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A b s t r a c t

The objective of this study was to determine whether there is evidence from quantitative morphometry and spatial 
pattern analysis to support the hypothesis of anatomical spread of α-synuclein in Parkinson’s disease dementia 
(PDD). Hence, clustering of α-synuclein-immunoreactive Lewy bodies (LB), Lewy neurites (LN), and Lewy grains (LG) 
was studied in α-synuclein-immunolabeled sections of cortical and limbic regions in 12 cases of PDD. The data sug-
gested that: (1) LB, LN, and LG occurred in clusters which in 63% of regions were regularly distributed parallel to the 
tissue boundary, (2) in approximately 30% of cortical regions, the estimated cluster size of LB, LN, and LG was within 
the size range of cellular columns associated with the cortico-cortical pathways, (3) regularly distributed clusters 
were present in anatomically connected regions, and (4) the clustering pattern was similar to that of prion protein 
(PrPsc) deposits in Creutzfeldt-Jacob disease (CJD). The clustering patterns of LB, LN, and LG were similar to those 
exhibited by cellular inclusions in other synucleinopathies and by PrPsc deposits in prion disease and therefore, ana-
tomical spread of pathogenic α-synuclein could be involved in the pathogenesis of PDD. 
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Introduction

The ‘synucleinopathies’, viz. Parkinson’s disease 
dementia (PDD), dementia with Lewy bodies (DLB), 
and multiple system atrophy (MSA) are character-
ized by the formation of cellular inclusions contain-
ing pathological forms of the pre-synaptic protein 
α-synuclein. These pathologies include Lewy bodies 
(LB), Lewy neurites (LN), and Lewy grains (LG) in PDD 
and DLB [33] and glial cytoplasmic inclusions (GCI) 
in MSA [31]. α-Synuclein is a small molecular weight 
protein which regulates the functioning of dopamine 
transporter and tyrosine hydroxylase [27]. In normal 

brain, monomers of α-synuclein are unfolded soluble 
proteins, the oligomeric and fibrillar species existing 
in equilibrium. In the synucleinopathies, however, 
aggregation of α-synuclein occurs to form β-sheet 
configurations rich in amyloid [34] resulting in the 
formation of pathogenic inclusions such as LB. 

Pathogenic α-synuclein may be secreted from 
cells, enter other cells, and seed small intracellu-
lar aggregates to form larger inclusions [23,35,37]. 
Hence, in PDD, pathological α-synuclein may exhib-
it ‘prion-like’ behaviour and propagate through the 
brain via anatomical connections. In the prion dis-
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ease, Creutzfeldt-Jakob disease (CJD), in which prop-
agation of prion protein (PrPsc) along anatomical 
pathways is well established [12,13], PrPsc depos-
its are clustered in the cerebral cortex, the clusters 
often being regularly distributed parallel to the pia 
mater [7,9]. Clustering could therefore be a conse-
quence of PrPsc spreading among regions via ana-
tomical pathways [7]. To determine whether similar 
clustering of α-synuclein pathology occurs in PDD, 
the spatial patterns of LB, LN, and LG were studied 
in cortical and limbic regions in twelve cases of PDD. 

Material and methods

Cases

Parkinson’s disease dementia cases (n = 12, 
details in Table I) were consecutive cases meeting 
the diagnostic criteria for Parkinson’s disease (PD) 
and PDD and were obtained from the Movement 
Disorders Center at Washington University School of 
Medicine in St. Louis [11,26]. Initial diagnosis of PD 
was based on modified United Kingdom Parkinson 
Disease Society Brain Bank (UKPDSBB) clinical diag-
nostic criteria [24]: (1) bradykinesia was present in 
association with at least one of the following, viz. 
rigidity, 4-6 Hz rest tremor, or postural instability,  
(2) three supporting criteria were also present such 

as unilateral onset, rest tremor, a progressive disor-
der, persistent asymmetry, a clinical condition pres-
ent for more than 10 years, or excellent response to 
levodopa, and (3) the various exclusion criteria were 
applied such as the absence of stroke, persistent 
head injury, definite encephalitis, oculogyric crisis, 
family history of the disease, sustained remission, 
unilateral features after three years, progressive 
supranuclear palsy (PSP), early severe autonom-
ic involvement, early signs of dementia, Babinski 
sign, cerebral tumor, exposure to MPTP, and nega-
tive response to levodopa [24]. Age of PD onset was 
determined by chart review and defined by onset of 
motor symptoms. Dementia in PD was determined 
by clinical assessment including the presence of 
impairment of attention, memory, executive, and 
visuo-spatial function together with behavioural dis-
turbance, hallucinations and apathy [20]. The main 
pathological correlate of PDD is the presence of 
Lewy-body type degeneration in the cerebral cor-
tex and limbic regions [20]. In addition, PDD cases 
are frequently associated with Alzheimer’s disease 
neuropathologic change (ADNC) and the degree 
of ADNC was assessed using National Institute on 
Aging-Alzheimer’s (NIA-AA) association guidelines 
‘ABC’ [25]. This system uses four-point scales to 
assess the abundance of β-amyloid (Aβ) deposits 

