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ABSTRACT 94 

Brain malformations involving the corpus callosum are common in children with developmental 95 

disabilities. We report that DCC mutations cause isolated agenesis of the corpus callosum (ACC), 96 

without intellectual disability, in four families and five sporadic individuals. DCC mutations 97 

result in variable dominant phenotypes with reduced penetrance including mirror movements and 98 

ACC associated with a favorable developmental prognosis. Possible phenotype modifiers include 99 

the type and location of mutation and sex of the individual. 100 

 101 

MAIN TEXT 102 

The corpus callosum (CC) is the main cerebral commissure in placental mammals with a key role 103 

in communication between the brain hemispheres1. Formation of the CC is a complex process 104 

involving ligands such as those in the Netrin, Ephrin, Semaphorin and Slit families and their 105 

receptors2. Agenesis of the corpus callosum (ACC) is the complete or partial absence of the CC. 106 

This frequent brain malformation affects ~1/4,000 newborns and 3-5% of children with 107 

intellectual disability (ID)3,4 and is a common cause of late pregnancy termination5. Mutations in 108 

many genes cause syndromes with ID and ACC, whereas the genetics of isolated ACC remain 109 

poorly understood3,6,7. The Netrin receptor Dcc plays a critical role in CC development in mice 110 

by guiding callosal axons at the midline8. While mutations in DCC have been associated with 111 

congenital mirror movements (MM) in humans9, they have not been described in individuals with 112 

ACC. 113 

 114 

We investigated four multigenerational families with individuals presenting with ACC, MM or 115 

both phenotypes segregating as autosomal dominant traits (Fig. 1a). Neuroimaging and clinical 116 

studies confirmed that complete or partial ACC was isolated in most cases (Fig. 1b, Fig. S1) and 117 
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associated with a range of intellectual abilities (normal-borderline impaired); additionally, 118 

specific cognitive impairments, including language delay or visuospatial deficits, were 119 

documented (Table S1). Diffusion MRI tractography using probabilistic constrained spherical 120 

deconvolution identified reduced crossing of descending corticospinal tract projections at the 121 

pyramidal decussation in all affected individuals in families 2 and 4 with either ACC and MM 122 

(n=5) or MM only (n=2) (Fig. 1c, Fig. S2). The tractography results for other commissural fibers, 123 

including the decussation of the superior cerebellar peduncles, anterior commissure, posterior 124 

commissure and optic chiasm, were comparable between the affected individuals and controls. 125 

 126 

Linkage analysis and exome sequencing of three affected individuals in family 1 identified two 127 

shared candidate variants in the 16 linkage regions (Fig. S3, Table S2) including a truncating 128 

mutation in DCC (NM_005215.3:c.925delA, p.(Thr309ProfsTer26)). For family 2, 48 candidate 129 

variants were identified in 28 linkage regions (Fig. S4, Table S3), including a missense variant 130 

(c.2378T>G, p.(Val793Gly)) in DCC. The previously-reported nonsense mutation (c.823C>T, 131 

p.(Arg275Ter)) in DCC segregated with MM in five individuals of family 310. Further 132 

investigation revealed two additional female mutation carriers with ACC and a male carrier with 133 

MM who had a thin rostrum. Direct screening in family 4 identified a heterozygous DCC 134 

missense variant (c.2414G>A, p.(Gly805Glu)). All four DCC mutations were absent from public 135 

databases, including 1000 Genomes and ExAC, and segregated with ACC and/or MM in all 136 

available individuals tested (Fig. 1a). In addition, we sequenced DCC in 70 unrelated individuals 137 

with ACC including 46 with normal cognitive development. Five individuals, all with isolated 138 

complete ACC, had at least one heterozygous missense variant altering a conserved amino acid of 139 

DCC (Fig. 1d, Fig. S1 and S5, Table 1). Analysis of all available imaging in mutation-positive 140 

individuals with complete ACC also showed absence of the hippocampal commissure and 141 
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cingulate gyri, and dysmorphic lateral ventricles (usually colpocephaly) as would be expected 142 

(detailed in Online  methods). Apart from this, no consistent additional brain malformations were 143 

seen. 144 

 145 

We analyzed the phenotype of individuals with DCC mutations reported in the literature and in 146 

this study (Table S4) to assess the penetrance of MM and ACC. Of the 88 individuals with DCC 147 

mutations identified to date, 50 had MM; among the 39 who had brain imaging, 19 exhibited 148 

