Towards Partial Loading of XMI Models

Ran Wei Dimitrios S. Kolovos _Antonio
University of York University of York Garcia-Dominguez
Heslington Heslington University of York

York, United Kingdom
ran.wei@york.ac.uk

Konstantinos Barmpis
University of York
Heslington
York, United Kingdom
kb634@york.ac.uk

ABSTRACT

XML Metadata Interchange (XMI) is an OMG-standardised
model exchange format, which is natively supported by the
Eclipse Modeling Framework (EMF) and the majority of
the modelling and model management languages and tools.
Whilst XMI is widely supported, the XMI parser provided
by EMF is inefficient in some cases where models are read-
only (such as input models for model query, model-to-model
transformation, etc) as it always requires loading the entire
model into memory. In this paper we present a novel algo-
rithm, and a prototype implementation (SmartSAX), which
is capable of partially loading models persisted in XMI.
SmartSAX offers improved performance, in terms of load-
ing time and memory footprint, over the default EMF XMI
parser. We describe the algorithm in detail, and present
benchmarking results that demonstrate the substantial im-
provements of the prototype implementation over the XMI
parser provided by EMF.

CCS Concepts

eSoftware and its engineering — Software develop-
ment methods;

Keywords
EMF; XMI; Partial Model Loading;

1. INTRODUCTION

Model Driven Engineering (MDE) is a contemporary soft-
ware development paradigm in which models are first class
artefacts. On models, a series of model management op-
erations can be performed to automatically produce soft-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2016 ACM. ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

York, United Kingdom
dimitris.kolovos@york.ac.uk

Heslington
York, United Kingdom
antonio.garcia-
dominguez@york.ac.uk

Richard F. Paige
University of York
Heslington
York, United Kingdom

richard.paige@york.ac.uk

ware artefacts such as software source code and documen-
tation. An MDE-based development processes typically in-
volves modelling and model management, supported by a
large number of modelling and model management tools.

Tool interoperability among MDE tools is achieved by
the use of common persistence format(s) for models. XML
Metadata Interchange (XMI) is an XML-based model per-
sistence format standardised by the Object Management
Group (OMG)'. XMI is supported natively by the widely
used Eclipse Modeling Framework (EMF) [1], and as an im-
port/export format by the majority of software modelling
tools, including Enterprise Architect, Modelio, MagicDraw,
Microsoft Visio, Visual Paradigm, and Archi®. XMI is also
supported by all major model management (e.g. model
querying, model-to-model transformation, model validation)
languages and tools through their implementation based on
EMF, including OCL [2], Acceleo [3], Xpand [4], ATL [5]
and Epsilon [6].

Off-the-shelf
UML modelling tool

t
€XPOTES. [ML model

in XMl

(e.g. Modelio)
consumed
by
Y
Java Model-to-Text
code Transformation
(e.g. in Acceleo, EGL)

Figure 1: A common use-case that would benefit
from partial XMI loading capabilities

"http://www.omg.org/
http://www.archimatetool.com

DefaultHandler |

] XMLHandler |
XMLResourcelmpl XMLLoadImpl 1 XMIHandler |
1 XMIResourcelmpl 1 XMlLoadlmpl 1 SAXXMIHandler
createXMLLoad() L
————————————————— - R
L] load(...) L1 load() I
makeParser() makeDefaultHandler()

Figure 2: EMF SAX Parser Structure.

While some model management programs (e.g. model-to-
model, model-to-text transformations) only need to access a
subset of the elements in a model, existing XMI parsers do
not support partial loading and as such they need to parse
the entire model into memory before any model elements
can be accessed — which is clearly wasteful both in terms
of loading time and memory footprint. As a motivating
example, consider the scenario illustrated in Figure 1, where
a developer is using an off-the-shelf UML modelling tool
(e.g. Modelio) to construct UML models. Models are then
exported into XMI so that they can be consumed by an
XMI-compatible model-to-text transformation (e.g. written
in Acceleo [3] or EGL [7]) which generates Java source code
from the classes of the model and their structural features
and associations.

While the transformation in question is only interested in
a subset of its input model and is oblivious to parts such as
sequence diagrams, state machines, use cases etc. in the ab-
sence of partial loading capabilities, all of the latter will need
to be unnecessarily loaded into memory from the XMI-based
model representation before the transformation can be exe-
cuted. While the cost of fully loading a small XMI model is
practically negligible, this becomes problematic when mod-
els grow in size as observed in a number of studies [8-11].

It is worth noting that in this (frequently encountered)
case, a database-backed model persistence framework like
CDO? would not be of much assistance. In fact, injecting
the exported XMI model into a CDO repository would first
require the XMI model to be fully-loaded, which would de-
feat the purpose of introducing this facility in the first place.

To address this limitation, this work contributes a novel
parsing algorithm that can be used to partially load an XMI-
based EMF model into memory, given in-advance knowledge
of the part of the model that will be exercised by the model
management program that consumes it (such knowledge can
be obtained through static analysis of the program itself).
This novel XMI parsing algorithm is presented in the form
of a prototype, SmartSAX, built atop the Eclipse Modelling
Framework (EMF). The rest of the paper is organised as
follows.

Section 2 reviews the EMF’s default XMI parser and ex-
plains in detail the parsing algorithm. Section 3 discusses
the proposed partial loading algorithm with a detailed ex-
ample. Section 4 discusses the related work in this line of re-
search, and Section 5 reports on the results of empirical eval-
uations which demonstrate that the proposed partial XMI
loading algorithm delivers significant benefits both in terms

Shttp:/ /www.eclipse.org/cdo/

of loading and memory footprint. Section 6 concludes the
paper and provides directions for future work.

