
The Reassessment of Preferences of Non-Functional
Requirements for Better Informed Decision-making

in Self-Adaptation
Luis H. Garcia Paucar

ALICE, Aston University, UK
Email: garciapl@aston.ac.uk

Nelly Bencomo
ALICE, Aston University, UK

Email: nelly@acm.org

Abstract—Decision-making requires the quantification and
trade-off of multiple non-functional requirements (NFRs) and
the analysis of costs and benefits between alternative solutions.
Different techniques have been used to specify utility preferences
for NFRs and decision-making strategies of self-adaptive systems
(SAS). These preferences are defined during design-time. It is
well known that correctly identifying the weight of the NFRs
is a major difficulty. In this paper we present initial results
of a novel approach that provides a set of criteria to re-assess
NFRs preferences given new evidence found at runtime using
dynamic decision networks (DDNs). The approach use both
conditional probabilities provided by DDNs and the concept of
Bayesian surprise. The results show that our approach supports
better informed decisions under uncertainty by identifying new
situations where the current SAS preferences may need to be
re-evaluated to improve the levels of satisfaction of NFRs.

Index Terms—Self-adaptation; decision making; non-
functional requirements trade-off, uncertainty.

I. INTRODUCTION

Decision-making requires the quantification and trade-off
of multiple NFRs and the analysis of the costs and benefits
between alternative solutions. Decision-making is at the core
of self-adaptation. An important issue is the specification of
an utility function including the utility preferences (a.k.a.
weights) associated with NFRs and defined in the decision-
making strategies to support self-adaptation. Priorities associ-
ated with NFRs described in the requirements specification
may vary from stakeholder to stakeholder and from one
envisaged situation to another. Different priorities may imply
different decisions by the system. Further, in self-adaptive
systems (SAS), the assumptions made at design time may
change during runtime and those changes can cause changes
on priorities and therefore on utility preferences. Modelling
and reasoning with prioritization and preferences is a research
field that needs more attention [1]. Different studies that
approach these issues have been performed [2], [3], [4],
[5], [6]. They have produced different approaches but also
critical challenges that must be further explored. Most of
the current approaches tend to focus on design time issues
and are effective in specific domains but unlikely to be
generalizable. Further, the need of updating utility preferences
or uncovering relationships between NFRs during runtime has
been neglected [6]. The steps of monitoring the environment,

detecting the need of (self-) adaptation and deciding how
to react are challenges identified for SAS [2] and these
challenges need to involve the role of preferences and the re-
prioritization of NFRs due to new evidence found at runtime.

The main contribution of this paper is the combination of
conditional probabilities (using Bayesian inference) based on
models of DDNs with Bayesian surprises to allow the reassess-
ment of NFRs preferences during the operation or simulation
of the system. This represents a clear advance over the existing
literature and our previous work. The paper is organized as
follows: In Section 2, we provide a review of related work and
identify the research gap. In Section 3, we show and discuss
preliminary results to fill the identified research gap. In Section
4, we show and explain the experiment performed. Finally,
in Section 5, we conclude with respect to our findings, and
identify and discuss future research challenges.

II. DECISION MAKING AND UTILITY
PREFERENCES

When we make decisions, a natural approach is to evaluate
our different alternatives and choose one based on some
criteria [7]. In SAS we must build intelligent systems able
to apply this natural way of reasoning under environmental
uncertain conditions. How to ensure a reliable behaviour
(i.e., optimize the system’s behaviour) trading-off multiple
goals competing among them and being constantly affected
by external changing conditions is the field of action of a
well known set of methods: Multi Criteria Decision Analysis
Methods (MCDA) [8]. MCDA methods are currently applied
in different fields but more than ever in self-adaptation. In the
context of self-adaptation and autonomic computing, multi-
criteria utility functions provide the objective function for self-
optimization mapping each possible state of the system into a
real scalar value to allow the trade-off [9]. Different MCDA
techniques are being used for both, decision-making and pref-
erences specification in SAS. Some popular MCDA techniques
such as Pareto Optimal [10] are being used to reason at runtime
and discover a set of optimal adaptation alternatives. The final
alternative selection could demand the user intervention or
be part of a fully autonomic system behaviour. Other MCDA
approaches such as Analytic Hierarchical Process (AHP) [11]
are also used for specifiying quality attribute preferences at



design time collected from system’s stakeholders following a
more formal and objective approach. In the rest of this section
we explore different approaches for decision-making in SAS,
focusing on aspects related to elicitation and dynamic update
of preferences.