Table I. Demographic features, duration of disease, and disease stage of the twelve cases of Parkinson 
disease dementia (PDD). Lewy body (LB) stage was assessed using a PD staging scale (range: 0, 1-6) and 
the McKeith et al. staging scale (McKeith et al. 1996, 2005). Alzheimer’s disease neuropathological change 
(ADNC) was rated using the National Institute on Aging-Alzheimer’s (NIA-AA) association guidelines: 
A stage indicating β-amyloid (Aβ) deposition, B stage frequency of tau-immunoreactive neurofibrillary tan-
gles (NFT), and C stage frequency of neuritic plaques (NP)

Case Sex Age Dur. 
(PD)

Dur.
(DM)

LB
stage

ADNC Level of AD

A B C

A F 82 12 9 6 0 2 0 N

B M 80 18 7 6 3 2 1 I

C M 78 12 1 6 1 3 0 L

D M 79 19 6 6 1 1 0 L

E M 71 8 7 6 3 2 1 I

F M 78 22 6 6 3 3 2 I

G M 76 12 6 6 1 1 0 L

H M 67 11 4 6 3 1 1 L

I M 67 34 7 6 3 1 1 L

J F 73 8 1 6 0 1 0 N

K M 76 18 11 6 3 3 1 I

L M 77 14 13 6 1 1 1 L

Dur. – duration, M – male, F – female, Aβ – amyloid-β, PD – Parkinson disease, DM – dementia, N – not AD, L – low level of AD, I – intermediate level of AD
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(‘A’ score), neurofibrillary tangles (NFT) (‘B’ score), 
and neuritic plaques (NP) (‘C’ score), the distribution 
of the three scores equating to four levels of ADNC, 
viz. ‘not’, ‘low’, ‘intermediate’, and ‘high’. The 12 PDD 
cases in the present study equated to levels of ADNC 
from ‘not’ to ‘intermediate’ levels of AD.

Tissue preparation

After death, the consent of next-of-kin was 
obtained for brain removal, following local Institu-
tional Review Board procedures and the 1995 Decla-
ration of Helsinki (as modified in Edinburgh, 2000). 
Brains were fixed in 10% neutral buffered formalin for 
two weeks, paraffin-embedded, and sections cut at 
6 mm. Blocks were taken from frontal and temporal 
lobes, the latter including the amygdala, hippocam-
pus (HC), and dentate gyrus (DG). Histologic stains 
included hematoxylin and eosin and modified Biel-
schowsky silver impregnation. Immunohistochem-
istry was performed using the following antibodies: 
Aβ (10D5, 1 : 100,000; Elan Pharmaceuticals, San 
Francisco, CA), phosphorylated tau (PHF-1, 1 : 500; 
supplied by Dr. Peter Davies, Albert Einstein Medical 
School, Bronx, NY), ubiquitin (Dako, Glostrup, Den-
mark) and phosphorylated α-synuclein (1 : 10,000; 
Wako Chemicals USA Inc., Richmond, VA), and phos-
phorylated TDP-43 (pTDP-43, 1 : 40,000; Cosmo Bio 
Inc., Carlsbad, CA). Lewy bodies stage was assessed 
using a PD staging scale (range: 0, 1-6) [15,16] and 
the McKeith et al. staging scale [28,29]. 

Morphological methods

In the superior frontal gyrus (SFG) (BA 8,6), cin-
gulate gyrus (CG) (BA 24), and entorhinal cortex (EC) 
(BA 28), the densities of LB, LN, and LG were counted 
along strips of tissue orientated parallel to the pia 
mater, using 250 x 50 µm sample fields arranged 
contiguously [3]. The sample fields were located both 
in the upper and lower (laminae V/VI) cortex (mini-
mum n = 32 sample fields in each region), the short 
edge of the sample field orientated parallel with 
the pia mater and aligned with guidelines marked 
on the slide. In the HC, densities of inclusions were 
measured in sectors CA1 and CA2 (n = 32 fields in 
total), the short dimension of the sample field being 
aligned with the edge of the alveus. In the DG (n = 
32 fields), the sample fields were aligned to study 
the molecular and granule cell layers. In the amyg-
dala (n = 16 fields), the fields were arranged across 

the maximum diameter of the basolateral nucleus, 
a  region with severe α-synuclein pathology in PDD 
[11]. All distinct α-synuclein-immunoreactive round-
ed inclusions were counted as LB, LN were thread-
like structures often contorted in shape, and small 
circular dot-like structures were identified as LG [11].