2. BACKGROUND

2.1 XMI and MDE tools

Model Driven Engineering (MDE) enables software de-
velopers to operate at the model level, for capturing rele-
vant details of a system under development, and facilitates
model management, which comprises operations performed
on models to reason about the system and automatically
generate software artefacts. MDE has been shown to in-
crease productivity by as much as a factor of 10 from em-
pirical studies [12,13] and thus has received a considerable
amount of attention in recent years resulting a large number
of modelling and model management tools being developed.

The Eclipse Modeling Framework (EMF) is a modelling
framework that enables MDE by providing support for mod-
elling and code generation. To enable interoperability of
models, EMF supports serialising models in the XMI for-
mat. Based on EMF, a large number of different MDE tools
have been developed for different model management op-
erations, such as OCL for model validation [14,15], XText
and MoDisco for text-to-model transformation [16,17], ATL
and ETL for model-to-model transformation [18,19], EGL
and Acceleo for model-to-text transformation [7,20], model
merging [21], etc. EMF has become a de facto standard for
building MDE tools [22] provided that the majority of model
management tools in MDE are implemented atop EMF. As
such, the XMI format is inherently supported by the major-
ity of model management tools.

2.2 Java SAX Parser

The Java SAX (Simple API for XML) parser® is an event-
based XML parser that operates by going through an XML
file/stream and invoking callback methods on a listener/han-
dler object (which subclasses SAX’s internal DefaultHandler
class) when it encounters certain structural elements of the
XML file. For example, the parser invokes the handler’s
startDocument() method when the start of an XML docu-
ment is encountered, its startElement() method when the
start of an element is encountered, etc. It is the respon-
sibility of the handler to extract the information it needs
from these elements (by extending the callbacks methods
where appropriate) and perform corresponding actions (e.g.
to create EObjects for EMF’s SAX parser).

“https://docs.oracle.com/javase/tutorial /jaxp/sax/

2.3 EMPF’s SAX-based XMI Parser

Figure 2 illustrates the main components of EMF’s built-
in XMI SAX parser. To parse an XMI-based model an
XMIResourceImpl object needs to be created, which points
at the URI (location) of the (XMI) model. To load the con-
tents of the model, the XMIResourcelmpl object creates an
XMILoadImpl object which is in turn responsible for creat-
ing a SAXXMIHandler. The SAXXMIHandler is respon-
sible for handling XML events and for creating model ele-
ments (EObjects), populating their attributes and references
(EStructuralFeatures), and putting them in the XMIResour-
celmpl.

2.4 Default XMI Parsing Algorithm

To illustrate how EMF’s existing SAX-based XMI parser
works, we introduce a contrived running example involving
the University metamodel shown in Figure 4, and a sam-
ple model that conforms to it. The XMI representation
of our sample model appears on the left part of Figure 3.
This model contains a University element, which in turn
contains a Department (Computer Science) element. Under
Computer Science, there are two members: a Lecturer (Tom
Brown) and a Student (Cathy Smith). Tom has a web page
while Cathy does not. Under Computer Science, there is
also a Module element: MODE, which also has a web page.
Finally, both Tom and Cathy are involved in MODE (see
modules=“e6” in lines 6 and 10).

We will now describe how EMF’s XMI parser works with
reference to the XMI model in Figure 3. The parser (and
in particular its SAXXMIHandler component) maintains a
stack of model elements (EObjects in EMF’s terminology)
to keep track of its current position in the XMI document.
This is needed in order to determine what EObjects to cre-
ate next, as illustrated in the right part of Figure 3. When
line 1 of the XMI file is read, the callback method startEle-
ment() is triggered, the <university> element is handled
and a new instance of University (with its name attribute
set to UoY') is created. The new EObject is pushed into
the object stack. When line 4 is read, the parser processes
the top of the stack (peekObject in EMF’s terminology) to-
gether with the <departments> element and decides that
an instance of Department should be created and added to
the departments reference of the University model element.
The created instance of Department is also pushed into the
object stack. The same principle is applied when line 5 is
read: the element <members> is handled and an instance
of Staff is created, added to the members reference of the
Department and pushed into the stack. When an element
tag ends (e.g. in line 8), the top element of the object stack
is popped. Once all XML elements have been processed, a
tree structure has been constructed in memory and resolu-
tion of non-containment references (e.g. Member.modules)
takes place to transform the tree into the graph of Figure 5.

3. PARTIAL XMI LOADING

While parsing the entire contents of an XMI-based model
into an in-memory object graph is often necessary (e.g. when
it is not known in advance which elements of the model will
need to be accessed by a program/user, or when there is a
need to modify the model and persist changes), there are also
cases where only parts of the model need to be loaded, and
precise information about which parts are relevant can be
provided in advance. For example, when a model is loaded

in order to be queried by a program (e.g. a set of OCL
constraints or an M2M/M2T transformation), it is possible
to detect through static analysis which parts of the model
the program is likely to exercise. In such cases, loading
parts of the model that the program is guaranteed not to
access is inefficient both in terms of loading time and in
terms of memory footprint. To improve support for working
with XMI-based models in such scenarios, in this section we
demonstrate an algorithm that is used to load only FObjects
of interest into memory and ignore other remaining XML
elements.

3.1 Effective Metamodel Structure

To achieve partial loading, our XMI parser needs to be
provided, in advance, with information about the parts of
the model that will be subsequently needed by programs
that consume the model (i.e. the model’s effective meta-
model, similar to the concept described in [23]). Figure 6
illustrates how effective metamodels are represented in our
prototype implementation. For clarification, assume a pro-
gram P manages a model M which conforms to its meta-
model M M. The base construct is FEffectiveType, which
represents a meta-class in M M. EffectiveType contains a
name, a collection of attributes and a collection of refer-
ences of interest. The effective metamodel of M is repre-
sented by EffectiveMetamodel, which has a name, an nsURI
(M M'’s globally unique identifier), and three collections of
Effective Type (types, allOfKind and allOfType).