A. State-of-the-Art

This section briefly overviews different approaches for
decision-making and utility preferences for SAS and provides
a context to define the research gap to be tackled. A more
complete survey of these approaches are shown in the report
[12].

1) Preference elicitation: The most widespread method
for preference elicitation is with user intervention. In [13],
[14], [15], [16], [1] preferences are elicited initially with
information from system stakeholders. Authors in [17], [16],
[1] complement this approach by using multi criteria decision
analysis methods (MCDA). The most common MCDA method
for preference elicitation is AHP [11]. For example in [1]
weights are assigned to preference goals using a quantitative
requirement prioritization scheme: AHP. Elahi et. al. [16]
incorporate Stakeholders preferences by using a MCDA-based
method: the Even Swaps Method [16], to avoid the elicitation
of numerical weights. Garcia Galan et. al. [18] defined the sys-
tems initial preference by using initial configurations defined
by the stakeholders. While it is not common, some authors, de-
fine preferences in an autonomous way, for example, Ramirez
et. al. [19] use predefined models to derive utility functions.

2) Preference updating: This is a field that needs more
exploration. Several approaches [1], [15], [19] work only with
the initial preferences at runtime and they do not support
preference updating, some others support it but not in an
autonomous way, as they require user intervention: [13] shows
that if users do not agree with the final solution (after each
round of adaptation), they can revise the configuration values
using an interface. The users preferences elicited in this
revision allow either tuning the weights of existing goals or the
generation of new ones. In [20] a user interface is used to ma-
nipulate thresholds on preferences at runtime. However, Peng
et. al. [21] shows first experiences of autonomous preference
updating by monitoring the environment at runtime and using
a preference tuning algorithm. In [9], Walsh et. al. use machine
learning techniques to update the systems preferences.

3) Decision making: Preferences defined or updated, are
used by SAS for their decision making process. Several
trends have been identified. The most common approaches
for decision making are utility functions and Pareto Optimal.
Ramirez et. al. [19] perform a goal model transformation
into utility functions for monitoring software requirements at
runtime. For Peng et. al. [21] the decision process involves
three main components: (i) a Proportional Integral Derivative
(PID) Controller, (ii) a Preference-driven Goal Reasoner (GR)
and (iii) an Architecture Configurator (AC). In this approach,
the NFR preferences are updated autonomously by the PID
controller, establishing a balance at runtime between the

earned business value and quality measurement. The reasoning
approach uses a Pareto Optimal algorithm that yields a set of
alternative configurations. A satisfiability solver (SAT) obtains
the optimal solution. Some approaches have scalability issues.
For example, authors in [?] are still investigating how to
deal with scalabilities issues associated with the number of
constraints. Garcia-Galan et. al. [18] have scalability problems
with the size of its configuration Space. Approaches like Sousa
et. al. [20], use forecast and learning elements for the decision
making process.

B. Discussion

The study shows that so far, even if scarce, there have been
important research efforts towards decision-making for SAS
taking into account NFRs. However, relevant results about
dynamic update of utility preference is still a challenge. The
study also shows that preferences specification is still a task
executed primarily at design time. The approaches studied
show that different MCDA techniques stand out as common
techniques used for reasoning optimization. Some approaches
use ad-hoc methods for collecting users’ preferences, while
others use techniques such as MCDA [15], [16], [21]. In
[16], [13], [9] the support for preferences update exists but
requires user intervention. Some approaches offer potential to
support autonomic preference updating. For example, authors
of [18] propose an approach for mining users’ behaviour while
authors of [21] use an autonomic preference tuning algorithm.
Ramirez et. al. [19] show an autonomic generation of utility
functions. Authors in [9], [22] highlight the relevance of using
models that need to be learned and refine at runtime during
the operation of the system. A more thorough analysis of the
state-of-the-art is shown in [12].

