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Abstract. A simple success-based step-size adaptation rule for single-
parent Evolution Strategies is formulated, and the setting of the cor-
responding parameters is considered. Theoretical convergence on the
class of strictly unimodal functions of one variable that are symmetric
around the optimum is investigated using a stochastic Lyapunov func-
tion method developed by Semenov and Terkel (2003) in the context of
martingale theory. General expressions for the conditional expectations
of the next values of step size and distance to the optimum under (1 +, λ)-
selection are analytically derived, and an appropriate Lyapunov function
is constructed. Convergence rate upper bounds, as well as adaptation pa-
rameter values, are obtained through numerical optimization for increas-
ing values of λ. By selecting the number of offspring that minimizes the
bound on the convergence rate with respect to the number of function
evaluations, all strategy parameter values result from the analysis.

Keywords: Step-size Adaptation, Evolution Strategy, Lyapunov Func-
tion Theory, Convergence Rate

1 Introduction

Evolution strategies (ESs) are a particular class of Evolutionary Algorithms
(EAs) that have attracted a significant amount of attention in the last decades.
ESs traditionally emphasize the use of selection and mutation as search oper-
ators, where the mutation operator consists in creating an offspring by adding
a random vector to the current solution, or individual. Adaptive methods that
dynamically rescale mutation step-length parameters have proved to be rather
effective [1–3].

Convergence analysis of ESs with step-size adaptation has deserved due at-
tention in the research community, but it has proved to be a difficult task. The
present work extends the methodology proposed in [4] to the analysis of both



(1, λ)-ESs and (1+λ)-ESs with an arbitrary number of offspring, λ, and a success-
based step-size adaptation rule. Based on the theoretical results developed in [5,
4], general expressions for the expectation of the next individual’s step size and
distance to the optimum are analytically derived for both types of selection and,
using a Lyapunov function, upper bounds on the convergence rate on the class
of strictly unimodal functions of one variable that are symmetric around the
optimum are determined. Moreover, the number of offspring that minimizes the
bound on the convergence rate with respect to the number of function evalua-
tions can be easily determined as a by-product, providing a useful guideline for
the selection of this remaining strategy parameter.

2 Literature Review

Convergence analysis is a major topic of research in evolutionary algorithms,
which has been addressed mostly separately depending on whether the optimiza-
tion problems of interest are continuous or discrete. Drift analysis is a state-of-art
technique for the study of the expected hitting time of randomized search heuris-
tics on discrete problems. The use of drift analysis combined with Markov chain
theory in order to obtain lower and upper bounds on the expected hitting time
on discrete search spaces is presented, for example, in [6–10]. Proofs of conver-
gence of the (1+1)-EA applied to pseudo-Boolean linear functions can be found
in [6, 9, 10]. In [6], the author combines drift analysis and Markov-chains for the
first time to state bounds on the expected optimization time. The upper bound
on the expected runtime of the algorithm was improved in [9], using multiplica-
tive drift analysis. Later, in [10], the author improves the upper bound further,
also using multiplicative drift analysis.

For continuous optimization problems, works dealing with convergence anal-
ysis of self-adaptive (1, λ)-ES applied to sphere functions using martingale theory
include [11, 5, 4]. In [5], a stochastic Lyapunov function method is developed in
the context of martingale theory, but Monte Carlo simulations are used to verify
the convergence of a mutative self-adaptive (1, λ)-ES. Based on [5], a Lyapunov
synthesis procedure for the adaptation parameters of a simple derandomized
self-adaptive (1, 2)-ES is proposed in [4]. The methodology is based on partic-
ular candidate functions which become stochastic Lyapunov functions through
suitable choices of the algorithm adaptation parameters. Considering the class
of strictly unimodal functions of one variable which are symmetric around the
optimum, and through the appropriate setting of the algorithm parameters, it is
proved that both the decision variable and the mutation step-size converge al-
most surely to the optimum and to zero, respectively. Moreover, an upper bound
on the rate of convergence is derived, and suitable values for the ES parameters
are determined numerically.

