Transient dynamics and their control in time-delay autonomous Boolean ring networks
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Biochemical systems with switch-like interactions, such as gene regulatory networks, are well mod-
eled by autonomous Boolean networks. Specifically, the topology and logic of gene interactions can
be described by systems of continuous piecewise-linear differential equations, enabling analytical pre-
dictions of the dynamics of specific networks. However, most models do not account for time delays
along links associated with spatial transport, mRNA transcription, and translation. To address this
issue, we we have developed an experimental testbed to realize a time-delay autonomous Boolean
network with three inhibitory nodes, known as a repressilator, and use it to study the dynamics that
arise as time delays along the links vary. We observe various nearly-periodic oscillatory transient
patterns with extremely long lifetime, which emerge in small network motifs due to the delay, and
which are distinct from the eventual asymptotically stable periodic attractors. For repeated exper-
iments with a given network, we find that stochastic processes give rise to a broad distribution of
transient times with an exponential tail. In some cases, the transients are so long that it is doubtful
the attractors will ever be approached in a biological system that has a finite lifetime. To counteract
the long transients, we show experimentally that small, occasional perturbations applied to the time

delays can force the trajectories to rapidly approach the attractors.

PACS numbers: 05.45.-a, 87.18.Cf, 87.19.1r

I. INTRODUCTION

Boolean network models are widely used for describing
systems with switch-like interactions in multiple research
fields: In the geosciences, they have been used as ideal-
ized climate models on a large range of timescales from
interannual to paleoclimatic variability [1, 2], as well as
for earthquake modeling and prediction [3, 4]. In biol-
ogy, Boolean networks have been used to describe neural
networks [5, 6], and gene regulatory networks (GRNs)
[7—11], and are applied to study evolution [12, 13| or im-
mune response [14]. Furthermore, Boolean network mod-
els find applications in economics [15] and social sciences
[16]. In all of these systems, current research focuses on
identifying the type and number of coexisting attractors
and their real-world interpretation. This is especially the
case for GRNs, which are the main focus of this work.

The main idea of GRNs was put forth by Jacob and
Monod [17]: They proposed that a transcription factor,
which is a protein encoded by a specific gene, can bind to
another gene, thereby repressing or enhancing its produc-
tion rate. As a consequence, a directed network emerges
where the nodes are the genes, and links are given by
causal interactions via transcription factors. The dynam-
ics of a regulatory network can be approximated by con-
sidering genes to be either active or inactive, i.e., pro-
ducing their target protein or not. This depends in a
switch-like manner on the presence of a combination of
transcription factors, which motivates the description of
GRNs as a Boolean switching network, where each gene
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evaluates its ‘on/off’-state (denoted by ‘1’ or ‘0’) accord-
ing to a Boolean function of its inputs, i.e. its transcrip-
tion factors.

Gene expression patterns observed in GRNs are be-
lieved to mirror different characteristics of a cell. First,
different gene expression patterns correspond to different
cell types, as hypothesized by Kauffman [18], to match
different coexisting attractors of a Boolean network. Sec-
ond, a gene expression pattern displays a specific func-
tional state of the cell, such as differentiation (execution
of a tissue-specific task), proliferation (cell cycle) and
apoptosis (cell death) [19]. Functional state and type
of a cell may be determined by separate subsets of the
GRN.

When studying the dynamical patterns or attractors of
model GRNs [20-22], predictions depend on the choice of
models, e.g., the scaling of the number of attractors with
respect to system size in random Boolean networks [23].
While a Boolean approximation to sigmoidal switching
interactions seems robust in many cases [24-26], several
oversimplifications of established models, such as syn-
chronous update of node states, negligence of transmis-
sion delays, and homogeneous network elements, can re-
strict the dynamics or yield artifacts. For example, it
is well-known that a large number of periodic cycles in
Boolean networks become unstable for an autonomous
updating scheme [23] and that even very simple Boolean
networks can display complex dynamics [27, 28]. Never-
theless, long-lasting unstable orbits might still be biolog-
ically meaningful if they decay slowly to the asymptotic
attractors.

The simplified description of GRNs omits several pro-
cesses in gene expression that comprise transcription of
DNA to mRNA and translation to the target protein.



These intermediate steps can be modeled as separate
nodes within the GRN [29]. Additionally, intermediate
steps in gene expression can cause significant time delay
in certain types of genes [30], which we include explicitly
in our experimental approach. Time delays along net-
work links in related non-Boolean systems, such as neu-
ral networks, have been shown to induce oscillations in
systems that would otherwise converge to a fixed point
[31-33]. Transcriptional and translational delays were
identified to cause oscillations of the transcription fac-
tors in real [34], synthetic [35] and model [36, 37] GRNs.
In neural ring networks, delay-induced transient oscilla-
tions have been reported [38-41], leading to instability
that may interfere with information processing. We an-
ticipate that adding delay in models of GRNs will simi-
larly modify the stability of response patterns.