III. REASSESSING UTILITY PREFERENCES AT RUNTIME

In this section we briefly offer a background about the
DDN-based approach to support decision-making under uncer-
tainty and Bayesian surprise [14] to therefore set the basis to
explain the new ideas about reassessment of utility preferences
during runtime in subsection III-C.

A. DDNs Model for Decision-Making in SAS

[22], [23] show how dynamic-decision networks (DDNs)
are abstractions that serve the purpose of modelling beliefs
about the world, linking preferences and observation models
(to obtain evidence from the operational environment) with
states of the world in order to make informed decisions. DDNs
have been used as a mechanism which allows SASs to keep
track of the current state and trade-off of NFRs [22], [23].
They are abstractions for reasoning about the world over time
[24]. DDNs provide a set of random variables that represent
the NFRs. Fig. 1 shows a DDN during two time slices where
Xt denote a set of state variables (i.e. NFRs) at time t, which
are unobservable, and Et to denote the observable evidence
variables. A DDN links decision maker preferences Ut (i.e.
utility nodes), state and evidence variables to make informed
decisions Dt (i.e. decision nodes).



Fig. 1. Example of DDN structure.

The expected utility (EU) is computed using the equation 1
as follows:

EU(dj|e) =
∑
xi∈X

U(xi,dj)×P(xi | e,dj) (1)

In equation 1 above, P (xi | e, dj) is the conditional
probability of X = xi given the evidence e and the decision
dj . The random variables Xi (i.e. state nodes in the DDN)
correspond to the levels of satisficement of the NFRs. Solving
a decision network (DN) refers to finding the decision that
maximizes EU.

B. Bayesian Surprises to Quantify Deviations from Expected
Behaviour

A surprise value means that the evidence provided from
the environment has caused a difference between the prior
and posterior probabilities of an event. A Bayesian surprise
measures how observed data affects the models or assumptions
of the world during runtime [14]. The surprise represents
the divergence between the prior and posterior distributions
of a NFR and is calculated by using the Kullback-Leibler
divergence (KL) [25]. Lets us have a non-functional re-
quirement NFRi, and E representing the evidence provided
by the properties monitored as variables in the execution
environment. P(NFRi) is the prior probability of the non-
functional requirement NFRi being partially satisficed and
P(NFRi|E) is the posterior probability of the NFRi being
partially satisficed given the evidence E.

S(NFRi, E) = KL(P (NFRi|E), P (NFRi)) =∑
i

P (NFRi|E) log
P (NFRi|E)

P (NFRi)
(2)

Fig. 2. Approach for preference reassessment at runtime

C. Towards Reassessment of Utility Preferences

Bayesian surprises have been exploited during runtime to
improved better informed decision-making at runtime [26].
The approach supports the quantification of uncertainty over
different time slices at runtime and helps the system improve
its behaviour based on learning during the operation of the
system. This learning process has shown to be memory in-
tensive and therefore have presented scalability and memory
issues in the past [23]. In this paper, in addition to our novel
approach, we also have improved the DDN models used in
the past to therefore improve the scalability issues. Currently,
the experiments can be run during a bigger number of time
slices.

Our method aims to improve the decision making allowing
the access to new information and evidence about possible
adverse effects of the utility preferences during execution by:
• Allowing the identification of a range of scenarios during

the execution of the system and the corresponding effects
they have on the satisfaction of relevant NFRs.

• Highlighting the environmental properties in the exe-
cution environment which have highest, and possible
unknown effects at design time on the satisfaction of the
NFRs.