3.1.1 types, allOfKind and allOfType

The allOfKind and allOfType references are used to spec-
ify the types in M M, instances of which need to be loaded
by the parser. As an example, if we declare in our effec-
tive metamodel that we need allOfKind of Person, this im-
plies that instances of both Lecturer and Student should
be loaded (as they are sub-types of Person). If we declare
that we need allOfType of Person, only instances of Person
should be loaded (but not of its subtypes). The types ref-
erence specifies types, instances of which should be loaded
only when they appear under containment references of in-
terest. For example, in the effective metamodel of Figure 7,
we specify that we need to load all instances of Lecturer
anywhere in the model, but only instances of WebPage that
are contained in containment references of interest (i.e. Lec-
turer.webPage).

3.1.2 Attributes and References

In each EffectiveType we can declare the names of the at-
tributes and references that need to be populated for loaded
instances of that type. For example, we can declare that
we are only interested in the first_name attribute and mod-
ules reference of Person model elements, which will cause
the partial loading parser not to populate the value of the
last_name attributes of loaded Person elements.

3.2 Automated Effective Metamodel Extrac-
tion

Extracting an effective metamodel from a query/transfor-
mation expressed in a typed model management language
(such as OCL, QVTr/o, Acceleo or Epsilon’s model manage-
ment languages) for which static type-inference facilities are
in place is a relatively straightforward and computationally
inexpensive process. For example, analysing the program

1-Q<university xmi:version="2.0" xmlns:xmi="http://www.omg.org/XML" -
2 xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance” Object Stack Resource
3 xmlns="university" name="UoY" xmi:id="el">
4+l Q<departments xmi:id="e2" name="Computer Science> - WebPage - WebPage
S5~ i Q<memigers xsi:type="Lecturer" xmi:id="e3" first_name="Tom"
6 '+ last_name="Brown" modules="e6"> 4
7 ! | O<webPage xmi:id="e4" url="modules.cs.york. ac.uk/mode"/>))
8 ! 5 ey : Lecturer : Lecturer
1
9 - i <members xsi:type="Student" xmi:id="e5" first_name="Cathy" ‘
10 | last_name="5Smith" modules="e6"/> . Department - Department
11~ <modules xmi:id="e6" name="MODE"> - vepartmen - epartmen
12 <webPage xmi:id="e7" url="users.cs.york.ac.uk/cathy"/> ‘
1k </modules>
14 </départmentss : University : University
15 </university>
Figure 3: Parsing a University XMI model using EMF’s built-in XMI parser.
University
name = "UoY"
v departments
University
Department Student

name: String

4
0..* departments
Y
Department 1.% Module
name: String & »| name: String
id: String
modules
A

members‘ 0..*

<<abstract>>

Person

modules 0..*

first_name: String
last_name: String

I

Lecturer

staff_id: String

webPage

0..% students
Student
student_id: String
final_grade: float
webPage
WebPage
»| title: String <
N url: String 1

Figure 4: The University Metamodel

»

name = "Computer Science"

»| first_name = Cathy
last_name = Smith

members
members modules
modules
Y Y
Lecturer Module
first_name = Tom < name = MODE
last_name = Brown
modules
personalWebPage letctures
Y Y
WebPage Lecture

url = users.cs.york.ac.uk/tom

Figure 5: Graphical representation of the loaded

XMI model of Figure 3

title = Introduction

.

aIIOfKind¢ 0..*

EffectiveType

name: String

EffectiveMetamodel types
name: String
nsURI: String
0..*

t

»| attributes: String[]
references: String[]

aIIOnyp4 0..%

Figure 6: Effective Metamodel Representation

written in Epsilon Object Language (EOL) [24] in Listing 1
using Epsilon’s static analyser [25] produces the effective
metamodel shown in Figure 7.

1 var lecturers = Lecturer.allOfKind();

2 for (1 in lecturers) {

3 ("First name:" + 1l.first_name).println();

4 ("Last name:" + 1.last_name).println();

5 ("Web page:" + l.webPage.url) .println();

6 ("Number of modules taught:" + 1l.modules.size
0)) .println();

7T}

Listing 1: An example EOL Program

:EffectiveType

types
P name = WebPage

attributes = {url}
references = {}

Y

2
:EffectiveMetamodel

:EffectiveType

name = Lecturer
attributes = {first_name, last_name}
references = {modules, webPage}

name = university
nsURI = http://university/1.0

Y

allofKind

Figure 7: Automatically-extracted Effective Meta-
model from Listing 1

3.3 Effective Metamodel Reconciliation

Effective metamodels (either specified manually or ex-
tracted through static analysis of model management pro-
grams) can be incomplete. For example, the effective meta-
model illustrated in Figure 7 specifies that we are interested
in loading only instances of Lecturer, and populating their
first_name and last_name attributes and their webPage and
modules references. It also specifies that for loaded instances
of WebPage, their url attribute should be populated.

As the effective metamodel does not include the Module
type, the parser will not load any instances of Module, and
as such the modules reference of all loaded Lecturer elements
will be empty. To handle such cases, in this step we automat-
ically reconcile a provided (potentially incomplete) effective
metamodel by adding allOfKind relationships to the types
of declared non-containment references. If an allOfType re-
lationship already exists for that type, it is converted to an
allOfKind relationship. The reconciled effective metamodel
for our example, where the missing allOfKind relationship
has been added for the Module type, appears in Figure 8.