The parallel between the drift analysis used in [9] and the method used in
[5] and [4] is worth noting. With both methods, the behavior of an evolutionary
algorithm is analyzed through an auxiliary function, which must be chosen in
such a way that convergence of the algorithm on the true objective function



can be proved by verifying conditions on the auxiliary function only. In the case
of drift analysis, the auxiliary function, also known as a potential function, is
used to derive bounds on the expected runtime of the algorithm with respect
to problem size. On the other hand, in [5] and [4], continuous optimization is
considered and bounds on the convergence rate are provided instead.

3 The Proposed ES

The aim of the (1 +, λ)-ES analyzed here is to minimize a real-valued function
f : R→ R. A vector (xt, dt) describes an individual, the fitness of which depends
on the value of the decision variable xt ∈ R. The step size which controls the
variation is given by dt ∈ R+\{0}. The evolution cycle consists of two steps: the
mutation step, which creates λ offspring, xi,t, i = 1, . . . , λ, and the selection step,
which selects the next parent, xt+1, from the offspring (and possibly the current
parent, xt, depending on the selection scheme), and determines the associated
step size, dt+1.

Consider the following (1, λ)-ES, where µi,t, i = 1, . . . , λ, are random vari-
ables uniformly distributed in [−1, 1], 0 < αf ≤ 1, and αs ≥ 1:

xt+1 = F (xt, dt, µ1,t, . . . , µλ,t)
= arg min
x∈{xi,t=xt+µi,tdt, i=1,...,λ}

f(x)

dt+1 = G(xt, dt, µ1,t, . . . , µλ,t)

=

{
αf · dt if f(xt+1) > f(xt)

αs · dt if f(xt+1) ≤ f(xt)

(1)

Note that, if f is any strictly unimodal function of one variable that is sym-
metric around the minimum, xt+1 is selected as the offspring xi,t, i = 1, . . . , λ,
that is closest to the minimum point of f , even if that minimum point is not
known. In fact, the selection process is translation invariant, meaning that the
minimum of f can be considered to be located at zero after an appropriate
translation, without loss of generality. Therefore, any even function with such
properties could be chosen. Moreover, observe that dt+1 depends indirectly on
(µ1,t, µ2,t, . . . , µλ,t)

T through a direct dependence on xt+1. The search space R
is equipped with the Borel σ-algebra.

The mutation step-size adaptation process can be described as follows: (i) if
any offspring is at least as good as the parent, then the step size is increased, and
(ii) if all offspring are worse than the parent, then the step-size is decreased. The
only difference between this (1, λ)-ES and the corresponding (1 + λ)-ES is the
selection scheme: in the latter, the best among the λ offspring and the parent
itself, xt, is selected to become xt+1. As a consequence, the parent represents
the all-time best individual at each iteration.



4 Theoretical Background

Consider a deterministic discrete dynamic system represented by xt+1 = F (xt)
where t ∈ N is the time index, xt ∈ Rn is the system state vector at time t, n
is the number of system state variables, and F : Rn → Rn is a function in class
Cp, with p ≥ 1. An equilibrium point, x∗, of such a system is a point such that
F (x∗) = x∗. A discrete version of the direct method of Lyapunov [12] essentially
states that, if there is a function V ∈ C1 such that V (x∗) = 0 and V (x) > 0
∀x 6= x∗, and, in addition, V (xt+1) < V (xt) ∀xt 6= x∗, then the equilibrium
is uniformly asymptotically stable [13]. Function V is known as a Lyapunov
function.4

Since the proposed (1 +, λ)-ESs are stochastic processes, the above result is
not directly applicable, but convergence may still be studied through the condi-
tional expectation EAt [(V (xt+1, dt+1)] , E[V (xt+1, dt+1)|x1, . . . , xt, d1, . . . , dt]
of a suitable Lyapunov function V (xt, dt) of the stochastic process (xt, dt). The-
oretical results presented in [5] allow the convergence rate to be studied as well.