The method involves the following steps:
• At runtime, per each time slice, a Bayesian Surprise is

computed for each state variable (i.e., each NFR).
• If a surprise is detected, the next step is to evaluate

the current level of satisfaction of the NFRs (by using
Bayesian Inference) to compare it with the decision
suggested by the model (i.e., the decision to adapt or not
suggested by the DDN). It is important to highlight that
the probability distribution of each NFR is not influenced
by the utility nodes of the model (i.e., user preferences).

• If the decision taken by the model (which is influenced
by the utility nodes) is not contributing to the satisfaction
of the NFRs, the detected situation is highlighted as a
possible scenario needing preference reassessment.



Fig. 2 shows a graphic representation of the process. By
using surprises and conditional probabilities provided by the
DDNs to revising the initial utility preferences during runtime,
the approach contributes to support better understanding of
the execution environment while assessing the corresponding
responses of the running system.

IV. EXPERIMENTS

The experiments are based on the application of our ap-
proach to the case study of a Remote Data Mirroring (RDM)
application. An RDM is a technique with the goal of protecting
data against inaccessibility and to provide further resistance
to data loss [27]. An RDM can be configured in different
ways, for example in terms of the network’s topology, mini-
mum spanning tree (MST) vs. redundant topology (RT) or in
terms of data distribution (e.g., synchronous vs. asynchronous
propagation).

Let us focus on the network’s topology. Different network
topologies can be used to implement this technique to offer
different costs and benefits that would need to be traded-
off. A RT topology offers a higher level of reliability than
a MST topology. However, the costs of maintaining a non-
stop redundant topology may be prohibitive. An assessment
of the trade-off between these two choices need to be made
at design-time and revisited at runtime under the light of new
evidence found.

For the experiments of this paper, a DDN for the application
of RDM has been designed according to two alternatives
network topologies: MST and RT as described above. Each
configuration provides different levels of data protection and
costs which are the quality attributes Minimize Operational Cost
(MO) and Maximize Reliability (MR).

The scenario that has been used to perform the experiments
is described as follows: the states of two monitored variables
NCC=“Number of Concurrent Connection” and C=“Fewer
active network links reduce operational costs” are monitored
during runtime. The value of C can be either true or false and
the values for NCC are different possible ranges represented
by the following expressions: NCC < A, NCC in [A,B >,
NCC in [B,C>, and NCC >=C. At design time, C have been
considered valid (true) and NCC >=C.

In order to evaluate the DDN shown in Fig. 1, we have
considered the following initial conditional probabilities:
• P(MO = true|MST )=0.7,
• P(MO = false|MST )=0.3,
• P(MO = true|RT )=0.35,
• P(MO = false|RT )=0.65,
• P(MR = true|MST )=0.49,
• P(MR = false|MST )=0.51,
• P(MR = true|RT )=0.75,
• P(MR = false|RT )=0.25,
• P(C = true|MO = true)=0.999,
• P(C = false|MO = true)=0.001,
• P(NCC < A|MR = true)=0.02,
• P(NCCin[A,B > |MR = true)=0.04,
• P(NCCin[B,C > |MR = true)=0.42,

Fig. 3. Structure for Computing Surprises - Exp.01 and Exp. 02

Fig. 4. Prob. distribution of NFR Maximize Reliability - Exp. 1

• P(NCC >= C|MR = true)=0.52
Two experiments have been implemented and for each

one Surprises have been applied. Consider the situation
where the prior models for surprise computation are P(MRt)
and P(MOt) and the posterior models when an evidence
has been observed over the time are P(MRt+1|NCC) and
P(MOt+1|C) (see Fig. 3). We have computed surprises based
on the KL-divergence between the prior and the posterior
probabilities during 13 time slices.

A. Experiment 1

Surprises take place in several time slices where different
specific situations have been identified. Fig. 6 shows the
observed values for NCC and C variables and the surprises
S1 and S2. S1 and S2 are the divergence between the prior
and posterior distributions for the quality attribute MR and
MO respectively. Both, S1 and S2, are computed for each
time slice during the experiment.

