFOXO and FKH share the con-

served forkhead DNA-binding domain, and so it is possible that they com-

pete for binding at the same target genes. The increase in 4E-BP

expression observed in dFOXO mutants may therefore occur as a result of

FKH-mediated transcriptional regulation. However, increased expression

of other potential FKH target genes such as cabut and CG6770 have not

been observed in dfoxo mutants (N. Alic, C. Slack and L. Partridge,

unpublished data).

Taken together, our data have shown that unlike in C. elegans, where

all of the phenotypic effects of reduced IIS are dependent on DAF-16

activity, in Drosophila, several IIS-dependent phenotypes appear to be

regulated, at least in part, through dFOXO-independent mechanisms.

These results therefore have important implications when analyzing the

requirements for IIS in particular phenotypic traits. In worms, the standard

protocol would be to remove DAF-16 activity and look for abrogation of

the response or phenotype. In flies, and possibly higher organisms, such

experiments may prove misleading. For example, dfoxo mutants display a

normal response to DR, but overexpression of the dominant negative

insulin receptor or removal of dilps-2, -3 and -5 almost completely blocks

the DR response (Grandison et al., 2009; Broughton et al., 2010; Gronke

et al., 2010). In conclusion, our data suggest that there is evolutionary

divergence in the downstream effectors of IIS, and so in higher organ-

isms, additional factors may act in concert with FOXOs to mediate the full

response to reduced IIS.

Experimental procedures

Fly stocks and maintenance

The dfoxoD94 allele was generated by conventional imprecise excision

using P[GT1]foxoBG01018 flies that carry an P[GT1] element transposon

in the 5¢upstream region of the dfoxo gene, approximately 130 nucleo-

tides upstream of the dfoxo transcriptional start site (Dionne et al.,

2006). The 5¢ and 3¢ breakpoints of the dfoxoD94 deletion were mapped

to the genomic sequence by PCR and sequencing. UASp-dFOXO trans-

genic flies for germline expression of dFOXO were generated using

standard procedures. The P[GT1]foxoBG01018, daughterless-GAL4 (da-

GAL4), UAS-InRDN (K1409A), UAS-Dp110DN (D954A), eyeless-GAL4

(ey-GAL4), and mata-GAL4 stocks were obtained from the Bloomington

Stock Centre. daughterless-GeneSwitch (daGS) was kindly provided by

Veronique Monnier (Tricoire et al., 2009). InsP3-GAL4 was kindly pro-

vided by Michael Pankratz (Buch et al., 2008). All stocks were back-

crossed for at least 6 generations into the control whiteDahomey (wDah)

stock. wDah was derived by backcrossing white1118 into the outbred

wild-type Dahomey background. Flies were raised and maintained on

standard sugar ⁄ yeast medium (Bass et al., 2007). Stocks were main-

tained, and experiments were conducted at 25 �C on a 12:12 hours

light ⁄ dark cycle at constant humidity.

Lifespan

Flies were reared at standard density (50 larvae per vial), allowed to mate

for 24 h, sorted by sex, and then transferred to experimental vials at a

density of ten flies per vial. Flies were transferred to fresh vials three times

a week, and deaths were scored during transferral.

Fecundity assays

For fecundity measurements, eggs were collected over a 24-h period and

counted. Data are reported as the mean number of eggs laid per fema-

le ± SEM over this 24-h period.

Paraquat and DDT assays

Flies were reared and housed as for lifespan experiments until 7 days of

age, and then flies were starved for 5 h on 1% agar before being

transferred to fly food containing either 20 mM paraquat or 0.03% (w ⁄ v)

DDT.

Growth analysis

Body weights of 7-day-old flies (n = 10 for each genotype) were mea-

sured using a precision balance. Wing areas were measured as previously

described (Bohni et al., 1999). For clonal analysis of growth, clones of

dfoxoD94mutant cells were induced in the larval wing disks at 24–48 h

after egg deposition by heat-shocking larvae of the genotype y, w, hs-

flp ⁄ w; FRT82, ubi-GFP ⁄ FRT82, dfoxoD94 for 1 h at 37 �C. Larval wing

disks were dissected out, fixed in 4% formaldehyde for 20 min at room

temperature, and mounted in Vectashield mounting medium containing

DAPI.

Western blots

Western blots were carried out on protein extracts made from whole flies

using a TCA-based extraction protocol. Equal amounts of protein as

quantified using the Bio-Rad protein assay reagent were loaded onto

SDS–PAGE gels and blotted according to standard protocols. Blots were

probed with either anti-dFOXO antibody (Giannakou et al., 2007) at a

dilution of 1:5000 or anti-tubulin antibody (Sigma, Gillingham, UK) at

1:2500 dilution. Secondary antibodies conjugated to HRP (AbCam, Cam-

bridge, UK) were used, and the signals were detected by chemilumines-

cence using the Enhanced ECL kit (GE, Amersham, UK).