Consider that the inequality

|xt| ≤ exp(−at), (2)

holds asymptotically almost surely5 for some scalar a > 0. Then, the convergence
rate of xt to the point of equilibrium x∗ = 0 is e−ā, where ā is the supremum
of the set of values of a for which (2) holds asymptotically almost surely. If only
a lower bound a on the exponential decay constant ā can be determined, with
0 < a ≤ ā, then |xt| ≤ exp(−āt) ≤ exp(−at).

In [5], the asymptotic behavior of a supermartingle6 Vt is analyzed under
the following conditions: at each time step, Vt decreases on average by at least a
constant a > 0, and the conditional variance of Vt is at most b > 0. The following
result is proved therein:

Proposition 1. Let Vt be a supermartingale and V0 = 0. If the following con-
ditions hold

EAt(Vt+1) ≤ Vt − a (3)

EAt([Vt+1 − EAt(Vt+1)]2) ≤ b (4)

where a > 0, b > 0, then ∀ ε > 0 the following inequality holds almost surely:

Vt ≤ −at+ o(t0.5+ε). (5)

Proposition 1 is employed in the following result to establish the exponential
convergence of the proposed (1, λ)-ES algorithm.

4 Equivalently to V (x∗) = 0 and V (x) > 0 ∀x 6= x∗, one may require that V (x)→ −∞
only when x→ x∗.

5 An event holds asymptotically almost surely if it holds with probability 1−o(1), i.e.
the probability of success goes to 1 in the limit as n→∞ [14].

6 A stochastic process Vt is said to be a supermartingale if EAt(Vt+1) ≤ Vt.



Proposition 2. Consider the stochastic process (xt, dt) defined in Eq. (1). If
f is a strictly unimodal function of one variable that is symmetric around its
minimum, then this process converges to (0, 0) almost surely, and the following
inequalities

|xt| ≤ exp(−at) and dt ≤ exp(−at) (6)

hold asymptotically almost surely for some αf , αs, and a > 0.

Convergence of the corresponding (1 + λ)-ES can be stated (and proved) in the
same way.

5 Convergence Rate Analysis

The following Lyapunov function is used in this work:

Vt = V (xt, dt) = ln(|xt|+ wdt)− k ln(dt) (7)

where w, k ∈ R, w > 0, and 0 ≤ k < 1. Observe that Vt → −∞ only when
xt → 0 and dt → 0.

The proof of Proposition 2 consists of three steps:

1. Determining values for αs, αf , w, k and a such that inequality (3) is verified.
2. Proving that the conditional variance of Vt is bounded (inequality (4)).
3. Proving that, under Proposition 1, inequalities (6) hold asymptotically al-

most surely.

Since steps 2 and 3 depend only on the structure of the Lyapunov function
and/or on the type of mutation and form of step-size adaptation considered, but
not on whether step-size adaptation is based on success or on the length of the
selected step, the corresponding proofs are identical to those presented in [4],
where the same Lyapunov function and type of mutation are used together with
a different two-point adaptation rule. Moreover, they apply to both (1, λ) and
(1 + λ) selection.

In particular, step 2 can be accomplished by showing that Vt+1 has support
of bounded length for all xt and dt. By noting that the next value of the step
size must satisfy dtαf ≤ dt+1 ≤ dtαs, is possible to show that both ln(dt+1) and
ln(|xt+1|+ wdt+1) have supports of bounded length, and so does Vt+1.

Having this in mind, only step 1 is considered here for the proposed (1 +, λ)-
ESs. In order to derive (an upper bound on) EAt(Vt+1) for an arbitrary number
of offspring, λ, expectations EAt(|xt+1|) and EAt(dt+1) are calculated first for
each type of selection. Actually, since the step-size adaptation scheme is exactly
the same for (1, λ) and (1 + λ) selection, EAt(dt+1) is the same in both cases.
However, depending of the type of selection, EAt(|xt+1|) will result in different
expressions.

The (1, λ)-ES is considered first. In determining EAt(|xt+1|), two cases must
be considered: 0 ≤ xt

dt
< 1, meaning that xt is close to the origin, and xt

dt
≥ 1,

meaning that xt is far from the origin.