To address the shortcomings of conventional models
for representing real-world networks, we use an experi-
mental testbed to realize time-delay autonomous Boolean
networks (ABNs) with electronic logic gates on field-
programmable gate arrays (FPGAs) [42, 43]. With this
approach, we also address the question whether the dy-
namics are robust to noise and heterogeneity as found in
any real-world system. The ultra-fast timescale of the
platform allows us to observe phenomena that are diffi-
cult to obtain through numerical simulations of the model
because the time-delay model is exceedingly stiff, espe-
cially as the time delay increases. Moreover, a general
framework to integrate delay equations with stochastic
delays has not yet been developed to the best of our
knowledge. With this platform, we study small ring
networks of inhibitory genes, which exhibit nearly pe-
riodic oscillations of gene activity that evolve slowly to
an asympotically stable periodic state. This is a promi-
nent behavior in regulatory systems of organisms [44—48].
Specifically, we study the so-called repressilator [49] net-
work, illustrated in Fig. 1, which is extensively studied
as a synthetic network.
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FIG. 1. a) Ring network of N = 3 nodes with inhibitory in-
teractions. b) Description of a) as time-delay autonomous
Boolean network. c¢) State transition diagram of the au-
tonomous Boolean network b) without link delays.
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The primary purpose of this paper is to show that de-
lays induce transient patterns in ABNs that are distinct

from the asymptotic attractor. These transients can be
exceedingly long, consisting of millions or billions of os-
cillations. This suggests that gene regulation patterns in-
ferred from asymptotic study of Boolean network models
might not always be relevant on observational time scales.
Our experiments incorporate additional features of realis-
tic Boolean models. First, we demonstrate that the tran-
sient dynamics are very sensitive to delay heterogeneities
and initial conditions. Second, the inherent noise in our
system reveals an important role of stochasticity, as we
observe long-tailed distributions for the transient dura-
tions for longer delay times. Furthermore, we present
a method to counteract these superlong transients using
small occasional perturbations to one of the time delays.
Finally, we reproduce essential experimental observations
with a theoretical model based on piecewise-linear delay
differential equations.

II. BACKGROUND AND EXPERIMENTAL
APPROACH

A. Network dynamics without time delay

A well-established framework describing GRNs as
ABNs without link delays is the so-called Glass model,
which embeds the logic and topology of Boolean networks
in systems of piecewise-linear differential equations [50].
Here, the symbolic dynamics can be described by Boolean
network states (by, bs, ..., by ) with b; € {0,1}, which cor-
respond to the current activity of N genes. These states
can be depicted as vertices on an IN-dimensional hyper-
cube (Fig. 1b) and they evolve in time on the directed
edges of the hypercube, which are determined by topol-
ogy and Boolean functions of the network nodes. The
attractor on the hypercube corresponds to the asymp-
totic gene expression pattern of the GRN, which can be
static or dynamic, i.e., steady states or cyclic switching
patterns.

A ring network with N = 3 repressing nodes, modeled
by the Boolean NOT function, exhibits a cyclic attractor
with the switching sequence (0,0,1) — (0,1,1) — (0,1,0)
- (1,1,0) — (1,0,0) — (1,0,1) — ... [50]. Without link
delays, this attractor is reached immediately after the
switching of at most one variable. We test whether these
predictions hold as delays are included along the links.

B. Implementation on field-programmable gate
array

We construct experimental repressilator networks with
autonomous (unclocked) logic gates performing Boolean
NOT operations on a FPGA (Altera Cyclone IV on
the Terasic DE2-115 demonstration kit), as described in
greater detail in Appendix A. An important character-
istic of this experimental system is the response time of



a logic gate, which we will need when comparing to the
theoretical model described in Sec. V.

Fundamentally, the finite rise/fall time of the output of
a logic gate due to a step change in its input gives rise to
an effective time delay in its output. In a mathematical
model, we can account for this by either chosing to assign
a response time to the node and no delay time, or assign a
delay time to the node and an instantaneous rise/fall time
delay. Here, we take the three nodes of the repressilator
to have a response time of 7,, = 0.41£0.02 ns, which cor-
responds to the time the analog voltages take to reach the
threshold. This characteristic timescale may be linked
to production and degradation rates (lifetimes) of gene
products in real GRNs. The network nodes are connected
with links that we assign a time delay. These links are
constructed by connecting a cascade of n; pairs of NOT
gates in series, where assume each pair has a character-
istic propagation delay 79 = 0.52 4+ 0.02 ns. Therefore,
each network link ¢ has a delay 7; = n;79 due to a discrete
number n; of delaying elements. The networks are thus
characterized by the vector n = (n1,n2,n3). Our initial
analysis focuses on equal numbers n of delay elements in
each link, corresponding to approximately homogeneous
delays.

This delay time is only an estimate because it is sub-
ject to different heterogeneities: Manufacturing imper-
fections lead to varying propagation delays of the logic
elements and the routing wires in between network nodes
and delay lines are not identical at every node. We find
that manufacturing imperfections typically give rise to
a delay heterogeneity of 50 - 150 ps in two delay lines
with identical number n of delay elements. In contrast,
because of asymmetries in the chip layout, we cannot di-
rectly measure the heterogeneities due to non-identical
routing wires. By studying different placements of the
network on the chip as discussed in Appendix B, we es-
timate that this heterogeneity is on the order of 100 ps.
The heterogeneity is less than 10% of a typical link delay
used in our experiment, which ranges from approximately
1-3.5ns.

