Towards the Optimization of Power and Bandwidth
Consumption in Mobile-Cloud Hybrid Applications

Aamir Akbar
Aston Lab for Intelligent Collectives Engineering (ALICE)
School of Engineering and Applied Science
Aston University, Birmingham, UK
Website: https://cs.aston.ac.uk/~akbara2/

Abstract—Mobile devices can now support a wide range
of applications, many of which demand high computational
power. Backed by the virtually unbounded resources of cloud
computing, today’s mobile-cloud (MC) computing can meet the
demands of even the most computationally and resource intensive
applications. However, many existing MC hybrid applications
are inefficient in terms of achieving objectives like minimizing
battery power consumption and network bandwidth usage, which
form a tradeoff. To counter this problem we propose a technique
that: 1) measures, at run time, how well the MC application
meets these two objectives; and 2) allows arbitrary configurations
to be applied to the MC application in order to optimize the
efficiency tradeoff. Our experimental evaluation considers two
MC hybrid applications. We modularized them first, based on
computationally-intensive tasks, and then executed them using
a simple MC framework while measuring the power and band-
width consumption at run-time. Analysis of results shows that
efficient configurations of the apps can be obtained in terms of
minimizing the two objectives. However, there remain challenges
such as scalability and automation of the process, which we
discuss.

I. INTRODUCTION

In recent years, there has been a growing interest in binding
cloud resources to low-power devices such as smartphones
in order to provide PC-like functionality to mobile users [1].
Integrating cloud computing technology [2] and mobile de-
vices makes the latter virtually limitless in terms of processing
power, energy and storage space. This interdisciplinary domain
is called Mobile-Cloud Computing (MCC) [3]. A mobile
device, i.e. a smartphone, can either be connected via WiFi
or a 3G/4G data network. In both cases sending/receiving
data packets over the network uses bandwidth and therefore
consumes device battery power.

Mobile-Cloud (MC) hybrid applications are becoming ever
more frequently relied upon. However, they have an efficiency
tradeoff between energy consumption and network bandwidth
usage. This exists because, 1) performing computationally
intensive tasks on mobile devices can be inefficient in terms of
battery power consumption, 2) sending data to and receiving
from the cloud can also be inefficient in terms of bandwidth
usage cost and battery power consumption by the transmitting
chip (i.e. WIF]) inside the mobile device. We consider this as
a multi-objective optimization problem.

Peter R. Lewis
Aston Lab for Intelligent Collectives Engineering (ALICE)
School of Engineering and Applied Science
Aston University, Birmingham, UK
Website: http://prlewis.com/

In multi-objective optimization there are a number of ob-
jectives to be optimized simultaneously, and typically the
objectives are conflicting with each other. Thus there exists
a tradeoff between objectives, which leads to the idea of a set
of Pareto-optimal solutions [4], those that are not dominated
by any possible other solution in the solution space.

In this paper we present 1) the use of search-based tech-
niques for multi-objective optimization, to optimize power
consumption and bandwidth usage of MC hybrid apps, 2)
a workflow that uses this to find energy efficient configu-
rations for MC hybrid apps, 3) key challenges, including
automatically partitioning MC hybrid apps, applying search-
based algorithms for multi-objective optimization and efficient
communication in between a mobile device and a cloud server-
machine.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III contains the problem
description. Section IV introduces the case studies and config-
uration sets. Section V explains the workflow used to find the
optimal configurations from the sets. Section VI explains the
experiments conducted and their results. Section VII explains
the challenges and directions for future work. Section VIII
concludes the paper.

II. RELATED WORK

The design of MC hybrid applications is normally based
on achieving one particular objective such as minimising en-
ergy use, maximising application performance, or minimising
bandwidth usage. Achieving two or more objectives at the
same time might not be possible, for example, minimizing
bandwidth usage may prevent the objective of minimizing
power consumption. Based on their objectives, Khan et al. [5]
classified MCC application frameworks into four categories: 1)
performance-based, 2) energy-based, 3) constraint-based, and
4) multi-objective-based frameworks. Using such a framework,
mobile applications can be customized and integrated with
the cloud, for example through a mediator (aka middleware)
that provides an abstraction, and controls every aspect of
the communication in between the mobile and the cloud
server. Two criteria for middleware are normally considered:
1) delegating a mobile task by invoking a cloud service from
the handset, 2) partitioning the application source code into

modules (e.g. methods, classes) and analyzing a priori (at
development time) or a posteriori (at runtime) so that the most
computationally intensive modules at the code level can be
identified and offloaded for remote processing [6] [7].