3.4 Partial XMI Loading Algorithm

As discussed above, EMF’s built-in XMI parser maintains
a stack of non-null FObjects to determine what type of EOb-
ject it needs to create when it encounters a new XML ele-
ment, and where® it should place the new element in the
containment hierarchy. Whilst we wish to reuse as much
of the (by far non-trivial) functionality of the existing XMI
parser as possible, creating all EObjects in order to keep

5i.e. under which containment reference

:EffectiveType

types
P name = WebPage

attributes = {url}
references = {}

Y

4
:EffectiveMetamodel

:EffectiveType

name = university name = Lecturer
= 3> ; .
nsURI = http://university/1.0 P attributes = {first_name, last_name}

references = {modules, webPage}

allofKind

4

allOfKind :EffectiveType

name = Module
attributes = {}
references = {}

Y

Figure 8: Reconciled Version of the Effective Meta-
model of Figure 7

the stack null-free is not efficient in terms of time and mem-
ory consumption, and defeats the purpose of partial loading.
Therefore, we have introduced a placeholder cache, which
contains one empty/placeholder EObject for each type that
is not declared in the effective metamodel. As such, when
the parser encounters an XML element that it wishes to skip
it can fetch the respective placeholder EObject for that type
from the cache and put it in the object stack (note that this
process does not involve processing the actual XML element,
therefore reducing loading time and memory consumption).

On the other hand, when it encounters an XML element of
a type that is included in the effective metamodel under an
appropriate allOfType or allOfKind reference, or an element
that belongs to a containment reference of interest and is in-
cluded in the effective metamodel under a types reference,
it creates a new EObject. If the top element of the stack is
not an placeholder EObject and the containment reference
is included in the effective metamodel, it puts the new ob-
ject under the containment reference; otherwise it adds it as
a top level element in the resource (model).® Finally, the
parser adds the new EObject to the top of the stack.

Figure 9 illustrates a snapshot of the state of our parser
at the point where it has parsed the University XMI model
up to line 7, with reference to the reconciled effective meta-
model of Figure 8. When parsing starts, our parser popu-
lates the Placeholder Cache with one placeholder EObject
for each type of the full metamodel that is not included
in the effective metamodel as illustrated on the bottom-left
corner of Figure 9. Another approach would be to populate
the cache in a lazy manner - i.e. to only create placeholder
EObjects the first time they are needed. Given the rela-
tively small size of metamodels — e.g. the UML metamodel
has fewer than 300 types — the performance benefits of a
lazy cache population strategy are negligible. Having pop-
ulated the Placeholder Cache, the parser then handles the
XML elements it encounters as follows:

5The rearranged order of the EObjects in the resource does
not affect how existing model management tools interact
with the models — tools that interact with EMF based XMI
models do not have to make any changes to their implemen-
tation.

1-Q<university xmi:versi

xmlns:xsi="fttp; w.w3.0org/2001/XMLSchema-instance”
xmlns="univepsity" nome="UoY" xmi:id="el">
Q@ <departments xmi:id="e2" name="Computer Science">
o<membepg” xsi:type="Lecturer” xmi:id="e3" first_name="Tom"
O/;st_nmneJBrom“ modules="e6">

<webPage xmi:id="e4" url="modules.cs.york.ac.uk/mode"/>

2
3
4+
5+

g~
10
11~
12
13
14
15

</memberss>

<members xsi:type="Student" xmi:id="e5" first_name="Cathy"

last_name="Smith" modules="e6"/>

<modules xmi:id="e&" name="MODE">
<webPage xmi:id="e7" url="users.cs.york.ac.uk/cathy"/>
</modules>
</departments>
</university>

PIacMCache

Object Stack Resource

->! : University | : WebPage
)

-»1: Department| . Lecturer . Lecturer

[E——

S —— \ \\;‘v ————————————— |

I :Student | i: Department|

S —— ! LX“________—I

T |

i : University |

!

: WebPage

Figure 9: Parsing the University model with SmartSAX.

When the <university> element in line 1 is encoun-
tered, the parser checks the effective metamodel, de-
termines that instances of University do not need to be
loaded, and therefore fetches the placeholder instance
of University from the placeholder cache and pushes it
to the object stack.

When the <departments> element in line 4 is encoun-
tered, the parser determines that the type of the object
to be instantiated is Department. However, according
to the effective metamodel, instances of Department
do not need to be loaded either so the parser fetches
the placeholder instance of Department from the place-
holder cache and pushes it to the object stack.

When the parser encounters the <members> element
in line 5 it determines that it needs to create a new in-
stance of Lecturer (as Lecturer is part of the effective
metamodel). After creating the new instance, it con-
sults the effective metamodel and populates the values
of its first. name and last_name attributes. Then it
looks at the element on the top of the stack (currently
the placeholder instance of Department), detects that
it is a placeholder, and as such adds the populated
instance of Lecturer to the resource as a top-level ele-
ment.

When the <webPage> element in line 7 is encoun-
tered, the parser determines that it needs to create
an instance of WebPage and place it in the webPage
containment reference of the top element of the stack.
It also populates the url attribute of the new instance
with the value of the respective attribute of the XML
element.

When </webPage> is encountered in line 7, the top
object of the stack is popped (the current top element
is now Tom)

When </members> is encountered in line 8, the top
object of the stack is popped (the current top element
is now Computer Science)

When the <members> element is encountered in line
9, the parser determines that it needs to create an in-
stance of Student. Since the Student type is not part of
the effective metamodel, it fetches the Student place-
holder object and puts it at the top of the stack.

e When </members> is encountered in line 10, the top

object of the stack is popped (the current top element
is again Computer Science)

e When the <modules> element is encountered in line

11, the parser determines that it needs to create an
instance of Module and since the effective metamodel
declares that all instances of Module need to be loaded,
it creates a fresh object (but does not populate any of
its attributes/references as none of these need to be
loaded according to the effective metamodel). Since
the top element in the stack is a placeholder, it adds
the new Module instance to the resource as a top-level
element and also pushes it to the stack.

e When the <webPage> element is encountered in line

12, the parser determines that it maps to an instance
of WebPage that should be placed under the webPage
containment reference of the top element of the stack
(which is currently the MODE module). Since the
WebPage type is part of the types reference of the ef-
fective metamodel, and its containment reference (Stu-
dent.webPage) is not of interest, the parser fetches the
placeholder WebPage object and pushes it to the stack.

e Each of the last three lines (13-15) cause the parser to

pop the top element of its stack — thus ending up with
an empty stack.