Because we investigate a time-delay autonomous sys-
tem, the initial conditions have to be defined for a time
interval corresponding to the long delay time 7,4, in the
network. To this end, we first keep the nodes’ states
fixed for a time much greater than 7,,,,. Then, the
autonomous dynamics are essentially simultaneously re-
leased by a signal generated by a clocked register for each
node. There is a remaining heterogeneity of roughly
100 ps in the timing of this signal due to the non-zero
phase shift of the clock at different positions on the chip
and non-identical wires leading to the different network
nodes. As above, this timing difference is no more than
10% of the typical delay used in our experiment.

We make small changes to the time delays by imple-
menting an alternate path within a delay line that in-
cludes a logic gate with slightly longer propagation delay
than its counterpart in the original path. This allows
us to selectively change the heterogeneity of time delays

by ~100 ps. To change the timing heterogeneity of the
initial conditions, we use the CAD tool Altera Quartus
II as discussed in Appendix B. It allows us to alter the
relative positions of the initializing clocked registers for
each node, thereby inducing an additional routing delay,
which affects the heterogeneity of the timing of the initial
conditions by ~100 ps.

The attractor dynamics are also affected by the pres-
ence of stochastic, time-varying fluctuations in the link
time delays due to fluctuations in the gate charge on a
fast time scale, and on the FPGA chip temperature and
supply voltage on longer time scales. To reduce the ef-
fects of the change in temperature in the laboratory, we
place the FPGA in a small box where the typical vari-
ation is 0.5 °C. These processes give rise to variation
in the delay times of the logic elements on the order of
10 ps over all time scales, which is ~1% of the typical
delay times. These fluctuations are small in compari-
son to the noisy environment typically encountered in a
biological regulatory network. We conjecture, however,
that the behavior we observe here will be obtained even
with larger noise, albeit with a different timescale for the
distribution of transient times.

III. REPRESSILATOR DYNAMICS
A. Transient oscillatory patterns

We observe long nearly-periodic transients when we
initialize the networks with initial conditions that do not
lie on the eventual attractor, i.e., Boolean states (0,0,0)
or (1,1,1). In Fig. 2a, we show the waveform V; (t) of one
node observed in a network with n = (2, 2, 2) after initial-
ization, and after collapse of the transient, which occurs
after T' ~ 3 us, or equivalently approximately 1,500 oscil-
lations of each node. Initially, the dynamics of each node
is nearly periodic and in-phase with the other nodes with
a period of 2.84 £+ 0.01 ns. For refence to the theoretical
discussion in Sec. V, this period = 27, where 7 is average
link delay. The in-phase oscillations are indicated in the
three-dimensional phase portrait in Fig. 2b, where the
trajectory evolves nearly on the hypercube diagonal in
an apparently closed trajectory, at least on the observed
time scale of a few cycles. This trajectory evolves slowly,
always remaining nearly periodic. During this transient
phase, a cycle edge is catching up to another, eventu-
ally leading to the annihilation of a low-high-low transi-
tion (just before 2.9 us in Fig. 2a) then a high-low-high
transition (just after 2.9 us), indicating the end of the
transient. After this transient collapse, the trajectory is
characterized by the stable periodic attractor shown in
right panel of Fig. 2b with a period of 8.51 4+ 0.01 ns
(compare with Fig. 1b). Again, for future reference, this
period is ~ 67, which is predicted by the Glass network
theory without link delays.

The transients decay because of the nodes’ finite re-
sponse time as explained here. After we initialize the
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FIG. 2. Temporal evolution of the transient dynamics. a)
Waveform of one node in a network with n = (2,2,2) delay
elements initialized in the (1,1,1) state. The inital nearly-
periodic in-phase behavior eventually gives way to out-of-
phase oscillations after 7' ~ 3 us. b) Corresponding three-
dimensional phase portrait of the trajectory, which evolves
from in-phase nearly-periodic oscillations (left) to the asymp-
totic out-of-phase periodic attractor (right).

network, a Boolean transition (edge) is triggered at every
node and travels on the delay lines along the ring. The
heterogeneities in initial conditions and time delays lead
to different traveling speeds of the edges. The distance
of two neighboring edges gradually decreases and they
finally annihilate once their temporal distance is as small
as one node response time (see Fig. 2a). This leaves only
one edge traveling in the ring, which is asymptotically
stable.

B. Scaling and distribution of transient durations

In our experiments, the time to reach the asymptotic
attractor is different from trial mainly due to the stochas-
tic variation in the delay due to charge noise fluctuations
at the gates, as mentioned in the previous section. Below,
we characterize this behavior by measuring the transient
duration probability distribution. Especially for long link
delays, these times can be exceedingly long. This is an
example of super-transient behavior, which is encoun-
tered in a rage of other systems and often have a mean
transient time that scales exponentially with a system pa-
rameter. This has been observed for spatially extended
systems [51-56], networks [38, 57, 58], and time-delay
systems [39]. The observed behavior also shows similari-
ties to stable chaos in coupled map lattices for which the
transient time scales with the size of the lattice [59].