A. Mobile-Cloud Application Frameworks

MC frameworks are designed to foster the development of
hybrid apps by providing guidelines and APIs to developers.
In the following sections we will discuss some common
frameworks.

1) MAUI: MAUI [8] is an MC hybrid app framework that
combines the benefits of two approaches: it maximizes the po-
tential for energy savings through fine-grained code offloading,
while minimizing the changes required to applications. MAUI
enforces method-level partitioning of mobile applications,
which is done using method annotating (with @Remoteable)
at development time. At runtime, the remoteable methods are
identified using the Microsoft .Net Reflection API. The MAUI
solver decides whether a method can be offloaded to the cloud
or kept executing on the mobile device.

2) CloneCloud: CloneCloud [9] offloads computationally
intensive parts of the application code to a device clone
operating in the cloud, to enhance application performance.
Unlike MAUI, CloneCloud operates at thread granularity. It
uses a combination of static analysis and dynamic profiling
to partition applications automatically at a fine granularity,
while optimizing execution time and energy use for a target
computation environment. As there are no annotations in the
source code, the partitioning mechanism is used off-line, which
aims to pick which parts of an application’s execution to retain
on the mobile device and which to migrate to the cloud. The
partitioning mechanism may be run multiple times for different
execution conditions and objective functions, resulting in a
database of partitions. At runtime, the distributed execution
mechanism picks a partition from the database and implements
it via a small and fast set of modifications of the executable
before invocation.

3) ThinkAir: ThinkAir [10] addresses two key issues that
were lacking in MAUI and CloneCloud: parallelism of method
execution using multiple virtual machine images on the cloud,
and adaptation of online method-level offloading. Like MAUI,
ThinkAir operates at method granularity where methods are
annotated by developers during development. Unlike MAUI,
ThinkAir is Java-based and uses its Reflection API to remote-
execute the code. The calling object is sent to the server
endpoint in the cloud; the mobile endpoint then waits for
results, and any modified local state, to be returned.

4) Mobile Cloud Middleware: Flores et al. [11] proposed a
generic middleware framework for handling process-intensive
hybrid cloud services from a mobile device. The objective
of MCM is to handle the interoperability issues of different
APIs and services used by different cloud vendors. Using a
middleware can provide support in both task delegation and
code offloading from mobile to cloud. A middleware can also
be useful for buffering the intermediate data to be used by
either a mobile or cloud.

B. Search-based Multi-objective Optimization

A search problem is defined as finding an optimal or near-
optimal solution(s) in a space of candidate solutions, guided
by a fitness function that distinguishes between better and
worse solutions [12]. Search-based Software Module Cluster-
ing (SMC) techniques have been used for comprehending big
software systems, by formulating the basic software’s design
metrics of high cohesion and low coupling into a fitness
function [13]. Praditwong et al. [14] proposed a search-based
approach to SMC with multi-objective fitness function. Unlike
single objective formulation, they considered the objectives,
cohesion and coupling, separately.

Similar to multi-objective optimization in SMC, we mini-
mize both bandwidth and power consumption to find efficient
configurations for MC hybrid applications. We developed a
simple framework based on class-level tasks delegation to
cloud and using a middleware to facilitate the system devel-
opment on a network. We choose Firebase' as a middleware,
which is a real-time, event-driven database service provided
by Google. Like CloneCloud, we used offline execution of
the search algorithm to find Pareto-optimal configurations.
During the runtime of an application we measured the battery
power consumption and network bandwidth usage to find the
efficiency of a configuration.

III. PROBLEM SETTING

Mobile devices can access the cloud either through WIFI
or a 3G/4G data network. From a connection point of view,
the decision to execute computationally-intensive tasks of MC
hybrid applications on the cloud can be affected by the network
bandwidth. For instance, executing the code on the cloud at
runtime can demand high bandwidth when sending a large
amount of data. From a mobile device point of view, executing
computationally-intensive tasks on device can demand high
battery power consumption. To attain an optimal configuration
of MC hybrid applications while not affecting the overall
performance of the application is considered a challenging area
in MCC [15]. We define a configuration as a valid mapping
of all the distinct tasks of an MC hybrid application to mobile
and cloud server endpoints, indicating where they are to be
executed.