In the case where xt is close to the origin,

EAt(|xt+1|) = λ
(2dt)λ

[∫ 0

xt−dt −z(2z + 2dt)
λ−1dz

]
+ λ

(2dt)λ

[∫ −xt+dt
0

z(2dt − 2z)λ−1dz
]

+ λ
(2dt)λ

[∫ xt+dt
−xt+dt z(xt + dt − z)λ−1dz

]
=
(

1
λ+1

) [
xλ+1
t

dλ+1
t

+ 1
]
dt

(8)

and in the case where xt is far from the origin,

EAt(|xt+1|) = λ
(2dt)λ

[∫ xt+dt
xt−dt z(xt + dt − z)λ−1dz

]
=
[
xt
dt
−
(
λ−1
λ+1

)]
dt.

(9)

Considering (1+λ)-ES, three cases arise: 0 ≤ xt
dt
< 1

2 , 1
2 ≤

xt
dt
< 1 and xt

dt
≥ 1.

In the case where 0 ≤ xt
dt
< 1

2 ,

EAt(|xt+1|) = λ
(2dt)λ

[∫ −xt
xt−dt xt(2z + 2dt)

λ−1dz
]

+ λ
(2dt)λ

[∫ 0

−xt −z(2dt + 2z)λ−1dz
]

+ λ
(2dt)λ

[∫ xt
0
z(2dt − 2z)λ−1dz

]
+ λ

(2dt)λ

[∫ −xt+dt
xt

xt(2dt − 2z)λ−1dz
]

+ λ
(2dt)λ

[∫ xt+dt
−xt+dt xt(xt + dt − z)λ−1dz

]
= dt

λ+1 −
(

1− xt
dt

)λ (
dt−xt
λ+1

)
.

(10)

For 1
2 ≤

xt
dt
< 1,

EAt(|xt+1|) = λ
(2dt)λ

[∫ 0

xt−dt −z(2z + 2dt)
λ−1dz

]
+ λ

(2dt)λ

[∫ −xt+dt
0

z(2dt − 2z)λ−1dz
]

+ λ
(2dt)λ

[∫ xt
−xt+dt z(xt + dt − z)λ−1dz

]
+ λ

(2dt)λ

[∫ xt+dt
xt

xt(xt + dt − z)λ−1dz
]

=
(

xt
λ+1

)(
xt
dt

)λ
+ dt

λ+1 −
dt

2λ(λ+1)
.

(11)

Finally, for xt
dt
≥ 1,

EAt(|xt+1|) = λ
(2dt)λ

[∫ xt
xt−dt z(xt + dt − z)λ−1dz

]
+ λ

(2dt)λ

[∫ xt+dt
xt

xt(xt + dt − z)λ−1dz
]

= xt + dt

(
1−λ
λ+1

)
− dt

2λ(λ+1)
.

(12)

Regarding the expected step size, EAt(dt+1) = dt [αfPF + αsPS ], and all
that is required is to derive expressions for the failure and success probabilities,



PF and PS = 1 − PF , respectively. The probability of failure is simply PF =
[P (|xi,t| > |xt|)]λ = [P (xi,t > xt) + P (xi,t < −xt)]λ, leading to two distinct
cases.

If 0 ≤ xt
dt
< 1

2 , then −xt > xt − dt, and thus P (xi,t < −xt) 6= 0. Therefore,

PF =
(

1− xt
dt

)λ
and

EAt(dt+1) = dt

[(
1− xt

dt

)λ
(αf − αs) + αs

]
. (13)

If xt
dt
≥ 1

2 , then −xt ≤ xt − dt and P (xi,t < −xt) = 0. Thus, PF = 1
2λ

and

EAt(dt+1) = dt

[
1

2λ
(αf − αs) + αs

]
. (14)

To complete step 1, inequality (3) can be rewritten as:

EAt [ln(|xt+1|+wdt+1)]− kEAt [ln(dt+1)]− ln(|xt|+wdt) + k ln(dt) ≤ −a. (15)

Since ln(·) is a concave function, using Jensen’s inequality,

EAt [ln(|xt+1|+ wdt+1)] ≤ ln[EAt(|xt+1|+ wdt+1)] (16)

and it is sufficient to prove that there exist αf , αs, w, k and a such that the
following inequality holds:

ln[EAt(|xt+1|) +wEAt(dt+1)]− kEAt [ln(dt+1)]− ln(|xt|+wdt) + k ln(dt) ≤ −a.
(17)

Due to the particular form of its left-hand side, inequality (17) may be rewritten
as:

Ψ

(
|xt|
dt

)
= ln

[
EAt(|xt+1|) + wEAt(dt+1)

|xt|+ wdt

]
− k(EAt [ln(dt+1)]− ln(dt)) ≤ −a.

(18)
Analytical expressions for function Ψ(r), r = |xt|/dt, can be obtained analyt-
ically by considering the intervals (A) 0 ≤ xt

dt
< 1

2 , (B) 1
2 ≤

xt
dt
< 1, and (C)

xt
dt
≥ 1, and combining expressions (8) to (14) as appropriate for each interval

and each type of selection.

Then, it is necessary to show that, for all r ≥ 0, Ψ(r) ≤ −a for some a > 0,
particularly at the ends of each interval (r = 0, 1/2, 1 and r → +∞) and at any
critical points inside those intervals (r = r∗ such that Ψ ′(r∗) = 0).

Note that, regardless of the selection scheme, Ψ(r) is represented in each
interval by a sum of logarithms of rational fractions, and that Ψ ′(r) is repre-
sented by a rational fraction, in variable r. Therefore, the critical points within
each interval, and the corresponding values of Ψ , can be determined numerically
for given values of αf , αs, w and k, and the following constrained nonlinear



optimization problem can be formulated:

(α∗s , α
∗
f , w

∗, k∗, a∗) = arg max
αs,αf ,w,k,a

a

subject to:



αs ≥ 1
0 < αf ≤ 1
w > 0
0 ≤ k < 1
Ψ(r) + a ≤ 0, r = 0, 1/2, 1,+∞
Ψ(r∗) + a ≤ 0, r∗ : Ψ ′(r∗) = 0

(19)

Problem (19) can be solved numerically for either (1 +, λ)-ES and any selected
value of λ. To prove this statement, the principle of finite induction is used.
Firstly, it is shown that Problem (19) can be solved both for the (1 + 1)-ES and
for the (1, 2)-ES (see Table 1). Then, it must also be shown that, if it can be
solved for a generic λ, then it can also be solved for λ+ 1.

In order to highlight the dependence of function Ψ on the number of offspring
λ, the following notation is introduced:

Ψλ(r) = ln

[
EAt
λ (|xt+1|) + wEAt

λ (dt+1)

|xt|+ wdt

]
− k{EAt

λ [ln(dt+1)]− ln(dt)} (20)

Clearly, ∀λ ∈ N,

−k{EAt
λ+1[ln(dt+1)]− ln(dt)} ≤ −k{EAt

λ [ln(dt+1)]− ln(dt)}, (21)

so it is sufficient to show that ∀λ ∈ N, ∃w′ > 0 :

EAt
λ+1(|xt+1|) + w′EAt

λ+1(dt+1) ≤ EAt
λ (|xt+1|) + wEAt

λ (dt+1), (22)

where EAt
λ+1(|xt+1|) ≤ EAt

λ (|xt+1|) and EAt
λ+1(dt+1) ≥ EAt

λ (dt+1).
Suppose that there exist 0 < αf ≤ 1, αs ≥ 1, w > 0, 0 ≤ k < 1, and a > 0

such that Ψλ(r) ≤ −a for all r ≥ 0, and let w1 > 0 and w2 > 0 be defined as
follows:

w1 = w
2λ+1αf

αf + αs(2λ+1 − 1)
< w

(1− r)λ(αf − αs) + αs
(1− r)λ+1(αf − αs) + αs

= w
EAt
λ (dt+1)