ACC. Excluding the index individuals from the analysis, the penetrance of MM was estimated to 149 

be 42% and the penetrance of ACC to be 26% (Table S5). Overall, males (n=31) exhibited MM 150 

more frequently than females (n=19, male:female ratio=1.8, p=0.0027, Fisher’s Exact test; Table 151 

S5) while, in individuals with truncating DCC variants, ACC was more often present in females 152 

(n=7) than males (n=1, male:female ratio=0.2). Sex differences in CC anatomy have been 153 

associated with testosterone levels during prenatal brain development11-13; therefore, we tested 154 

the effect of androgens on DCC expression. Independent analysis by RNAseq and RT-qPCR 155 

demonstrated a significant dose-dependent increase in DCC expression in human neural stem 156 

cells treated with 10 nM or 100 nM testosterone (Fig. S6). Since variants introducing a premature 157 

stop codon generally result in haploinsufficiency due to nonsense mediated decay of the mutant 158 

mRNA, it is possible that ACC may occur when the amount of DCC mRNA/protein falls below a 159 

threshold level during CC development, which would occur more frequently in females. 160 

However, given the incomplete penetrance observed in both sexes, the phenotypic outcome must 161 

also be influenced by additional genetic, epigenetic and/or environmental factors. Interestingly, 162 

families 1 and 3, in which a majority of females display ACC, are both of North African 163 

background, supporting the hypothesis of genetic modifiers.  164 

 165 
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Contrary to truncating variants, missense mutant proteins are usually present in the cell and can 166 

interfere with the function of the wildtype protein, potentially resulting in differing phenotypes 167 

compared to haploinsufficiency for the same protein. Binding of Netrin-1 to DCC results in 168 

intracellular homodimerization or heterodimerization with UNC5, another axon guidance 169 

receptor, and is critical for both the chemoattractive and chemorepulsive properties of the 170 

signaling complexes15,16. The Netrin-1 binding region involves the 4th, 5th and 6th fibronectin 171 

type III-like domains of DCC14,15, therefore amino acid substitutions in this binding region may 172 

compromise DCC function. Five of the eight DCC missense variants identified in individuals 173 

with ACC are located in the Netrin-1 binding region (Fig. 1d), which represents a considerable 174 

enrichment compared to missense variants located in this domain in ExAC (5/74, 6.7% versus 175 

519/~60000, 0.86%; p=5x10-4 (all rare variants) or 284/~60000, 0.47%; p=3x10-5 (rare variants 176 

predicted to be damaging by SIFT), Fisher’s exact test (Table S6)). Given the reduced penetrance 177 

and mild phenotype of DCC-related ACC, it is possible that some individuals described in ExAC 178 

have pathogenic DCC mutations and undiagnosed ACC. 179 

 180 

Modelling of DCC missense variants revealed that the amino acid substitutions in families 2 and 181 

4, both located within the DCC/Netrin-1 binding interface, are predicted to be most disruptive. 182 

The p.(Val793Gly) substitution abolishes a hydrophobic interaction with Thr147 of Netrin-1 183 

while p.(Gly805Glu) introduces a highly unfavorable charged moiety within a hydrophobic 184 

pocket, disrupting interaction with Leu113 of Netrin-1 (Fig. S7-8). The predicted effects of the 185 

three substitutions within the Netrin-1 binding region but outside the binding interface (Fig. S9-186 

12) are consistent with in vitro studies demonstrating that even conservative mutations to residues 187 

in this binding region can disrupt DCC dimerization, Netrin-1 binding and axon guidance14. 188 

 189 
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In addition to the effect of sex hormones and the type and location of DCC mutations, 190 

developmental differences between the CC and corticospinal tract may also contribute to the 191 

variable ACC/MM phenotypes. Callosal and sub-cerebrally projecting pyramidal neurons of the 192 

cortex are specified at early stages of development and the molecular identity of each population 193 

directly affects its axonal connectivity16. While corticospinal axons utilise DCC/Netrin-1 194 

signalling to reach the midline, callosal axons use DCC/Netrin-1 chemoattraction to attenuate 195 

ROBO1/SLIT-2-mediated chemorepulsion to approach and cross the midline17. Therefore, a 196 