Assume that an MC hybrid application is composed of a
set of collaborative code units called modules (e.g. classes
in Java), which can be executed on either mobile-device or
cloud-server endpoint. In general, when designing an MC
hybrid application we are faced with a decision about which
module should be placed on the mobile device and which on
the cloud. As there exists an efficiency tradeoff between the
network bandwidth usage and battery power consumption, a
set of optimal configurations of MC hybrid applications can be
achieved. Power consumption is at maximum when executing
the computationally-intensive modules on the mobile device.
Network bandwidth usage is at maximum when an application
rely on cloud by sending and receiving large amount of

Uhttps:/firebase.google.com/

data. Measuring network bandwidth usage and mobile device
battery power consumption, we might obtain Pareto-optimal
configurations. Therefore, we consider MC hybrid application
development as a multi-objective problem by optimizing these
two objectives.

1) Minimize power consumption: number of Joules con-
sumed by the application on a mobile device, during
one execution.

2) Minimize network bandwidth: data sent and received
between a mobile device and a cloud server during one
execution (MBs).

IV. CASE STUDIES

Two different Android applications were considered as test
problems: a prototype app we created called ImageEffects and
an open source Chess game?.

ImageEffects has some built-in image-filters to apply to
an image, taken by using device camera inside the app. The
app can also be connected to a Dropbox account to upload
the filtered image. The mobile battery power is consumed
when performing computationally-intensive tasks i.e. image
processing. Also, it uses network bandwidth during upload-
ing/downloading images to/from Dropbox. The Chess game
has a board and pieces on it. When played against computer
(User-PC mode), it uses a built-in Artificial Intelligent (AI)
search algorithm to find the best and a valid move for the
computer’s pieces on the board. When the game playing level
is increased the search algorithm will take more time to search
for that move. The AI unit, therefore, is computationally-
intensive which consumes battery bower when executed on a
mobile device. To execute across mobile and cloud platforms
both of these applications need to be customized first accord-
ing to the platform. The customization steps and creating their
configuration sets are discussed below.

A. ImageEffects Application

ImageEffects consumes battery power while performing
image processing tasks. There are five distinct tasks that can
consume battery power. The first task is applying a filter to
an image, which is to change each and every pixel of the
original image. The second task is to generate a thumbnail
of the filtered image, which is scaling down the image to
a lower resolution. The third task is uploading the filtered
image to the user’s Dropbox account. Downloading the image
back to the mobile device is then the fourth task. The fifth
and last task includes two sub parts: 1) calculating hash
codes of the original filtered image and the downloaded image
from the Dropbox, 2) comparing the hash codes to verify
the downloaded picture. This app is designed in such a way
that each of these five tasks are performed in their respective
modules (Java classes).

After the app is modularized the next step is to create its
configuration set. A configuration is a binary string repre-
sentation of where each module performs their tasks: mobile

Zhttps://github.com/jcarolus/android-chess

or cloud. If a module is 0 it will be executed on a mobile
device and if it is 1 then it will be executed on the cloud.
For example, assuming a configuration 00101, the modules at
1th, 274 and 4" locations represent the respective tasks which
will be executed on the mobile device as their states are 0.
Similarly the 3" and 5 tasks will be performed on the cloud
server as their states are indicated as 1. For 5 modules, n = 5,
the cardinality of the configuration set .S; for ImageEffects
is 2" = 32. The set S; starting with 00000 where all the
modules will execute on the mobile device and ending with
11111 where all the modules will execute on the cloud server.

B. Chess Game

The Chess game is composed of modules (Java classes)
that form two main components of the game: 1) the User
Interface (UI) component that will only be executed on a
mobile device, and 2) the Al component that is composed of a
search algorithm to find the best and a valid move of the pieces
on the board. Executing the AI component, therefore, can be
performed on cloud to minimize battery power consumption
of the mobile device. One parameter of the Al is the game
playing level, which determines the time duration that the
search algorithm is allowed to find the best move. Increasing
the game playing level will increase the time duration of search
algorithm. So, with higher game levels more computation
will be done, which will have direct effect on more power
consumption.

A configuration string for the Chess game will represent the
two computationally-intensive tasks we identified. We used
alphanumeric representation of this string. The first element
of the string can either be M or C, representing the first task
(AI component) to be executed on either a mobile or cloud
respectively. The second element of the string is for the second
task which is represented with 5 different game playing levels;
1, 4, 7, 10 and 15. For example, assuming a configuration
string M4, the AI unit will execute on a mobile with the game
level set to be 4. For the 5 levels and executing AI component
on 2 machines, the cardinality of the configuration set .S, for
the Chess game is 25 = 10. The set starting with M1 where
the first task will be performed on the mobile device with
game level 1 and ending with C'15 where the first task will
be carried out on the cloud with game level 15.