1) Surprises and adaptation: In time slice 2 we can ob-
serve two surprises and that an adaptation is suggested by



Fig. 5. Prob. distribution of NFR Minimize Costs - Exp. 1

the DDN (see Fig. 6). Studying the conditional probabilities
provided by the DDN under the current conditions: P(MR =
true|NCC < A,C = true) = 6.47 % (see Fig. 4, time slice 2)
and P(MO = true|NCC < A,C = true)=96.5% (see Fig.
5, time slice 2), we can observe that while the probability
for Maximize Reliability is low the probability for Minimize
Operational Cost is high. The selected choice, i.e. to adapt
from RT to MST, certainly sounds like a good selection given
the current situation: low probability for Maximize Reliability
and high probability for Minimize Operational Cost. Using
MST would avoid unnecessary costs as the complementary
information provided by the conditional probabilities suggest
to use the less costly topology MST. The surprises and the
conditional probabilities help us to identify up this situation.
This situation is an example when surprises are generated, the
conditional probabilities and the adaptation performed by the
system agree to support the same behaviour by the system
improving confidence.

In time slice 7 we can observe two surprises and that an
adaptation is suggested by the DDN (see Fig. 6). Studying the
conditional probabilities provided by the DDN under the cur-
rent conditions: P(MR = true|NCC >= C,C = false) =
94.5% (see Fig. 4, time slice 7) and P(MO = true|NCC >=
C,C = false)=0.057%, (see Fig. 5, time slice 7) we can
observe that the probability for Maximize Reliability is high,
however on the other hand, the probability for Minimize Oper-
ational Cost is very low. The selected choice, i.e. to adapt from
MST to RT, certainly may be a good selection for the current
situation: high probability for Maximize Reliability and low
probability for Minimize Operational Cost. The complementary
information provided by the conditional probabilities suggest
to use the topology MST. The surprises and the conditional
probabilities help us in flaggingup this situation. Again, this
situation is an example when surprises generated, the condi-
tional probabilities and the adaption performed by the system
agree.

2) Surprises and needed adaptations: We can observe
that in time slice 11 there are surprises however, the DDN
has not suggested any adaptation (see Fig. 6). Studying the
conditional probabilities provided by the DDN under the
current conditions: i.e. P(MR = true|NCCin[A,B >,C =

Fig. 6. Surprises and monitored values - Exp. 1

true) = 13.3% (see Fig. 4, time slice 11) and P(MO =
true|NCCin[A,B >,C = true)=96.4% (see Fig. 5, time
slice 11), we can observe that the probability for Maximize
Reliability is low. However, on the other hand, the probability
for Minimize Operational Cost is high. The selected choice, i.e.
not to adapt, certainly may not be the best choice given the
current situation: low probability for Maximize Reliability and
High probability for Minimize Operational Cost. Continuing
using RT as the configuration would create unnecessary costs
as the complementary information provided by the conditional
probabilities suggest the use of the less costly topology MST.
The surprises and the conditional probabilities, which crucially
are not influenced by the stakeholders’ preferences, help us to
flag up this situation. The situation identified is an example
of how surprises and the conditional probabilities of the DDN
can flag up the need of adaptation. Crucially, the above imply
the need to revisit the preferences defined by the stakeholders
previously providing the opportunity to improve the behaviour
of the system.

B. Experiment 2

The observed values for NCC and C variables and the
surprises S1 and S2 are shown in Fig. 7.

1) Surprises and adaptation: In time slice 2 we can observe
surprises and that an adaptation is suggested by the DDN (see
Fig. 7). Studying the conditional probabilities provided by the
DDN under the current conditions: P(MR = true|NCC <
A,C = true) = 6.47% and P(MO = true|NCC < A,C =
true)=96.5%, we can observe that the probability for Maximize
Reliability is low. On the other hand, the probability for Mini-
mize Operational Cost is high. The selected choice, i.e. to adapt
from RT to MST, certainly looks to be a good selection given
the current situation: low probability for Maximize Reliability
and high probability for Minimize Operational Cost. Crucially,
the complementary information provided by the conditional
probabilities suggest to use the topology MST. The surprises
and the conditional probabilities help us in identifying this
situation. The situation is therefore an example of agreement



Fig. 7. Surprises and monitored values - Exp. 2

behavior between the surprises generated, the conditional
probabilities and the adaption performed by the system.