We observe a rapid increase of mean transient dura-
tion (T') with time delay. In Fig. 3, we show the mean
transient durations for networks with different numbers
n = (n,n,n) of delay elements in each link, which in-
creases the link time delays. For small delay times (white
region of the plot), we observe transients of moderately
long duration, i.e., several thousand oscillations.

When the link delays are above ~ 2 ns (indicated by
the gray region in the figure), a regime of supertransients
with typical durations on the order of milliseconds or sec-
onds and beyond is found. Here, the transient durations
do not increase monotonically with n. For a network re-
alization with n = (5, 5,5), we find that the transient du-
rations are beyond 40 minutes for each of 30 experimental
runs, at which point we terminate each run. Hence, we
can only conclude that the mean transient time exceeds
this value and expains the use of an arrow for the data
point corresponding to this network. For n = (6,6,6),
the mean lifetimes are roughly one second, although there
are extremely large variation from run to run. We hy-
pothesize that, in this regime, the observed variation in
the mean transient durations are dominated by tiny het-
erogeneities in link delays and initial conditions due to
different routing of wires in the delay lines as we vary n.
Further below, we demonstrate that the mean transient
durations for fixed n are very sensitive to slight changes
in heterogeneity.
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FIG. 3. Mean transient durations for networks with a ho-
mogeneous number of n delay elements in each network link,
repeatedly initialized in the (0,0,0) state. For n=5, the tran-
sients for each experimental run last longer than 40 minutes at
which point the experiment terminated. Here, the data point
only signifies the termination point and the arrow indicates
that the mean is longer than this value. For each data point
in the white region, we collect 100,000 samples. In the gray
region, we conduct 30 experimental runs for n = 5, 32,000
for n = 6, and 94,669 for n = 7. The error bars indicate the
standard deviation.

From Fig. 3, we furthermore see that the standard
deviation increases with delay, which indicates a broad-
ening of the transient duration probability distributions.
For small delays, the transient durations are confined to
a Gaussian-shaped peak with a short tail, as shown in
Fig. 4a. For longer delays, the distribution of transient
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FIG. 4. Probability density function for the transient dura-
tions of networks with a) n = (2,2,2) and b) n = (7,7,7)
delay elements. Here, a histogram is generated indicating the
number of instances that we observe a transient time within
T and T + AT, normalized by AT and the total number of
observed transient times. It approximates the transient time
probability density P(T), where P(T)AT is the probability
of observing a time interval T when AT is small. b) The
mean transient duration (T") is 0.41 s and the red line shows
an exponential fit (p(T) < e"*T) to the data with exponent
A=244s""

durations shows an exponential tail, as displayed in Fig.
4b. Here, the standard deviation is roughly equal to the
mean.

C. Alternative transient patterns

In addition to the in-phase oscillations shown in Fig.
2, we observe transient trajectories in some networks,
which correspond to different Boolean switching patterns
when depicted on the hypercube. These different tran-
sient patterns can coexist for a given network realization
and likewise emerge when repeatedly initializing the net-
work. In Fig. 5, we show two different transient trajec-
tories that arise in a network with n = (4,4,4). While
one trajectory represents in-phase oscillations (left), the
other corresponds to a switching sequence that visits all
states on the hypercube. This is a further indication that
the nature and number of coexisting gene expression pat-
terns, which are inferred from our model on observational
timescales, differ from the asymptotic state.

D. Sensitivity to heterogeneity

In our experiments with longer link time delays, we
observe that the average transient durations (T') vary by
several orders of magnitude for slightly different on-chip
network realizations with the same number of delay ele-
ments n = (n,n,n). We demonstrate that this behavior
is a result of changing the fixed or ‘frozen in’ hetero-
geneities in delay times and initial conditions. We ex-
pect these to be on the order of 100 ps, corresponding

FIG. 5. Phase portrait of two different transient trajectories
of a network with n = (4,4, 4) delay elements, both initialized
in the (1,1,1) state.

to ~1/30 of a typical link delay. We independently alter
the heterogeneities of initial conditions or time delays by
these small amounts and measure changes in the tran-
sient duration distributions. In Fig. 6a, we show three
transient duration distributions obtained by slightly de-
laying the timing of the initial conditions of one of the
nodes as described in Appendix B. The distributions have
an exponential tail with means varying by two orders of
magnitude. In the experiment with unchanged initial
conditions, the mean transient duration is (T') = 0.92 s.
A similar effect is seen as we alter the delay in one of the
delay lines by ~100 ps (data not shown here). We con-
jecture that the larger variation in mean time delay seen
in the gray region of 3 is due to this increased sensitivity
to network heterogeneity.