V. WORKFLOW TO FIND OPTIMAL CONFIGURATIONS

To evaluate the possible configurations, the MC hybrid
apps need to be executed several times. For this purpose,
automation of the workflow is required. We used a pure
Python based open source library called AndroidViewClient®.
It provides higher level operations and the ability to obtain
a tree of Android UI Views present at any given moment on
the device or emulator screen and performs operations on it.
Alternatively, Android’s own library MonkeyRunner can also
be used for the same purpose. We wrote a Python script, using
the AndroidViewClient, that interacts with the MC hybrid

3https://github.com/dtmilano/Android ViewClient/wiki

applications that will be installed on a mobile device. The
mobile device must be connected to a PC on which this script
will be executed. The script will launch the MC hybrid apps on
the device automatically with a valid configuration from their
respective sets and then will send touch events to interact with
the GUL

To find optimal configurations in the two sets, S; and S,
a search algorithm is required. Due the fact that both of these
sets are not big in size, they can be searched exhaustively.
Therefore, we implemented an exhaustive search inside the
automation script. For a large configuration set, search algo-
rithms like genetic algorithms could be used.

Algorithm 1 shows the automation script which begins
with making a connection to the attached mobile device. The
script then enters into a loop which iterates through all the
configurations in S and applies each to the MC application. To
measure the network bandwidth usage and power consumption
on the device we created a separate monitor application that is
executed on the device before running the MC hybrid app. The
power consumption is recorded by using an open source tool,
integrated in the Monitor application, called PowerTutor*. Its
profiler monitors the total power consumption of each of the
components (WIFI, CPU and LCD) the MC hybrid app uses.
Also, it monitors the network bandwidth usage of the app for
the current configuration.

Inside the inner loop of the script, the MC hybrid application
is checked repeatedly. When it is found stopped/destroyed,
a touch event stopping the monitor app is issued. At the
end of the script, the count variable is incremented and this
process is repeated until all the configurations in .S are tested.
Receiving measurements from the monitor application is also
done automatically. For this we created a log receiving script
that gets measurements from the monitor app during each iter-
ation of the outer loop. The monitor writes the measurements
using Android log library. The log is then parsed and all the
measured data is stored in a dedicated MYSQL database on
the PC.

VI. EXPERIMENTS AND RESULTS

The experiments were conducted on two different Android-
based smartphones: 1) Samsung Galaxy S5 (a high end smart-
phone), and 2) ZTE Skate (a low end smartphone). Both the
MC hybrid apps, ImageEffects and Chess game, along with
the Monitor app were installed on the phones. The server
counterparts of the MC hybrid apps were installed on the cloud
server endpoint. At the Firebase middleware, all the parent-
child keys were set for messaging and buffers. The automation
script and the script for reading log messages from the phones
were both started on a PC.

The workflow, discussed in section V, was repeated 30
times for each of the MC hybrid apps and for both phone
separately. As a result, 30 samples of each configuration from
the sets S; and S. were collected. Each sample has data
points that include total network bandwidth usage (MB) and

“https://github.com/msg555/PowerTutor

Algorithm 1 Automation Script with Exhaustive Search

1: device « connectToDevice()

2: if device == null then

3: return

4: end if

5. S + ConfigurationSet

6: count <1

7: while count < n do

8: device.shell(Monitor App, S[count])
9: device.shellMC App, S|[count])

10: while true do

11: app < device.shell(ps | grip «)
12: if app == null then

13: break

14: end if

15: end while

16: device.touch(x,y) > Stop the Monitor app
17: count <— count + 1

18: end while

total power consumption (Joules). After the samples were
collected, the mean and standard deviation (SD) of power
(battery power consumption) and data (network bandwidth
usage) were calculated.

A. Results from ImageEffects

In case of the ImageEffects, we obtained 3 different Pareto-
optimal configurations for each of the phones as shown in table
I. Figures 1 and 2 show the efficiency of all the configurations
for Samsung Galaxy S5 and ZTE Skate respectively. Only
the Pareto-optimal configuration and the non-hybrid configu-
rations (00000 and 11111) are labeled in these graphs.