DCC mutation may differentially affect commissural versus subcerebral axon trajectories, leading 197 

to ACC, MM or both. MM were consistently associated with reduced crossing of descending 198 

corticospinal tract projections at the pyramidal decussation in this study as well as in individuals 199 

with RAD51-related MM18, suggesting that DCC-mediated MM are primarily the result of 200 

corticospinal tract decussation abnormalities. 201 

 202 

In conclusion, our results provide compelling evidence that DCC mutations cause isolated ACC 203 

in humans, in addition to the previously-reported MM phenotype. The factors determining the 204 

phenotypic variability are complex and likely include the hormonal context during development, 205 

the type and location of DCC mutation, and the genetic background of the individual. Although 206 

the full spectrum of phenotypes associated with DCC mutations remains to be fully characterized, 207 

individuals described in this study have an intellectual quotient within the normal/borderline 208 

range. Heterozygous mutations in DCC therefore appear to result in isolated ACC with a mild 209 

phenotype and favorable cognitive outcomes, contrasting with the unfavourable developmental 210 

outcomes associated with syndromic ACC. Given the high frequency of DCC mutations detected 211 

in our cohorts, this observation has prenatal diagnostic and parental counselling implications for 212 

fetuses with ACC as the condition currently has unclear prognostication. Our data suggest that 213 
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the prenatal detection of isolated ACC related to a pathogenic DCC mutation indicates a lower 214 

risk of an abnormal neurodevelopmental outcome.  215 
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URLs. 1000 Genomes Project, http://www.1000genomes.org/; Exome Variant Server, 216 

http://exac.broadinstitute.org/; SIFT, http://sift.jcvi.org/; PolyPhen-2, 217 
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Figure legend  355 

Figure 1 DCC mutations cause isolated ACC and/or MM associated with significantly reduced 356 

crossing of descending corticospinal tract projections at the pyramidal decussation. 357 

a. All available family samples were analysed; m=mutation; black dot=mutation carrier; 358 

blue=partial ACC; black=complete ACC and grey=MM. * indicates neuroimaging data for 359 

mutation carrier or individual with MM. 360 

b. Midsagittal MRI of control and family proband/representative individual (1-2=complete ACC; 361 

3=near complete ACC with thin rostrum and genu remaining and 4=partial ACC with absence of 362 

the rostrum and genu). 363 

c. Group-wise comparison of laterality coefficient in both families (family 2, n=4; family 4, n=3) 364 

were compared to controls (n=6). For each individual, a laterality coefficient for the corticospinal 365 

tract was calculated as the ratio of the difference between the numbers of crossed and uncrossed 366 

streamlines to the total number of streamlines. Right and left coefficients were averaged to find 367 

the laterality coefficient of each individual. Greater positive values indicate more crossed and 368 

negative values more uncrossed streamlines (mean +/- S.D, * p=0.0238 ; ** p=0.0095; two-tailed 369 

Mann-Whitney U-test). 370 

d. Protein domain structure depicting the location of the DCC truncation (red square and triangle) 371 

and missense mutations (colored dots). The Netrin-1 binding region is indicated, IgC2, 372 

immunoglobulin-like type C2 domain; FN3, fibronectin type III-like domain; TM, 373 

transmembrane domain; P1-3, conserved motifs.  374 



0  

Table 1: Summary of DCC mutations identified in individuals with ACC (+/-MM) in this study. cACC, complete isolated agenesis of 375 

the corpus callosum; pACC, partial isolated agenesis of the corpus callosum; MM, mirror movements; IgC2, immunoglobulin-like type 376 

C2 domain; FN3, fibronectin type III-like domain; ExAC, Exome Aggregation Consortium; dbSNP, dbSNP reference SNP 377 

identification number. Reference sequences used are NM_005215.3 and NP_005206.2. 378 

Family 
number Phenotype cDNA  Protein Protein 

domain SIFT PolyPhen-2 ExAC dbSNP 

1 cACC or pACC 
± MM c.925delA p.(Thr309ProfsTer26) IgC2-3 - - No - 

2 cACC & MM c.2378T>G p.(Val793Gly) FN3-4 Deleterious Probably 
damaging No - 

3 cACC or 
MM ± pACC c.823C>T p.(Arg275Ter) IgC2-3 - - No - 

4 pACC &/or 
MM c.2414G>A p.(Gly805Glu) FN3-4 Deleterious Probably 

damaging No - 

5 cACC c.1790G>C p.(Arg597Pro) FN3-2 Deleterious Probably 
damaging No - 

6 cACC c.2227A>T p.(Met743Leu) FN3-4 Deleterious Benign No rs199651452 

7 cACC c.2260G>A p.(Val754Met) FN3-4 Deleterious Possibly 
damaging Yes (x19) - 

8 cACC c.2677G>A p.(Ala893Thr) FN3-5 Deleterious Benign No - 

9 cACC c.3649A>G; 
c.3748G>A 

p.(Met1217Val); 
p.(Ala1250Thr) Cytoplasmic Tolerated; 

Tolerated 

Benign; 
Probably 
damaging 

No; Yes 
(x2) - 
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