IV. ACTIVE FEEDBACK CONTROL OF
TRANSIENT DYNAMICS

It is often important to predict and control the tran-
sition of dynamical systems from transient dynamics to
a targeted behavior [60]. This has been investigated for
technological applications, including turbulent pipe-flows
[56] and cascading failures in power grids [61], as well
as biological systems, such as ecological models [62] and
neural networks [63]. To force our experimental transient
dynamics towards the asymptotic attractor, we harness
the high sensitivity to small changes of the time delays.
This is similar to feedback control methods for chaotic
systems, which have been used to stabilize unstable peri-
odic orbits by harnessing the chaotic sensitivity to small,
occasional perturbations [64, 65].

We apply occasional adjustments to one of the time de-
lays to perturb the timing of selected traveling Boolean
transitions. Similar to Blakely et al. [66], we detect
the signal at one position in the ring and subsequently
perturb one of the time delays at a later position. In
greater detail, we perturb the timing of a specific trav-
eling Boolean transition (the target edge) every other
round trip. This is achieved by implementing delay lines
consisting of two alternate paths, which differ in delay



time by about 100 ps (less than 10% of a typical link de-
lay time). At a fixed position, before the delay line splits
into these two paths, we detect incoming edges and de-
cide whether or not to perturb them. This decision can
be made by an asynchronous counter, which counts the
number of incoming edges, starting from the target edge
as described in greater detail in the Appendix C. We
prescribe a fixed target value of the counter, reflecting
the frequency that we want to perturb the target edge.
Whenever this value is reached, we reset the counter and
create a short pulse, which leads the delay line to employ
the longer path for the target edge. For all other edges,
the shorter path is used. For the results presented in Fig.
6b, we perturbed the target edge once every other round
trip.

These targeted perturbations give rise to a rapid decay
of the transients for all networks. An example is given in
Fig. 6b for a network with n = (6,6,6) delay elements,
where, in every delay line, the timing of one of the three
traveling edges can be perturbed. When not perturbing
any edge, we find an average transient duration of (T') =
0.4 s, the corresponding distribution has an exponential
tail (red curve). Perturbing one of the edges leads to a
rapid transient collapse. The transient durations are then
confined to a narrow interval around an average that can
be as small as (T") = 250 ns. Thus, the high sensitivity of
transient dynamics to heterogeneities can be used to yield
a consistently rapid transient collapse when employing
targeted perturbations of time delay. Furthermore, the
actual time of transient collapse may be controlled by
adjusting the application of the occasional perturbations.

V. MATHEMATICAL MODEL OF THE
REPRESSILATOR WITH DELAY

To model the dynamics that arise in our experiments,
we extend the framework developed by Glass and collab-
orators [50] by including time delays along the links [67].
We investigate a set of first-order piecewise-linear delay
differential equations for a general ring of N nodes

9i(t) = —yi(t) + F (yi-1(t — 7)) , (1)

where i is defined mod N. In this model, the continu-
ous variables y;(t) relate to the concentration of the gene
product of gene ¢ and act as a transcription factor for
gene i + 1. For the sake of symmetry, we rescale to the
dynamics to the interval y € [—1, 4+1]. The production is
regulated by a repressing threshold function

-1 fory>0
F(y) = - 2
) { 1 fory<O. @)

Time is scaled in units 7,./In2, where 7, is the rise or
fall time of the analog signals to the threshold defined in
Sec. IIB. Each variable is initialized at a time ) = §;,
where we choose as initial functions y;(t < #§) = 1, and
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FIG. 6. Transient duration distributions in the presence of
heterogeneities and active feedback control. a) Transient du-
ration distributions in a network with n = (7,7,7) delay el-
ements when individually altering the timing of the initial
conditions of each node by roughly 100 ps. The mean tran-
sient durations when delaying node 1, 2 and 3 are (T') = 5.93
ms, (T) = 8.05 ms and (T') = 151.46 ms, respectively. We
collected 30.000 samples for each distribution. b) Transient
duration distributions in a network with n = (6,6,6) delay
elements, when perturbing the timing of a specific traveling
edge. Note, that the time scale for the distribution with no
perturbation (red) is seconds.

the link delays 7; are allowed to have both fixed (frozen
in) variation as well as stochastic time-varying behavior.

In the absence of stochastic variation in the delay, but
with a small fixed heterogeneity, these differential equa-
tions are known to display long transients [39]. Long
transient times were also reported in a model for in-
hibitory ring GRNs that does not incorporate time de-
lays, but instead includes an intermediate step in gene
expression, which gives an effective delay time [68].

We begin with a direct analysis of the delay differ-
ential equations (1) with no delay or initial timing het-
erogeneities or stochastic effects. We find the shortest
in-phase periodic solution corresponding to the initial
transient shown in Fig. 2a) and find that its period is
P, = 2(7 + In[2 — e77]), where 7 is the average delay
of the three network links. For the asymptotically-stable
periodic state, we search for an out-of-phase periodic so-
lution and find that the period is P, = 6(7 + In[2]) in
the limit as 7 — oo.