Quantitative RT-PCR

Total RNA was extracted from ten whole adult flies or 20 adult heads per

genotype using standard Trizol (Invitrogen, Paisley, UK) protocols. cDNA

was prepared using oligod(T) primer and Superscript II reverse transcrip-

tase according to the manufacturer’s protocol (Invitrogen). Quantitative

RT-PCR was performed using the PRISM 7000 sequence detection system

and Fast SYBR� Green PCR Master Mix (ABI, Warrington, UK). Relative

quantities of transcripts were determined using the relative standard

curve method and normalized to actin5C. Four or five independent RNA

extractions were used for each genotype. Primer sequences are available

upon request.

Chromatin immunoprecipitation

Chromatin immunoprecipitations were carried out essentially as

described (Slack et al., 2010). For quantitative PCR, a suitable dilution

of total chromatin and IP was used for the quantification using the

PRISM 7000 sequence detection system and Fast SYBR� Green PCR

Master Mix (ABI). For ChIP analysis, relative amounts of the target DNA
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recovered after ChIP compared with total chromatin were determined

using two or three independent biological replicates. The relative

proportion of DNA binding was calculated by dividing the proportion of

DNA binding in the ChIP for a single region by the average recovered

for all regions for that chromatin to normalize for plate–plate

differences.

Immunohistochemistry and confocal microscopy

Immunohistochemical analysis of dFOXO protein overexpression in whole

mount ovaries of 7-day-old females was performed using the anti-dFOXO

antibody at a dilution of 1:250 followed by Alexafluor 488 labeled anti-

rabbit secondary antibody (Invitrogen). Nuclei were visualized using DAPI.

Images were acquired using a Zeiss LSM 700 confocal microscope and ZEN

(Zeiss, Welwyn Garden City, UK) software.

Statistical analyses

Statistical analyses were performed using JMP (version 7) software (SAS

Institute Inc., Cary, NC, USA). Lifespan data were subjected to survival

analysis (Log-rank tests). Maximum lifespans were calculated as the med-

ian of the last surviving 10% of the population. Other data were tested

for normality using the Shapiro–Wilk W test on studentized residuals

(Sokal & Rohlf, 1998). One-way analyses of variance (ANOVA) were per-

formed, and planned comparisons of means were made using Tukey–

Kramer HSD (Honestly Significant Difference) or Student’s t-test.
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Supporting Information

Additional supporting information may be found in the online version of

this article:

Fig. S1 (A) Survival curves of female daGS ⁄ + flies +RU486 and )RU486.

Experiments were started with 100 flies per condition. No significant differ-

ence in survival was detected between treatments by Log-rank test. (B)

Average number of eggs laid per female after 7 days of RU486 treatment

(+RU486) or untreated ()RU486). Data are presented as the mean number

of eggs laid per female over a 24-h period ± SEM. Eggs were counted from

ten separate vials and each vial contained ten females. No significant differ-

ence was detected between treatments by ANOVA. (C) Survival of daGS ⁄ +
flies in the presence of 20mM paraquat after 7 days of RU486 treatment

(+RU486) or untreated ()RU486). Experiments were started with 100 flies

per treatment. No significant difference was detected between treatments

by Log-rank test. (D) Survival of daGS ⁄ + flies in the presence of DDT after

7 days of RU486 treatment (+RU486) or untreated ()RU486). Experiments

were started with 100 flies per treatment. No significant difference was
detected between treatments by Log-rank test.

Fig. S2 (A) Egg to adult development time in males and females of the indi-

cated genotypes. Only the eclosion period of the adult flies is shown. Data are

shown as percentage of flies eclosing. The delay in development observed in

dfoxoD94 homozygotes is also observed in transheterozygotes of

dfoxoD94 ⁄ dfoxo25 and hemizygous dfoxoD94 ⁄ Df(3R)ED5624. (Males: wDa-
homey, n = 114; dfoxoD94 ⁄ +, n = 94; dfoxoD94 ⁄ dfoxoD94, n = 106; dfoxo25 ⁄ +,

n = 84; dfoxoD94 ⁄ dfoxo25, n = 112; Df(3R)ED5624 ⁄ +, n = 98; dfox-
oD94 ⁄ Df(3R)ED5624, n = 84. Females: wDahomey, n = 107; dfoxoD94 ⁄ +,

n = 106; dfoxoD94 ⁄ dfoxoD94, n = 116; dfoxo25 ⁄ +, n = 114; dfoxoD94 ⁄ dfoxo25,

n = 118; Df(3R)ED5624 ⁄ +, n = 93; dfoxoD94 ⁄ Df(3R)ED5624, n = 99). (B) Body

weights and wing areas as indicators of adult fly body size in females of the indi-

cated genotypes. Data are presented as means ± SEM (n = 10 for each
measurement). The reduced body size of dfoxoD94 homozygotes is also

observed in transheterozygotes of dfoxo25 ⁄ dfoxoD94 and hemizygous

Df(3R)ED5624 ⁄ dfoxoD94 (**P < 0.05, t-test).

Fig. S3 Effects of rapamycin treatment on the survivorship of dfoxoD94

mutants.

Fig. S4 Lifespan and fecundity responses of dfoxoD94 mutant females to
dietary restriction.

Table S1 Median lifespans and statistical analysis of dfoxoD94 mutants and

control flies across a food dilution series.
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