‘WebPage
» url = users.cs.york.ac.uk/tom
webPage
4
:Lecturer :Module
first_name = Tom » name =

last_name = Brown

modules

Figure 10: The Partially Loaded Model

Since all required objects have been loaded, the last step of

the algorithm involves resolving non-containment references
(in this case, link Tom to the MODE module, through its

modules reference). The obtained partially-loaded model is
shown in Figure 10. Note how the name attribute of the
loaded Module is empty, as the value of this attribute is not
of interest according to the effective metamodel of Figure 8.

The partial loading algorithm illustrated above is also pre-
sented in an example-independent manner in Algorithm 1,
2 and 3.

let stack = new stack of model elements;
let cache = new set of model elements;
let model = new model;
let elements = new stack of xml elements;
let EM = the defined/extracted effective metamodel;
let referencesToHandle = non-containment references
to resolve after file is fully read;
Procedure startElement (zmlElement)
push xmlElement to elements;
let peekModelElement = peek top model element of
stack;
if peekModelElement is nil then
// We are at a root element
let type = find a model element type for the tag
name of the xmlElement;
let modelElement = createModelElement (type);
push modelElement to the stack;
nd
Ise
let peekModelElementType = the type of
peekModelElement;
if a feature needs to be created based on
peekModelElement Type and xmlElement then
| handleFeature(xmlElement);
end
else if a (top level) model element to be created
then
let type = find a model element type for the
tag name of the xmlElement;
let modelElement =
createModelElement (type);
push modelElement to the stack;
end
end
Procedure endElement (element)
pop the top model element from the stack;
pop the top model element from the elements;
Algorithm 1: Partial Loading Algorithm 1 of 3

o0

3.5 Integration to EMF

With the partial loading algorithm in mind, we implement
our prototype, SmartSAX”, which extends EMF. The struc-
ture of SmartSAX is shown in Figure 11. The partial loading
algorithm is encompassed in SmartSAXXMIHandler, which
extends EMF’s SAXXMIHandler. For this purposes, ex-
tensions of XMILoadImpl and XMIResourcelmpl are cre-
ated, which require passing of effective metamodels in their
load(...) options. The partially loaded in-memory models
(Resources) can still be accessed in the same way by model
management tools as for default loaded EMF models.

3.6 Limitations

There are three noteworthy limitations in the presented
partial loading approach. First, it requires elements ref-
erenced from non-containment references to have IDs that

"https://github.com /wrwei/SmartSAX

let stack = new stack of model elements;
let cache = new set of model elements;
let model = new model;
let elements = new stack of xml elements;
let EM = the defined/extracted effective metamodel,
let referencesToHandle = non-containment references
to resolve after file is fully read;
Procedure createModelElement (type)
let modelElement = instance to be
created /retrieved;
if EM contains type under allOfKind/allOfType
then
modelElement = create an instance of the type;
add modelElement to the resource;
end
else
modelElement = create/retrieve cache object
from the cache by type;
end
return modelElement;
Procedure handleObjectAttributes(eObject)
foreach attribute in the current xmlElement do
let name = name of the attribute;
let value = the value of the attribute;
if shouldHandleFeature (eObject, attribute)
then
| setFeatureValue(eObject, name, value);
end
end
Procedure setFeatureValue (eObject, name, value)
let feature = identify feature based on eObject and
name;
if feature is single valued then
| set value to feature;
end
else
| add value to feature;
end
Algorithm 2: Partial Loading Algorithm 2 of 3

do not depend on their positions in the containment hier-
archy (i.e. 4ntrinsic IDs or extrinsic IDs instead of frag-
ment path IDs [1] such as //@departments.0/@modules.0)
as partial loading can affect the internal structure of the
loaded model. Also, it currently does not support propa-
gating changes made to the partially-loaded model back to
its XMI source (i.e. it is only useful for read-only oper-
ations on models). Finally, SmartSAX currently does not
support loading models that are persisted in multiple XMI
files, which will be addressed in the future work.

4. RELATED WORK

To the best of our knowledge, there is no previous work
on partial loading of XMI-based models. However, to ad-
dress the limitations of XMI when working with large mod-
els, several (non-standard) alternatives have been proposed.
In [26], the Binary Model Syntax (BMS) is introduced as a
high performance binary alternative to XMI. However, there
have not been any updates or releases of BMS in the public
domain. A number of database-backed persistence technolo-
gies have also been proposed to achieve partial loading. The
Connected Data Objects framework (CDO)® is a framework

Shttp://www.eclipse.org/cdo/

Procedure handleFeature (zmlElement)
let peekModelElement = peek top model element of
stack;
let peekModelElementType = the type of
peekModelElement;
let feature = the feature that is to be created based
on peekModelElementType and xmlElement;
if feature is an attribute then
| handleObjectAttributes(peekModelElement);
end
else
//feature is a reference
if feature is a containment reference then
let eType = the type of the reference;
let modelElement =
createModelElement (eType);
if modelElement is null then
if em contains eType under types then
if shouldHandleFea-
ture(peeckModelElement, feature)
then
let modelElement = create an
instance of the eType;
add modelElement to the
resource;
setFeatureValue(peekModelElement,
feature name, modelElement);
end
nd
Ise
let modelElement = create/retrieve
cache object from the cache for
typeToCreate;
end
nd
Ise
add modelElement to the resource;
setFeatureValue(peekModelElement,
feature name, modelElement);
end
push modelElement to the stack;
nd
Ise
if shouldHandleFeature(peekModelElement,
feature) then
| add feature to referencesToHandle;
end
end
end
Procedure shouldHandleFeature (eObject, feature)
let effectiveType = retrieve effective type from EM
based on eObject;
if effective Type is not nil then
if effective Type contains the name of feature
then
| return true;
end
end
return false;
Algorithm 3: Partial Loading Algorithm 3 of 3

o 0O

o 0

o0

built on top of EMF and supports persistence of large mod-
els in contemporary databases. Morsa [27] was one of the
first approaches to provide persistence of large scale EMF
models using NoSQL databases. Morsa is backed by Mon-

XMLResourcelmpl
-

XMIResourcelmpl

SmartSAXXMIResourcelmpl

load(...)