We compare our predictions to the experimental re-
sults shown in Fig. 2 for n = (2,2,2) by converting
our expressions back to physical time. We predict that
P;, = 2.7940.08 ns, P,,; = 8.7£0.24 ns, where the errors



are dominated by our uncertainty in 7. The agreement
with the experimentally measured values (2.84 4+ 0.01 ns
and 8.51 4+ 0.01 ns, respectively) is good and within our
prediction error.

To determine the stability of the in-phase periodic
state, we continue to ignore the stochastic variation in
the delay and follow the approach of Edwards et al. [67],
where we take advantage of the fact that the system (1)
is piecewise linear. In between switching times féﬂ where
yi(t) changes from a rising to a falling edge and vice versa,
the equations can be directly integrated, leading to an
exponential evolution towards the ideal Boolean values
+1,

it — 1) = F14 (@) £ e~ (3)

In the first term, the minus (plus) sign is chosen for a
falling (rising) edge. The dynamics is then fully described
by the switching times ¥, and the value of the state
variables at these times y;(£F). Further simplification is
possible by defining a new discrete-time variable

ei(k) =1 -yl (4)

which describes the distance of the state variables to the
ideal Boolean values y = +1 at switching time ¥. Solving
Eq. (3) for y;(t) = 0 leads to a recursive relation

P =k w2 47 (5)
E = (2 - efye B0 (6)

1
The initial conditions translate to €;(0) = 0, and 9 = §;.

The dynamics occur on a fast manifold governed by
Eq. (5) related to the nearly periodic in-phase behavior,
which drives the dynamics on a slow manifold governed
by Eq. (6) and determines the transient duration. We
find that the Floquet exponent corresponding to the dy-
namics on the slow manifold is given by 3e¢~7/4 in the
limit 7 — o0, explaining the extremely long transient
time.

We next investigate the scaling of the transient dura-
tions in this model with delay time and fixed heterogene-
ity between the time delays. We numerically simulate Eq.
(6) until ¢;(K) > 1, or, equivalently, £ < X! meaning
that two edges collide and thus the transients terminate.
For a mean link delay 7, the duration of the transient can
then be estimated as the number of transitions K multi-
plied by the period of the initial oscillations, T' ~ K P;,.
For fixed heterogeneity, we find that the transient dura-
tion scales approximately exponentially with the mean
delay time, as depicted in Fig. 7a and in agreement with
our estimate based on the Flouquet exponent. In Fig.
7b we vary the delay heterogeneity for a given mean de-
lay time. We see that the system shows a sensitive de-
pendence on heterogeneity for small differences between
initial conditions or link delays, and the mean transient
duration diverges for vanishing heterogeneity. Moreover,
a timing change of initial conditions has the same effect
as fixed heterogeneous time delays. This allows for the

possibility that different heterogeneities cancel, yielding
super-long transients in agreement with the observations
in our experiments.
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FIG. 7. Transient durations for the map (5) and (6) for N = 3
with no stochastic fluctuations in the time delay (£ = 0). a)
Transient durations as a function of the mean delay 7 for a
fixed heterogeneity A = 0.1, defined by m =74+ A/2, o =7
and 73 = 7 — A/2. Differences in initialization timing are not
explicitly taken into account, i.e., §; = 0. An exponential fit
(T o ™) to the data with exponent A = 1.17 is shown in red.
b) Transient durations as a function of delay heterogeneity A
for a fixed mean delay 7 = 8.

The reduction of the set of delay differential equations
given in Eq. (1) to a map (6) also offers a framework to
study the role of stochastic variations in the delay time
in a straightforward way. Here we consider the simplest
case of a stochastically varying link time delays along by
modeling the delay term as 7;(k) = 7 + &/(k), with &;(k)
a white Gaussian noise term with zero mean and variance
o2. The system is then described as

fi?'*‘l = {f_l +1n[2 + ef_l] + 7+ &i(k)

dH=@-dhe @ @)

We numerically evaluate the map (7) with increasing
mean time delays and constant noise strength 2. The
results are shown in Fig. 8, where it is seen that the
mean transient duration scales exponentially with the
mean link delay for the shorter delays, as is illustrated
in Fig. 8(a). For longer mean delay, the scaling is sub-
exponential where, we conjecture, the stochastic term in
(7) plays a more important role and reduces the rate of
increase in the delay time, but does not suppress the long
transient. We confirm this conjecture by increasing the
noise strength and find that the break from exponen-
tial scaling occurs at shorter mean time delays (data not
shown). We also find that the stochastic variation in the
link delays leads to a distribution of the transient dura-
tions similar to the experimental observations as shown
in Fig. 8(b). Here, we see that the distribution is broad
with an exponential tail for a long mean time delay. For
shorter time delays (not shown), the distribution resem-
bles a gaussian. A more complete investigation of this
model, including the role of heterogeneities, size of the
ring network and noise strength, is published elsewhere
[69].
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FIG. 8. Transient durations for the map (6) for N = 3. a)
Mean transient duration as a function of the mean delay 7 for
0% = 107*. b) Probability density function of the transient
duration for 7 = 10 and ¢% = 10~%.