Data analysis

To determine patterns of clustering of the LB, LN, 
and LG, the data were analyzed by spatial pattern 
analysis [1-3] which was carried out on all brain 
regions with sufficient density of the pathology, i.e., 
at least 20 lesions were present along the strip of 
tissue analyzed. Departure from a random distribu-
tion can be measured by calculating the variance/
mean (V/M) ratio of the counts of a  pathology in 
contiguous sample fields. If individuals of a patholo-
gy are randomly distributed, the number of samples 
containing 0, 1, 2, 3 … n, inclusions should corre-
spond to a Poisson distribution and the V/M ratio 
should approximate to unity. A V/M ratio less than 
unity indicates a  regular or uniform distribution of 
individual lesions and greater than unity a clumped 
or clustered distribution. If a pathology exhibits clus-
tering along the strip of tissue examined, the mean 
size and distribution of the clusters can be estimat-
ed from counts in adjacent sample fields added 
together successively to provide data for increas-
ing field sizes, e.g., 50 × 250 µm, 100 × 250 µm,  
200 × 250 µm etc., up to a size limited by the total 
length of strip sampled. The V/M ratio is plotted 
against field size. A  V/M peak estimates the pres-
ence of regularly-spaced clusters and location of the 
peak indicates mean cluster size, statistical signifi-
cance of a V/M peak being tested using the ‘t’ dis-
tribution [2,3]. Mean cluster sizes of the LB, LN, and 
LG were compared among brain regions using a one-
way analysis of variance (ANOVA). Relationships 
between spatial pattern, α-synuclein pathology, and 
brain region were tested using chi-square (c2) con-
tingency table tests. Correlations between cluster 
size of the LB, LN, and LG and patient age, disease 
duration, and ADNC ‘ABC’ stages were tested using 
Pearson’s correlation coefficient (‘r’). As the number 
of analyses performed was large and without pre-
planned hypotheses, p values were adjusted using 
the Bonferroni correction which suggested that  
a p value of 0.001 should be used as the critical level 
to judge significance [5]. 
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Results 

Figure 1 shows the typical α-synuclein-immuno-
reactive pathology in the EC of a case of PDD. Lewy 
bodies typically occur in small clusters whereas LN 
and LG are more widespread often developing in 
larger clusters. 

Examples of the spatial pattern analysis are 
shown in Figure 2. In the upper laminae of the EC 
(Case A), LB exhibited a V/M peak at a field size of 
100 mm suggesting a regular distribution of clusters 
of LB, 100 mm in diameter, distributed parallel to the 
pia mater. In the lower laminae of the CG (Case A), 
LN exhibited a V/M peak at a field size of 400 mm 
suggesting a regular distribution of clusters 400 mm 
in diameter, distributed parallel to the pia mater. 
In the upper laminae of the CG (Case A), there was 
an increase in V/M of the LG with field size without 
reaching a peak, suggesting a large cluster of LG of 
at least 800 mm in diameter.

The frequency of the different spatial patterns 
exhibited by the LB, LN, and LG in all regions and cases 
are summarized in Table II. In the majority of regions, 
the LB, LN, and LG were clustered and most frequent-
ly, the clusters were regularly distributed parallel to 
the tissue boundary. In addition, in a  proportion of 
regions, the LB, LN, and LG were randomly distributed 
or present in large, non-regularly distributed clusters 

> 800 mm in diameter. The LB and LN exhibited a sim-
ilar range of spatial patterns (c2 = 6.11, p > 0.05) but 
the LG were more frequently present in large, non-reg-
ularly distributed clusters than the LB (c2 = 21.04,  
p < 0.001) or the LN (c2 = 9.51, p < 0.05). No significant 
differences in the frequencies of spatial patterns were 
observed in upper compared with lower cortical lami-
nae or in cortical regions compared with CA1/CA2, the 
dentate gyrus, and basolateral amygdala.

The frequency distribution of cluster sizes of the 
LB, LN, and LG in cortical regions, viz., SFG, CG, and 
EC is shown in Table III. The majority of clusters were 
in the size range of 100-800 mm, significantly fewer 
gyri having cluster sizes as small as 50 mm or as 
large as 800 mm. Mean cluster size of the LB, LN, and 
LG in each brain region is shown in Figure 3. ANOVA 
suggested that mean cluster size of the LB was sig-
nificantly less than that of the LN and LG (F = 7.19,  
p < 0.001). There were no statistically significant dif-
ferences in cluster size among regions.