\ DefaultHandler
createXMLLoad() \

XMLLoadImpl

XMLHandler
XMIHandler

XMiLoadimpl |/ SAXXMIHandler
SmartSAXXMILoadImpl [SmartSAXXMIHandler
load()

makeParser()

makeDefaultHandler()
Figure 11: SmartSAX as an extension to EMF

goDB and is built atop EMF so that standard EMF inter-
faces can be used for persisting the models. MongoEMF®
and Neo4EMF [22] are two additional alternatives for stor-
ing EMF models in MongoDB and Neo4J'° (graph-based)
databases respectively.

EMF fragments [28] is another persistence layer for EMF
that uses NoSQL databases to achieve fast storage of new
data and fast navigation of persisted models. In EMF frag-
ments, models are automatically partitioned in fragments so
that all data from a single fragment is loaded at a time, and
links to other fragments are loaded on demand. However,
EMF fragments requires that metamodels to be modified
to indicate where the partitions should be made to get the
partitioning capabilities. In addition, EMF fragments are
beneficial to a particular set of queries that the fragmenta-
tion strategies are designed specifically for. Therefore, EMF
requires the re-fragmentation of models for it to be applica-
ble for other types of queries.

As models grow in size, database-based persistence or a
combination of model fragmentation and indexing [29] are
clearly preferable compared to persisting models in large
monolithic XMI files. However, when working with off-the-
shelf modelling tools, large XMI files are often a “given”.
Even if engineers choose to transform such models into a
database-backed representation before they process them
further (e.g. to validate them or to generate code from
them), they need to parse the provided XMI representa-
tion, in which cases the proposed partial loading approach
can also be useful.

Overall, we do not view the proposed partial XMI loading
approach as a competitor to database-based model persis-
tence approaches, but rather as a complementary facility
when large XMI models are a given due to factors beyond
the control of the engineers.

S. EVALUATION

In this section we report the results of benchmarks per-
formed on a prototype implementation (SmartSAX) of the
algorithm described in Section 3 to evaluate the scalabil-
ity and practicality of the proposed approach. Benchmarks
were performed on a computer with Intel(R) Core(TM) i7

“http:/ /github.com/BryanHunt /mongo-emf/wiki
'Neo4J Graph Database: http://neodj.com

CPU @ 2.3GHz, with 8GB of physical memory, running OS
X Yosemite. The version of the Java Virtual Machine used
was 1.8.0_31-b13.

For our benchmarks, models of varying sizes obtained
from reverse engineered Java code in the 2009 GraBaT's con-
test'! are used. These models, named set0 — set4 (9.2MB,

27.9MB, 283.2MB, 626.7MB, 676.9MB respectively) are stored

in XMI 2.0 format and have been used for benchmarks in
various tools [22,29,30].

5.1 Loading Unit Coverage

To quantify partial loading in our benchmarks we use the
concept of loading units. We identify three types of such
units: objects (model elements), attribute values, and ref-
erence values. For example, the partially-loaded model of
Figure 10 consists of 8 loading units (3 objects, 3 attribute
values (we exclude Module.name) and 2 reference values),
while the fully-loaded model of Figure 5 consists of 24 load-
ing units (7 objects, 9 attribute values and 8 reference val-
ues).

With regard to our experiment, our first step was to count
the number of loading units in each of the models (from set0
to set4) using an EOL query'?. Then, EOL programs which
exercise 20%, 40%, 60%, 80% and 100% of the loading units
for models from set0 to set4d were generated. An example of
such programs is illustrated in Listing 2. These programs
were analysed by the Epsilon static analysis framework for
effective metamodel extraction. Finally, the effective meta-
models extracted from the EOL programs were used to load
all models using SmartSAX. The performance in terms of
loading time and memory consumption were recorded and
compared with the performance of the default EMF XMI
parser on the same models.

1 var size = 0;

2 var markerAnnotation = MarkerAnnotation.all.
first();

3 size = size + MarkerAnnotation.all.
resolveBoxing.size();

4 size = size + MarkerAnnotation.all.
resolveUnboxing.size();

5 size = size + MarkerAnnotation.all.typeBinding.
size();

6

7 size.println();

Listing 2: An example of generated EOL program
for loading unit coverage

5.2 Results

The obtained results for data sets set0 — setd are pre-
sented in Figure 5.2 — 5.2. From the benchmark results we
observe that the partial loading algorithm demonstrates a
linear behaviour with respect to loading unit coverage, both
in terms of loading time and memory consumption. We
also observe that to load 100% of the model, SmartSAX re-
quires marginally more time and memory. This is due to
the (small) overhead incurred by the additional checks it in-

1 GraBaTs2009: 5th Int. Workshop on Graph-Based Tools,
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/
2https://github.com /wrwei/SmartSAX /blob/master /src/
org/eclipse/epsilon/labs/smartsax/coverage_generator.eol

volves when creating objects (i.e. the time to consult the
effective metamodel).