VI. DISCUSSION

We demonstrate that including time delays in ABN
models induces long-lasting transient dynamics that are
qualitatively different from the asymptotic attractors.
If we transfer this result to GRNs, our findings sug-
gest that the asymptotic gene expression patterns may
not always be important for cell fate. Instead, the dis-
tinct transient patterns might dominate on observational
timescales, which are then linked to different cell types
or functions. While transients with hundreds to thou-
sands of oscillations are found for time delays on the or-
der of 1-4 node response times, a dynamical regime of
extreme transients emerges at delay times on the order
of 5 node response times and beyond. When comparing
time scales to real GRNs, one has to consider various
processes within gene expression. Some of them have
been characterized as time delays, such as mRNA splic-
ing, which can be on the order of the actual gene product
lifetime [30, 70]. Additionally, there are many more pro-
cesses that translate into time delay in our model, such
as elongation [71], actual mature mRNA production rate,
translational delays and many more. As a result, we be-
lieve our studies reflect a biologically plausible parame-
ter regime with regards to time-delay along the network
links.

With our experimental platform, we show that the
mean transient durations are very sensitive to small
changes in the heterogeneities of time delays and initial
conditions. Despite this high sensitivity to heterogeneity,
our findings are not restricted to time delays with very
small heterogeneities. Instead, the qualitative results
for the transient dynamics remain unchanged when we
implement heterogeneous delays n = (n1,ng,n3), with
n1 # ng # ng in the delay lines, assuming that the rel-
ative difference of the time delays does not exceed ap-
proximately 50%. This robustness is important because
heterogeneities in the time delays of real GRNs might be
substantial. On the other hand, we demonstrate that ap-

plying small occasional perturbations to one of the time
delays can indeed rapidly force the transient trajectories
towards the asymptotic attractors.

The results presented in this paper are not restricted to
the repressilator network. We have carried out the same
experiments for repressing ring networks with N = 2 [69],
representing a toggle-switch [72], and with N = 4. Both
networks are asymptotically non-oscillatory, but possess
two coexisting steady states. We observe the same qual-
itative transient dynamics: As delays are included along
the links, oscillatory transients are induced, which can be
extremely long for certain parameter regimes and obey
long-tailed distributions. Furthermore, the transient dy-
namics are sensitive to small changes in heterogeneities
and may be controlled with our proposed scheme.

A theoretical model of our experimental ABN using
piecewise-linear delay differential equations is consistent
with our essential experimental observations. In particu-
lar, we predict a sensitive dependence of transient dura-
tions on heterogeneities of time delays and initial condi-
tions. For fixed heterogeneities, we furthermore find an
exponential scaling with delay time. This is not clearly
seen in the experiment due to the fact that we cannot
keep the heterogeneities fixed as we vary the time delays.
When taking stochastic variation of the time delay into
account, this exponential scaling is reproduced for the
shorter time delays and saturates at longer delay. More-
over, we recover in our model a broad distribution of
transient times with an exponential tail. In other work
[69], we further investigate the role of noise and asymmet-
ric thresholds in the model to help understand in more
detail the experimental observations.

We conclude that link delays, as often found in biolog-
ical networks, along with small heterogeneity, give rise
to different super-long transient patterns in small net-
work motifs that are distinct from the eventual network
attractors. This suggests that these transient patterns,
as opposed to the asymptotic dynamical network states,
could have a biological relevance. Specifically, the gene
expression patterns inferred from GRN models and are
linked to types and functional states of cells, might not be
reached on observational time scales. We also show that
the observed transient patterns are very sensitive to tiny
changes in the heterogeneities of delay, initial conditions,
and stochastic behavior, which can be harnessed for con-
trolling the dynamics towards the asymptotic attractors
by employing occasional perturbations of the time de-
lays. Future research is needed to investigate the effects
of much larger noise than in our experimental system
that is typically found in biological networks.

Appendix A: Realizing the repressilator on an
FPGA

In this appendix, we present the hardware description
code for the repressilator, written in Verilog and com-
piled using Altera’s Quartus II, and then downloaded to



1 module repr_del_het ff(

2 dynamics,

3 clock,

4 set_enable,

5 set

6 )i

7 input set_enable, clock;

8 input [2:0] set;

9 output [2:0] dynamics;

10 wire [2:0] net, init/*synthesis keep*/;
11

12 parameter n0 = 7;

13 parameter nl = 7;

14 parameter n2 = 7;

15

16 wire [2*n0-1:0] delay0/*synthesis keep*/;
17 wire [2*nl-1:0] delayl/*synthesis keep*/;
18 wire [2*n2-1:0] delay2/*synthesis keep*/;
19 genvar 1i;

20 generate

21 for (i=0;i<3;i=i+1

22 begin : generate_flops

23 DFF init_ff (

24 .d(set_enable),

25 .clk(clock),

26 .g(init[i])

27 ) /*synthesis preserve*/;

28 end

29 endgenerate

30 assign delay0[0] = _net[0];

31 assign delayl[0] = _net[1];

32 assign delay2[0] = _net([2];