Correlations among cluster size of the LB, LN, LG 
and patient age, disease duration, and NIA-AA ‘ABC’ 
stage are shown in Table IV. Several correlations were 
present but after Bonferroni adjustment only clus-
ter size of the LN was positively correlated with NFT 
(‘B’) stage in the lower laminae of the EC (r = 0.99, 
p < 0.001).

Fig. 2. Examples of the spatial patterns exhibit-
ed by Lewy bodies (LB), Lewy neurites (LN), and 
Lewy grains (LG) in a case of Parkinson disease 
dementia (PDD) (Case A). *Significant variance/
mean peaks.

Fig. 1. The α-synuclein pathology of a case of Par
kinson disease dementia (PDD) showing Lewy 
bodies (LB) (star), Lewy neurites (LN) (arrow), 
and Lewy grains (LG) (arrowhead) in the entor
hinal cortex (α-synuclein immunohistochemistry, 
hematoxylin, bar = 50 mm).
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Discussion

In cortical regions in PDD, the LB, LN, and LG were 
most frequently clustered and in a significant propor-
tion of regions the clusters exhibited a  regular dis-
tribution parallel to the pia mater. Similar clustering 
patterns were observed in sectors CA1/CA2 of the 
HC, DG, and basolateral amygdala. Hence, clustering 
of the α-synuclein pathology in PDD is similar to that 
reported previously in various neurodegenerative dis-

orders including the synucleinopathies DLB and MSA 
[8,10]. Clustering patterns of the α-synuclein pathol-
ogy in PDD are also similar to that of PrPsc deposits in 
CJD [7,9] in which propagation of PrPsc among brain 
regions is particularly well documented [12,13].

A  number of features of the data suggest that 
α-synuclein may have spread among brain regions 
via anatomical connections. First, in approximately 
60% of cortical gyri, the LB, LN, and LG occurred in 

Table II. Frequency of different spatial patterns of the α-synuclein pathology in twelve cases of Parkinson 
disease dementia (PDD)

Frequency of spatial pattern

Region Lesion N R Reg Regular clusters Large clusters

SFG-U LB 5 1 1 2 1

LN 8 0 3 3 2

LG 10 0 1 5 4

SFG-L LB 4 2 0 2 0

LN 9 0 2 3 4

LG 11 1 1 6 3

CG-U LB 6 3 0 3 0

LN 11 2 2 5 2

LG 12 2 3 4 3

CG-L LB 10 2 0 8 0

LN 12 2 0 8 2

LG 12 0 1 6 5

EC-U LB 9 1 0 7 1

LN 12 3 0 6 3

LG 11 1 0 5 5

EC-L LB 7 0 1 6 0

LN 11 5 1 3 2

LG 11 0 1 7 3

AM LB 10 6 1 2 1

LN 10 2 1 6 1

LG 10 2 0 3 5

CA1/2 LB 7 1 0 5 1

LN 10 2 0 5 3

LG 12 0 3 6 3

DG (ML) LB 3 1 1 1 1

LN 1 0 0 1 0

LG 8 2 0 4 2

DG (GCL) LN 4 2 0 2 0

LG 8 0 0 6 2

LB – Lewy bodies, LN – Lewy neurites, LG – Lewy grains, SFG – superior frontal gyrus, CG – cingulate gyrus, EC – entorhinal cortex, U – upper cortex, L – lower 
cortex, AM – amygdala, CA1/2 – sectors of the hippocampus, DG – dentate gyrus, ML – molecular layer, GCL – granule cell layer, N – number of regions studied, 
R – random distribution, Reg – regular or uniform distribution of individual lesions 
Statistical analysis: Comparison of frequencies (Chi-square (c2) contingency table tests totaled over regions): Comparison of different α-synuclein pathologies 
c2 = 22.72 (6DF, p < 0.001), LN vs. LG c2 = 9.51 (3DF, p < 0.05), LB vs. LN c2 = 6.11 (3DF, p > 0.05), LB vs. LG c2 = 21.04 (3DF, p < 0.001). Comparison of upper and 
lower cortex LB c2 = 3.69 (3DF, p > 0.05), LN c2 = 0.45 (3DF, p > 0.05), LG c2 = 3.29 (3DF, p > 0.05). Comparison of cortical areas and HC/amygdala LB c2 = 3.57 
(3DF, p > 0.05), LN c2 = 1.60 (3DF, p > 0.05), LG c2 = 1.89 (3DF, p > 0.05). 
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either small regularly distributed clusters 50-200 mm  
in diameter or in larger regularly distributed clus-
ters 400-800 mm in diameter. The smaller clusters 
could reflect an association between the pathology 
and columns of cells originating either from the mid-
brain or brain stem nuclei which repeat at 30-40 mm 
intervals or the commissural and ipsilateral associ-
ation fibers, which terminate in vertically oriented 
columns 200-500 mm in width [30]. The larger reg-
ularly distributed clusters 400-800 mm in diameter, 
however, are within the size range of the columns of 