EAt
λ+1(dt+1)

(23)
where 0 ≤ xt

dt
< 1

2 , and

w2 = 2w
αf + αs(2

λ − 1)

αf + αs(2λ+1 − 1)
= w

EAt
λ (dt+1)

EAt
λ+1(dt+1)

where
xt
dt
≥ 1

2
. (24)

Letting w′ = min{w1, w2}, inequality (22) is shown to hold true, and there are
indeed 0 < αf ≤ 1, αs ≥ 1, w = w′ > 0, 0 ≤ k < 1 and a > 0 such that
Ψλ+1(r) ≤ −a for all r ≥ 0, concluding the induction step.



(1, λ)-ES λ = 2 λ = 3 λ = 4 λ = 5 λ = 6 λ = 7

αs 1.15180 1.19847 1.19591 1.18729 1.18036 1.17567

αf 0.72873 0.52779 0.42236 0.36531 0.33489 0.31895

w 2.51320 1.44610 1.09380 0.90415 0.77973 0.68860

k 0.31395 0.30306 0.29601 0.29158 0.28901 0.28761

a 0.00843 0.02379 0.03370 0.03932 0.04223 0.04362

a/λ 0.00422 0.00793 0.00842 0.00786 0.00704 0.00623

(1 + λ)-ES λ = 1 λ = 2 λ = 3 λ = 4 λ = 5 λ = 6 λ = 7

αs 1.89274 1.73948 1.64704 1.59411 1.56531 1.55027 1.54260

αf 0.75675 0.60518 0.51496 0.46382 0.43603 0.42133 0.41370

w 0.11219 0.10567 0.09626 0.08560 0.07521 0.06598 0.05819

k 0.23988 0.24304 0.24488 0.24591 0.24648 0.24681 0.24701

a 0.04309 0.07039 0.08660 0.09569 0.10060 0.10318 0.10453

a/λ 0.04309 0.03518 0.02887 0.02392 0.02012 0.01720 0.01493

Table 1. Values for αs, αf , w, k, a and a/λ obtained by solving optimization problem
(19) for (1, λ) and (1 + λ)-ESs and different numbers of offspring (λ).

By solving Problem (19) numerically for each type of selection and number
of offspring, suitable step-size adaptation parameters αf and αs are obtained,
and inequality (3) is shown to hold true, completing step 1 of the proof of
Proposition 2. An upper bound e−a on the convergence rate of such an ES on
any strictly unimodal, symmetric function of one variable is also obtained as a
by-product.

Table 1 shows the parameter and auxiliary values, as well as the convergence
bounds, obtained for (1, λ) and (1 + λ) selection and several values of λ. The
results were obtained using the sequential quadratic programming solver in the
GNU Octave numerical package. From the table, it is possible to select the
number of offspring λ which minimizes the convergence rate bound for each
(1 +, λ)-ES with respect to the number of function evaluations. For the (1, λ)-
ES, λ = 4 can be seen to lead to the highest value of a/λ, whereas for the
(1 + λ)-ES, the best number of offspring appears to be λ = 1.

6 Conclusions

In this paper, a simple success-based (1 +, λ)-ES with uniformly-distributed
mutations for functions of one variable was proposed. Following the theoretical
approach proposed in [5], the convergence of the ES was studied on the class of
unimodal functions symmetric around the optimum using stochastic Lyapunov
function and martingale theory. General expressions for the expectation of xt+1

and dt1 were derived considering both (1 +, λ) selection. Using an appropriate
Lyapunov function, upper bounds on the convergence rate and specific ES pa-
rameter values were obtained via numerical optimization, for growing values of
λ. The number of offspring that minimizes the bound on the convergence rate
with respect to the number of function evaluations was also determined in this



way. Future work includes an experimental study of the actual convergence rates
achieved with the proposed parameter settings as well as extending the theoret-
ical results to other function classes, other mutation distributions, and multiple
decision variables.
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