B. Results from the Chess Game

The measured efficiency of all the configurations of the
Chess game from its set S. is shown in table II. These
configurations are plotted on graphs shown in figures 3 and
4 for Samsung Galaxy S5 and ZTE Skate respectively. It is
clear from these graphs that executing the Al unit on cloud is
energy efficient for high game levels.

VII. CHALLENGES AND FUTURE WORK

In order to validate the idea of optimizing bandwidth and
power consumption in MC hybrid apps, we reported on a
small scale manually carried out feasibility study and identify
some key challenges. We will now discuss them along with
the future directions.

o Automation: Identifying the computationally-intensive
tasks and then partitioning the apps were done manually
during development. For large applications (in terms of
modules/tasks), automatic partitioning is required, which
could be done a priori (using code annotations) or a
posteriori (using bytecode analysis).

o Scalability: Exhaustively searching a large configuration
set (more than 10 modules) will take more time. Instead,

Network Bandwidth Usage (MB)

TABLE I

PARETO-OPTIMAL CONFIGURATIONS OF IMAGEEFFECTS

Mobile Device

Configuration [Battery Power Consumption (J)

Network Bandwidth Usage (MB)

Mean Standard Deviation Mean Standard Deviation
o N 00000 1322 174612 47577 0.0186
Samsung Galaxy S5 00010 153.8 23.9908 2.998 0.0108
10100 85.6667 15.6617 5.198 0.0166
00110 275.1 0.21 25.3763 0
ZTE Skate 00010 1642.8333 815.6709 0.18 0
10110 220.4 0.32 27.3186 0
TABLE 11
CONFIGURATIONS OF CHESS GAME
Configuration [Samsung S5 ZTE Skate
Mean Power SD Power Mean Data SD Data Mean Power SD Power Mean Data SD Data
M1 39.5 10.9446 0 0 306.4667 17.2525 0 0
M4 225.1333 42.2632 0 0 562.9333 120.2192 0 0
M7 645 69.3792 0 0 759.3667 74.2574 0 0
M10 1152.6667 116.3178 0 0 1947.5667 115.2535 0 0
Mi15 1654.9 124.3156 0 0 4255.3 617.1204 0 0
C1 39.8667 8.7206 0.03 0 373.8 19.6289 0.02 0
Cc4 80.6 11.5833 0.03 0 710.6667 57.4179 0.02 0
Cc7 188.7 17.8795 0.03 0 1571.9333 428913 0.02 0
C10 268 33.5102 0.03 0 2074.9667 270.6117 0.02 0
Cl15 433.9 39.5890 0.03 0 3380.8333 336.0201 0.02 0
12 0.55
11 —
05 - —
10 —
0.45 -
9 |
8 7 £
% 11111
7+ — S 0.35 |~ e —
o
i | ,11:11] § 03 —13\110 n
st YA oo00p g 00000
10100 025 |- B : _
4+ -
00310
3 00910 . 02" 00010]
2 L L L L L L L L 0.15 L L L L L L L L
50 100 150 200 250 300 350 400 450 500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Battery Power Consumption (Joules)

Fig. 1. ImageEffects on Samsung S5.

using Evolutionary Algorithms such as GAs is likely to
take less time to find a good solution.

Efficient communication: Firebase works in an event-
driven fashion which calls back to the thread that starts
its on-event handler. Using Firebase or other such kind
of systems as middleware might not be a good choice. It
is due to the fact that if the waiting thread is the Ul/main
thread to get the results from the cloud, the callback
from the Firebase handler will be blocked due to the
inherent characteristic of the Android systems. Instead,
socket based middleware could be used, which works in
a suspend-migrate-receive-resume fashion.

Battery Power Consumption Usage (Joules)

Fig. 2. ImageEffects on ZTE Skate.

VIII. CONCLUSION

In this paper, we presented a technique for developing
efficient MC hybrid apps by optimizing network bandwidth
usage and battery power consumption. Using this technique,
an application’s source code is modularized on the bases
of identifying such tasks that consumes battery power of
a mobile device. Applying a configuration that represents
those modules/tasks, an MC hybrid application is executed
using a middleware based task delegation from mobile to
cloud. The battery power consumption and network bandwidth
usage is then measured at runtime of the application. We

T T T T T T T T
0.06 |- -
0.04 |- -
2 cica c7c10 c15
< Wit fel Fed Fed
]
H
g 002 -
o
X
<}
2
Q
= M1 M4 M7 M10 M15
0 Het i ——i | | | ;
-0.02 [-
| | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800
Battery Power Consumption (Joules)
Fig. 3. Chess game on Samsung S5.
T T T T
0.06 |- -
0.04 |- -
@
=3
=
]
H c1 ca c7 C10 c15
2 002 e b f—to—i ' ' -
@
[+e]
x
5
2
2
M1 M4 M7 M10 M15
0 # Feted [— e]
0.02 [-
| | | |
0 1000 2000 3000 4000 5000

Battery Power Consumption (Joules)

Fig. 4. Chess game on ZTE Skate.

conducted experiments by applying this technique on two
different Android based applications and on two different
smart phones. The workflow to evaluate the configurations was
presented.