T T T T T
0 B
2 160
o
2 140 600 _
0.4 wn
g £
=
2 120 &
) =
> |
5 100| 400
g
]
= 80 L1 \ \ \

|
20 40 60 80 100
% of Loading Units

—eo— Normal - Time
—»— Partial - Time

- - Normal - Memory
- »- Partial - Memory

Figure 12: Benchmark results for Set 0

?-23 00l {2,000

=

g

g z
g 30 J1s00 £
1] Q
5 E
O &
> 200

—

o

g 1,000

E 100 | | | |

|
20 40 60 80 100
% of Loading Units

—e— Normal - Time
—=— Partial - Time

- - Normal - Memory
- »- Partial - Memory

Figure 13: Benchmark results for Set 1

5.3 Threats to Validity

For the experiments reported in this paper we have only
used XMI-based models conforming to the JDTAST mesta-
model used in the GraBaTs 2009 contest. The performance
and memory footprint of the partial loading algorithm may
be sensitive to particular features of the metamodel — al-
though, analytically, we have not identified any reasons why
this would be the case.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel approach that enables
partial loading of XMI-based models. The proposed ap-
proach tackles scenarios where read-only access to the mod-
els is sufficient and where the parts of the model (typically
a small subset of the entire model) that are of interest are

. T T T T — 2

m

=

a

8 115 ~
& 1,500 |- ’ é
2 ©
5 £
< nr
g 1,000|

]

E | | | |

!
20 40 60 80 100
% of Loading Units

—e— Normal - Time - - Normal - Memory

—— Partial - Time - »- Partial - Memory

Figure 14: Benchmark results for Set 2

10"
Py T T T T T
an}
g
= 2,000 |
S
= 1° £
j=}
1] [<)
2 1,500 E
O 3
z
g 1,000 | 12
[
2 | | | |

!
20 40 60 80 100
% of Loading Units

—e— Normal - Time - - Normal - Memory

—=— Partial - Time - »- Partial - Memory

Figure 15: Benchmark results for Set 3

known in advance. Extensive benchmarking has illustrated
that the proposed algorithm scales linearly with respect to
the size of the part of the model that is of interest, both in
terms of loading time and in terms of memory footprint.

We are currently working on extending the effective meta-
model extraction algorithm to support additional languages
of the Epsilon platform (i.e. Epsilon’s M2M and M2T trans-
formation, and model validation languages) and on support-
ing fragment paths so that our partial loading algorithm
can also accommodate XMI-based models that do not make
use of XMI ids. In addition, we are working on a facil-
ity which compares the effective metamodel with the actual
metamodel, in the sense that if the effective metamodel is
“identical” to the actual metamodel (through comparison),
SmartSAX switches to normal loading, which out-performs
partial loading for 100% model coverage.

Memory Consumption (MB)

104
T T T T T
14
2,000 | .
g
. 3 ~—
]
g
&
1,000 | 1o
| | | |

!
20 40 60 80 100
% of Loading Units

—e— Normal - Time
—— Partial - Time

- ®- Normal - Memory
- »- Partial - Memory

Figure 16: Benchmark results for Set 4

Acknowledgments

This research was part supported by the EU, through the
MONDO FP7 STREP project (#611125).

7.
1]

2]

3]

[4]

[5]

[6]

[7]

8]

REFERENCES

Dave Steinberg, Frank Budinsky, Ed Merks, and
Marcelo Paternostro. EMF: Eclipse Modeling
Framework. Pearson Education, 2008.

Object Management Group. Object Constraint
Language. http://www.omg.org/spec/OCL/.
Accessed: 01-01-2016.

Jonathan Musset, Etienne Juliot, Stéphane Lacrampe,
William Piers, Cédric Brun, Laurent Goubet, Yvan
Lussaud, and Freddy Allilaire. Acceleo User Guide.
http://www.acceleo.org/doc/obeo/en/acceleo-2.
6-user-guide.pdf. Accessed 01-01-2016.

S. Mitra and Kee Sup Kim. XPAND: an efficient test
stimulus compression technique. Computers, IEEE
Transactions on, 55(2):163-173, Feb 2006.

Jean Bézivin, Frédéric Jouault, and David Touzet. An
Introduction to the Atlas Model Management
Architecture. Rapport de recherche, (05.01):10-49,
2005.

Dimitrios Kolovos, Louis Rose, Richard Paige, and

A Garcia-Dominguez. The Epsilon Book. Eclipse, 2010.
Louis M. Rose, Richard F. Paige, Dimitrios S.
Kolovos, and Fiona A.C. Polack. The Epsilon
Generation Language. In Model Driven Architecture —
Foundations and Applications, volume 5095 of Lecture
Notes in Computer Science, pages 1-16. Springer
Berlin Heidelberg, 2008.

Parastoo Mohagheghi, MiguelA. Fernandez, JuanA.
Martell, Mathias Fritzsche, and Wasif Gilani. MDE
Adoption in Industry: Challenges and Success
Criteria. In Michel R.V. Chaudron, editor, Models in
Software Engineering, volume 5421 of Lecture Notes in
Computer Science, pages 54—59. Springer Berlin
Heidelberg, 2009.

[9]

[10]

[15]

[16]

[17]

[18]

[19]

Paul Baker, Shiou Loh, and Frank Weil. Model-Driven
Engineering in a Large Industrial Context aAT
Motorola Case Study. In Lionel Briand and Clay
Williams, editors, Model Driven Engineering
Languages and Systems, volume 3713 of Lecture Notes
in Computer Science, pages 476-491. Springer Berlin
Heidelberg, 2005.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona AC
Polack. Scalability: The holy grail of model driven
engineering. In ChaMDFE 2008 Workshop Proceedings:
International Workshop on Challenges in
Model-Driven Software Engineering, pages 10-14,
2008.