cells associated with the cortico-cortical pathways 
[19,22,32]. These cells are themselves clustered and 
occur in bands regularly distributed along the cor-
tex parallel to the pia mater [19,22]. Individual bands 
of cells have a  mean dimension of approximately 
500-1000 mm in width depending on the region, 
and traverse the laminae in columns; a similar size 
to the clusters of the LB, LN, and LG is observed in 
30% of gyri in PDD. Second, positive correlations 
between cluster size, disease duration, and NIA-AA 
‘A’ or ‘B’ stage in some regions in a region over time 
or with developing ADNC co-pathology consistent 
with spread and recruitment of α-synuclein. How-
ever, only the correlation between LN and NFT ‘B’ 
stage in the EC remained significant after Bonferroni 
adjustment suggesting less convincing evidence for 
an increasing burden of the pathology as the disease 
develops. Third, anatomically connected regions 
exhibited similar regularly distributed clusters, e.g. 
across the basolateral amygdala and in the CG and 
EC [17] and in dentate gyrus granule cells and EC 
(‘perforant path’) [6].

The data suggest a  close relationship in PDD 
between the developing pathology and anatomi
cal pathways which could have resulted from the 
spread of pathogenic α-synuclein in PDD [14,18,35]. 
This raises the possibility, first proposed by Braak 
et al. [21], that a  pathogenic agent introduced via 
ingestion or inhalation, may transfer along axons to 
basal areas of the brain, the brain stem, and then to 
the cerebral cortex. α-Synuclein may be the target of 
this unknown agent causing protein misfolding and 
subsequent spread of α-synuclein via connecting 
cells. Hence, olfactory deficits are an early non-mo-
tor feature of PD and the pathology could potentially 
spread via the olfactory bulb and vagal system to 
the substantia nigra [36]. Further spread into cortical 
and limbic areas could then occur with subsequent 
propagation of the pathology among cortical regions 

Table III. Frequency distribution of cluster size of α-synuclein pathology (% of totals in parentheses) in cortical 
regions of twelve cases of Parkinson disease dementia (PDD)

Cluster size (mm)

Inclusion N 50 100-200 400-800 > 800

Lewy bodies 31 8(26) 17 (55) 6 (19) 0

Lewy neurites 43 8 (19) 15 (35) 13 (30) 7 (16)

Lewy grains 48 9 (19) 15 (31) 16 (33) 8 (17)

N – number of brain regions studied

Fig. 3. Mean cluster sizes (bars = SE of mean) 
of the Lewy bodies (LB), Lewy neurites (LN), and 
Lewy grains (LG) in various brain regions (SFG 
– superior frontal cortex, CG – cingulate gyrus, 
EC – entorhinal cortex, CA1/2 – sectors of the 
hippocampus, DG – dentate gyrus, ML – molecu-
lar layer, GC – granule cell layer, AM – amygdala,  
U  – upper cortex, L – lower cortex) in fifteen 
cases of Parkinson disease dementia (PDD). 
Analysis of variance (one-way ANOVA): among 
lesions F = 7.19 (p < 0.001); among regions: LB, 
F = 0.70 (p > 0.05), LN, F = 0.29 (p > 0.05), LG,  
F = 1.12 (p > 0.05).
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via the cortico-cortical projections. Such a  spread 
could therefore be an important factor in the devel-
opment of dementia in PDD.

In conclusion, several features of the spatial pat-
terns of the LB, LN, and LG suggest the anatomical 
spread of α-synuclein pathology in PDD: (1) the pa
thology occurred in clusters which were regularly dis-
tributed parallel to the tissue boundary, (2) in several 
regions the estimated cluster size of the LB, LN, and 
LG was within the size range of cellular columns asso-
ciated with the cortico-cortical pathways, (3) regular-
ly distributed clusters were present in anatomically 
connected regions, and (4) the clustering pattern was 
similar to that of PrPsc deposits in CJD. If this hypoth-
esis is correct, the presence of regularly distributed 
clusters of the pathology could be a useful indicator 
of this spread in both human patients and in animal 
models of the disease. 
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