The experimental results obtained indicate that one of the
two MC hybrid applications, ImageEffects, produced Pareto-
optimal configurations for both phones. Such configurations
are efficient in terms of optimizing both of the two objectives.
The second application, Chess, also produced efficient config-
urations. For a high-end mobile phone like Samsung Galaxy
S5, executing the game Al on the cloud consumed less battery
power, at the cost of using more network bandwidth. For a
low-end phone like ZTE Skate, the results were in favor of
executing the game AI on the phone for lower game levels.
The results from both apps together also indicate that efficient
configurations vary between different mobile devices.

At the end we presented the key challenges with future
directions. It is our hope that this technique will provide
researchers and developers insights to make use of mobile-
cloud computing technologies and developing MC hybrid
applications.

REFERENCES

[1] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-
I. Yang, “The case for cyber foraging,” in Proceedings of the 10th
Workshop on ACM SIGOPS European Workshop, ser. EW 10. New
York, NY, USA: ACM, 2002, pp. 87-92.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50-58, Apr. 2010.

[3] D. Huang et al., “Mobile cloud computing,” IEEE COMSOC Multimedia
Communications Technical Committee (MMTC) E-Letter, vol. 6, no. 10,
pp- 27-31, 2011.

[4] K. Deb, “Multi-objective optimisation using evolutionary algorithms: an
introduction,” in Multi-objective evolutionary optimisation for product
design and manufacturing. Springer, 2011, pp. 3-34.

[51 A. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey of
mobile cloud computing application models,” Communications Surveys
& Tutorials, IEEE, vol. 16, no. 1, pp. 393-413, 2014.

[6] X. Gu, A. Messer, 1. Greenberg, D. Milojicic, and K. Nahrstedt, “Adap-
tive offloading for pervasive computing,” IEEE Pervasive Computing,
vol. 3, no. 3, pp. 66-73, Jul. 2004.

[7]1 Z. Li, C. Wang, and R. Xu, “Computation offloading to save energy
on handheld devices: A partition scheme,” in Proceedings of the 2001
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, ser. CASES ’01. New York, NY, USA: ACM,
2001, pp. 238-246.

[8] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys *10. New
York, NY, USA: ACM, 2010, pp. 49-62.

[9] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings of
the Sixth Conference on Computer Systems, ser. EuroSys '11. New
York, NY, USA: ACM, 2011, pp. 301-314.

[10] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Infocom, 2012 Proceedings IEEE. 1EEE,
2012, pp. 945-953.

[11] H. Flores, S. N. Srirama, and C. Paniagua, “A generic middleware
framework for handling process intensive hybrid cloud services from
mobiles,” in Proceedings of the 9th International Conference on Ad-
vances in Mobile Computing and Multimedia, ser. MoMM ’11. New
York, NY, USA: ACM, 2011, pp. 87-94.

[12] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo, “Empirical
software engineering and verification,” B. Meyer and M. Nordio, Eds.
Berlin, Heidelberg: Springer-Verlag, 2012, ch. Search Based Software
Engineering: Techniques, Taxonomy, Tutorial, pp. 1-59.

[13] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner,
“Using automatic clustering to produce high-level system organizations
of source code,” in Proceedings of the 6th International Workshop on
Program Comprehension, ser. INPC *98. Washington, DC, USA: IEEE
Computer Society, 1998, pp. 45-.

[14] K. Praditwong, M. Harman, and X. Yao, “Software module clustering
as a multi-objective search problem,” IEEE Trans. Softw. Eng., vol. 37,
no. 2, pp. 264-282, Mar. 2011.

[15] E. Ahmed, A. Gani, M. Sookhak, S. H. A. Hamid, and F. Xia,
“Application optimization in mobile cloud computing,” J. Netw. Comput.
Appl., vol. 52, no. C, pp. 52-68, Jun. 2015.