2) Surprises and unneeded adaptation: We can see that in
time slice 3 there are surprises and an adaptation is suggested
by the DDN (see Fig. 7). Studying the conditional proba-
bilities provided by the DDN under the current conditions:
P(MR = true|NCCin[A,B >,C = true) = 13.3% and
P(MO = true|NCCin[A,B >,C = true)=96.4%, we can
see that the probability for Maximize Reliability is low. On the
other hand, the probability for Minimize Operational Cost is
high. The selected choice, i.e. to adapt, certainly may not
be a good selection for the current situation: low probability
for Maximize Reliability and high probability for Minimize
Operational Cost. Using RT would create unnecessary costs
as the complementary information provided by the conditional
probabilities suggest to use the less costly topology MST. The
surprises and the conditional probabilities supported flagging
up the situation. The situation is an example of how surprises
and conditional probabilities can highlight the need of avoiding
unnecessary adaptations. The previous findings imply the need
to reasses the quality preferences defined by the stakeholders
during design-time.

3) Surprises as a false positive: In time slice 6 we can
observe surprises and the fact that there is no adaptation rec-
ommended by the DDN (see Fig. 7). Studying the conditional
probabilities provided by the DDN under the current condi-
tions: P(MR = true|NCCin[A,B >,C = false) = 18.3%
and P(MO = true|NCCin[A,B >,C = false)=0.14%, we
can see that the probability for Maximize Reliability is low. On
the other hand, the probability for Minimize Operational Cost is
very low. The selected choice, i.e. not to adapt, certainly looks
to be a good selection for the current situation: low probability
for Maximize Reliability and very low probability for Minimize
Operational Cost. The complementary information provided by
the conditional probabilities suggest that using RT is a better
option than using MST. This situation is an example of a false
positive, there are surprises but is not needed any adaptation.
However, the conditional probabilities help us flagging up this

situation providing a better informed decision making.
4) Surprises and needed adaptation: In time slice 9 there

are surprises however, the DDN has not suggested any adap-
tation (see Fig. 7). This situations and its interpretation is
equivalent to Experiment 1, time slice 11, i.e., is an example
of how surprises and the conditional probabilities can flag up
the need of adaptation.

C. Analysis of Results
During the previous experiments, using the approach we

were able to identify four scenarios at runtime with more
opportunities to enhance the decision making of the system:
• Scenario 01 - surprises and needed adaptation. There

are surprises, there is no adaptation, and the conditional
probabilities suggest to make an adaptation.

• Scenario 02 - surprises and no needed adaptation. There
are surprises, there is adaptation, and the conditional
probabilities suggest not to make an adaptation.

• Scenario 03 - surprises and adaptation. There are sur-
prises, there is adaptation, and the conditional probabili-
ties suggest to make an adaptation.

• Scenario 04 - surprises as a false positive. There are
surprises, there is no adaptation, however the conditional
probabilities suggest no adaptation.

Using the approach, scenarios 01 and 02 have been identify
to flag up the need for revisiting the quality attribute pref-
erences defined by the stakeholders previously and provide
an opportunity to improve the decision making and behaviour
of the system. Scenario 03 shows an agreement between the
suggested adaptation and surprises providing more confidence
in the decision making of the SAS. Scenario 04 is a false
positive for surprises, however the conditional probabilities
allow us to highlight the fact that the DDN was triggering the
correct behaviour allowing a better informed decision making
and the possibility of providing a system with self-explanation
capabilities [28].