Dimitrios S. Kolovos, Louis M. Rose, Nicholas
Matragkas, Richard F. Paige, Esther Guerra,

Jesus Sanchez Cuadrado, Juan De Lara, Istvan Rath,
Déniel Varré, Massimo Tisi, and Jordi Cabot. A
Research Roadmap Towards Achieving Scalability in
Model Driven Engineering. In Proceedings of the
Workshop on Scalability in Model Driven Engineering,
BigMDE ’13, pages 2:1-2:10, New York, NY, USA,
2013. ACM.

Ari Jaaksi. Developing Mobile Browsers in a Product
Line. IEEE software, 19(4):73-80, 2002.

Juha Kéarné, Juha-Pekka Tolvanen, and Steven Kelly.
Evaluating the Use of Domain-Specific Modeling in
Practice. In Proceedings of the 9th OOPSLA workshop
on Domain-Specific Modeling, 2009.

Jordi Cabot and Martin Gogolla. Object Constraint
Language (OCL): A Definitive Guide. In Formal
Methods for Model-Driven Engineering, volume 7320
of Lecture Notes in Computer Science, pages 58-90.
Springer Berlin Heidelberg, 2012.

DimitriosS. Kolovos, RichardF. Paige, and FionaA.C.
Polack. On the Evolution of OCL for Capturing
Structural Constraints in Modelling Languages. In
Rigorous Methods for Software Construction and
Analysis, volume 5115 of Lecture Notes in Computer
Science, pages 204—-218. Springer Berlin Heidelberg,
2009.

Moritz Eysholdt and Heiko Behrens. Xtext:
Implement Your Language Faster Than the Quick and
Dirty Way. In Proceedings of the ACM International
Conference Companion on Object Oriented
Programming Systems Languages and Applications
Companion, OOPSLA ’10, pages 307-309, New York,
NY, USA, 2010. ACM.

Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and
Frédéric Madiot. MoDisco: A Generic and Extensible
Framework for Model Driven Reverse Engineering. In
Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE
’10, pages 173-174, New York, NY, USA, 2010. ACM.
Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and
Ivan Kurtev. Transforming Models with ATL. In
Jean-Michel Bruel, editor, Satellite Fvents at the
MoDELS 2005 Conference, volume 3844 of Lecture
Notes in Computer Science, pages 128-138. Springer
Berlin Heidelberg, 2006.

DimitriosS. Kolovos, RichardF. Paige, and FionaA.C.
Polack. The Epsilon Transformation Language. In
Theory and Practice of Model Transformations,

20]

21]

(22]

23]

(24]

(25]

(26]

27]

(28]

29]

(30]

volume 5063 of Lecture Notes in Computer Science,
pages 46—60. Springer Berlin Heidelberg, 2008.

beo group. Acceleo. http://www.eclipse.org/acceleo/.
Accessed: 01-01-2016.

DimitriosS. Kolovos, RichardF. Paige, and FionaA.C.
Polack. Merging Models with the Epsilon Merging
Language (EML). In Model Driven Engineering
Languages and Systems, volume 4199 of Lecture Notes
in Computer Science, pages 215-229. Springer Berlin
Heidelberg, 2006.

Amine Benelallam, Abel GAsmez, Gerson SunyAT,
Massimo Tisi, and David Launay. Neo4dEMF, A
Scalable Persistence Layer for EMF Models. In
Modelling Foundations and Applications, volume 8569
of Lecture Notes in Computer Science, pages 230—241.
Springer International Publishing, 2014.

J McQuillan and J Power. White-box Coverage
Criteria for Model Transformations. In Proceedings of
the First International Workshop on Model
Transformation with ATL, pages 6377, 2009.
Dimitrios S. Kolovos, Richard F. Paige, and Fiona

A. C. Polack. The Epsilon Object Language (EOL). In
Model Driven Architecture — Foundations and
Applications: Second European Conference,
ECMDA-FA 2006, Bilbao, Spain, July 10-18, 2006.
Proceedings, pages 128-142. Springer Berlin
Heidelberg, 2006.

Ran Wei and Dimitris S Kolovos. Automated analysis,
validation and suboptimal code detection in model
management programs. In Proc. 2nd International
Workshop on Scalable Model Driven Engineering
(BigMDE), pages 48-57, 2014.

Frédéric Jouault, Jean Bézivin, and Mikagl” Barbero.
Towards An Advanced Model-Driven Engineering
Toolbox. Innovations in Systems and Software
Engineering, 5(1):5-12, 2009.

Javier Espinazo Pagén, Jestss Sanchez Cuadrado, and
Jestus Garcia Molina. Morsa: A Scalable Approach for
Persisting and Accessing Large Models. In Model
Driven Engineering Languages and Systems, volume
6981 of Lecture Notes in Computer Science, pages
77-92. Springer Berlin Heidelberg, 2011.

Markus Scheidgen. Reference Representation
Techniques for Large Models. In Proceedings of the
Workshop on Scalability in Model Driven Engineering,
BigMDE ’13, pages 5.1-5.9, New York, NY, USA,
2013. ACM.

Konstantinos Barmpis and Dimitris Kolovos. Hawk:
Towards a Scalable Model Indexing Architecture. In
Proceedings of the Workshop on Scalability in Model
Driven Engineering, BigMDE ’13, pages 6:1-6:9, New
York, NY, USA, 2013. ACM.

Seyyed M. Shah, Ran Wei, Dimitrios S. Kolovos,
Louis M. Rose, Richard F. Paige, and Konstantinos
Barmpis. Model-Driven Engineering Languages and
Systems: 17th International Conference, MODELS
2014, Valencia, Spain, September 28 — October 3,
2014. Proceedings, chapter A Framework to
Benchmark NoSQL Data Stores for Large-Scale Model
Persistence, pages 586-601. Springer International
Publishing, 2014.