It was possible to explore all these scenarios only by using
surprises and Bayesian inference (conditional probabilities)
at runtime. The new implemented model is an improved
version of previous experiments that allows us to implement
experiments with more complexity and covering more time
slices. Now that we can evaluate NFR preferences at runtime,
the next possible step will be to explore mechanisms to use
this information for autonomic NFR preferences updating.
Different from previous initial experiments, we have used
monitorables (i.e. evidence nodes) with major level of granu-
larity to allow us the exploration of further potential situations
that suggest the need for reassessment of NFR preferences.
These new experiments showed how the values monitored as
evidence provide different impacts on the satisfaction level of
the NFRs allowing better reasoning. The new implemented
model is an improved version of previous experiments that
provides better scalability.

V. CONCLUDING REMARKS

As shown by experiments discussed in this paper, utility
preferences associated with NFRs initially provided by domain



experts during the sensitivity analysis at design time may not
be ideal for specific cases to be found at runtime. Badly chosen
preferences can either make the system miss adaptations or
suggest unnecessary adaptations that may degrade the behavior
of the running system. To our knowledge, currently there is
no related work to this specific issue. We have shown the
power of runtime abstractions [29] based on DDN models
(i.e. Bayesian surprises and prior and posterior probabilities
given runtime evidence) to allow further study of contexts that
were not fully understood during the requirements elicitation.
A novel contribution is that the approach takes advantage of
machine learning to collect evidence to improve the under-
standing of the environment and the decision making process
by the running system [22]. Challenges for future work cover
research questions such as how to optimize and get scalable
reasoning techniques including the dynamic updating for NFR
preferences once we have identified NFR utilities that are not
suitable to the new contexts found.

REFERENCES

[1] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos,
“Representing and reasoning about preferences in requirements
engineering,” Requir. Eng., vol. 16, no. 3, pp. 227–249, Sep. 2011.
[Online]. Available: http://dx.doi.org/10.1007/s00766-011-0129-9

[2] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape
and research challenges,” ACM Trans. Auton. Adapt. Syst.,
vol. 4, no. 2, pp. 14:1–14:42, May 2009. [Online]. Available:
http://doi.acm.org/10.1145/1516533.1516538

[3] B. H. Cheng and et al., “Software engineering for self-adaptive systems,”
B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee, Eds.
Berlin, Heidelberg: Springer-Verlag, 2009, ch. Software Engineering for
Self-Adaptive Systems: A Research Roadmap, pp. 1–26.

[4] E. Yuan, N. Esfahani, and S. Malek, “A systematic survey of
self-protecting software systems,” ACM Trans. Auton. Adapt. Syst.,
vol. 8, no. 4, pp. 17:1–17:41, Jan. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2555611

[5] M. Salama, R. Bahsoon, and N. Bencomo, “Managing trade-offs in
self-adaptive software architectures: A systematic mapping study,” in
Managing trade-offs in adaptable software architectures, I. Mistrk,
N. Ali, J. Grundy, R. Kazman, and B. Schmerl, Eds. Elsevier, 2016.

[6] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and
C. Becker, “A survey on engineering approaches for self-
adaptive systems,” Pervasive and Mobile Computing, vol.
17, Part B, pp. 184 – 206, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S157411921400162X

[7] A. Ishizaka and P. Nemery, Multi-criteria decision analysis : methods
and software. Chichester: J. Wiley & Sons, 2013. [Online]. Available:
http://opac.inria.fr/record=b1135342

[8] J. Figueira, S. Greco, and M. Ehrogott, Multiple Criteria Decision
Analysis: State of the Art Surveys. Springer, 2005.

[9] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility functions
in autonomic systems,” in Autonomic Computing, 2004. Proceedings.
International Conference on, May 2004, pp. 70–77.

[10] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo, “Empirical
software engineering and verification,” B. Meyer and M. Nordio, Eds.
Berlin, Heidelberg: Springer-Verlag, 2012, ch. Search Based Software
Engineering: Techniques, Taxonomy, Tutorial, pp. 1–59. [Online].
Available: http://dl.acm.org/citation.cfm?id=2184075.2184076

[11] T. Saaty, “Decision making with the analytic hierarchy process,” Inter.
Journal of Services Sciences,, 2008.

[12] L. Garcia-Paucar and N. Bencomo, “A survey on preferences of quality
attributes in the decision-making for self-adaptive and self-managed
systems: the bad, the good and the ugly,” Aston University, Tech. Rep.,
2016.

[13] H. Song, S. Barrett, A. Clarke, and S. Clarke, “Self-adaptation with end-
user preference: Using run-time models and constraint solving,” in the
Intrl. Conference MODELS, USA, 09/2013 2013.

[14] N. Bencomo and A. Belaggoun, “A world full of surprises: bayesian
theory of surprise to quantify degrees of uncertainty,” in ICSE, 2014,
pp. 460–463.

[15] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, risk, and information
value in software requirements and architecture,” in Proceedings of
ICSE, ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 883–894.

[16] G. Elahi and E. Yu, “Requirements trade-offs analysis in the absence
of quantitative measures: A heuristic method,” in Proceedings of
the 2011 ACM Symposium on Applied Computing, ser. SAC ’11.
New York, NY, USA: ACM, 2011, pp. 651–658. [Online]. Available:
http://doi.acm.org/10.1145/1982185.1982331

[17] E. Letier and A. van Lamsweerde, “Reasoning about partial goal
satisfaction for requirements and design engineering,” in Symposium on
Foundations of software engineering. NY, USA: ACM, 2004, pp. 53–
62.

[18] J. Garcı́a-Galán, L. Pasquale, P. Trinidad, and A. Ruiz-Cortés,
“User-centric adaptation of multi-tenant services: Preference-based
analysis for service reconfiguration,” in SEAMS, ser. SEAMS
2014. USA: ACM, 2014, pp. 65–74. [Online]. Available:
http://doi.acm.org/10.1145/2593929.2593930

[19] A. J. Ramirez and B. H. C. Cheng, “Automatic derivation of utility func-
tions for monitoring software requirements,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 6981 LNCS, pp. 501–516, 2011.

[20] J. P. Sousa, R. K. Balan, V. Poladian, D. Garlan, and M. Satyanarayanan,
“User guidance of resource-adaptive systems,” in In Proc. of Interna-
tional Conference on Software and Data Technologies, 2008.

[21] X. Peng, B. Chen, Y. Yu, and W. Zhao, “Self-tuning of software systems
through goal-based feedback loop control,” in Requirements Engineering
Conference (RE), Sept 2010, pp. 104–107.

[22] N. Bencomo and A. Belaggoun, “Supporting decision-making for self-
adaptive systems: From goal models to dynamic decision networks,” in
REFSQ - Best Paper Award, 2013.

[23] N. Bencomo, A. Belaggoun, and V. Issarny, “Dynamic decision networks
to support decision-making for self-adaptive systems,” in (SEAMS),
2013.

[24] S. J. Russell and P. Norvig, Artificial intelligence - a modern approach:
the intelligent agent book, ser. Prentice Hall series in artificial intelli-
gence. Prentice Hall, 1995.

[25] S. Kullback, Information Theory and Statistics. New York: Wiley, 1959.
[26] S. Hassan, N. Bencomo, and R. Bahsoon, “Minimize nasty surprises

with better informed decision-making in self-adaptive systems,” in 10th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), 2015.

[27] A. Ramirez, B. Cheng, N. Bencomo, and P. Sawyer, “Relaxing claims:
Coping with uncertainty while evaluating assumptions at run time,”
MODELS, 2012.

[28] N. Bencomo, K. Welsh, P. Sawyer, and J. Whittle, “Self-explanation
in adaptive systems,” in Engineering of Complex Computer Systems
(ICECCS), 2012 17th International Conference on, july 2012.

[29] G. Blair, N. Bencomo, and R. B. France, “Models@ run. time,”
Computer, vol. 42, no. 10, pp. 22–27, 2009.