33

34 generate

35 for (i=0;1i<2*n0-1;i=1i+1

36 begin : generate_delay0

37 assign delayO[i+1] = _delayOl[i];
38 end

39 endgenerate

40 generate

41 for (i=0;i<2*nl-1;i=1i+1

42 begin : generate_delayl

43 assign delayl[i+1l] = _delayll[il];
44 end

45 endgenerate

46 generate

47 for (i=0;i<2*n2-1;i=i+1)

48 begin : generate_delay2

49 assign delay2[i+1] = _delay2[il;
50 end

51 endgenerate

52

53 assign net[0] = (_delayl([2*nl-1]&_init[0]) | (set[0]&init[0]);
54 assign net[1] = (_delayz[2*n271]&_init[1])|(set[l]&init[l]);
55 assign net[2] = (_delay0O[2*n0-1]&_ init[2]) | (set[2]&init([2]);
56

57 assign dynamics = net;

58

59 endmodule

FIG. 9. Verilog code defining a ring network with N = 3

inhibitory nodes and heterogeneous link time delays.

the FPGA. The Verilog code is given in Fig. 9.

In line 1, the module repr_del het _ff is declared,
which defines the network. It is part of a much larger
circuit on the chip, which will not be specified here. This
circuit is responsible for starting and stopping the ini-
tialization of the network, for detecting the end of the
transient, and for sending and receiving data from the
computer via a USB chip, which is connected to a gen-
eral purpose I/O (GPIO) port on the FPGA board. Ad-
ditionally, the Booleanized dynamics are often written to
on-chip RAM in discrete time-steps.

The module repr_del_het_ff has the output port dy-

namics, which is 3 bits wide and connects the dynam-
ics of the three network nodes to other modules of the

circuit, or directly to the output buffers leading to the
SMA connectors on the FPGA board and an oscilloscope.
There are three input ports. The input clock feeds the
clocked registers used to initialize the network from the
on-board clock source. The input set_enable is the set
signal, which determines when the initial conditions are
set, and which is fed to the clocked registers. The input
set is 3 bits wide and determines the initial conditions
of each node. These ports are declared in lines 7-9.

In line 10, two 3 bit wide wire-type signals net and init
are declared. Wire-type signals are used for either con-
necting ports of different modules or for the implicit cre-
ation of un-clocked logic gates when they are assigned
to a logic expression in an assign statement. The wire
net is used define the logic gates of the network nodes,
while the wire init connects the clocked registers with
the network nodes. After the wire declaration in line 10,
the attribute /*synthesis keep*/ is used to prevent the
compiler from removing the declared wires.

In lines 12-14, three parameters n0O, nl and n2 are
specified, which correspond to the number of delay ele-
ments in each delay line. In lines 16-18, the wires defining
the logic gates for the three delay lines are declared. Each
wire is 2n bits wide, corresponding to the 2n inverter
gates that constitute a delay line of n delay elements.

Lines 19-29 create multiple statements or instantia-
tions in Verilog using a loop, which is called a generate
block. In this environment, three instantiations of DFF,
a predefined primitive, generate d-type flip-flops, which
are the clocked registers initializing the network nodes.
A d-type flip-flop assigns it’s input signal d to its out-
put ¢ whenever a rising edge at its input clk is detected.
These three ports are connected to the external inputs
clock of the clock signal and set_enable, which comes
from another part of the circuit and determines when the
initial conditions are set/released, and the wire-type sig-
nal init, which is connected to the network nodes. These
generate blocks are an important tool for creating large,
scalable network designs, and one reason why this text-
based approach of creating the circuits is powerful.

Lines 30-32 contain three assign statements used to
create autonomous logic gates from wire-type signals.
Here, the first elements of the three delay lines are as-
signed to the inverse of the network nodes using the sym-
bol ’~’, which is one way to implement the Boolean NOT
function. In lines 34-51, the remaining logic gates of the
delay lines are created in generate blocks by using assign
statements to assign each new element to the inverse of
the previous element in the delay line. This creates three
delay lines consisting of cascades of an even number of
inverter gates.

Lines 53-55 define the network nodes. In addition to
implementing Boolean NOT functions, they also process
the signals that initializes the network, which is is done
by formulating a Boolean expression with the operators
'~ & and '— for NOT, AND and OR, respectively.
Thus, the network nodes take on the values of the initial
conditions set whenever the signal init, coming from the



clocked registers, is high, while the network nodes invert
the last element of the adjacent delay line when init is
low, corresponding to the free-running autonomous dy-
namics of the ring network. Finally, in line 57, the output
dynamics is connected to the network nodes.

Appendix B: Specification of on-chip placement and
routing

We specify the physical positions of the logic elements
on the chip, which is important for controlling the het-
erogeneity of the link time delays. The logic elements
are assembled in so-called logic array blocks (LABs) con-
sisting of 16 elements each, which form a 2-dimensional
grid. Thus, every logic element has three coordinates:
X, Y and M, where X and Y define the position on
the 2-dimensional grid, while M defines the position of
the element within a LAB. Even M correspond to the
combinatorial logic elements, while odd M correspond
to the flip-flops that belong to each logic element for
synchronous operation. We set the specific location of
each network element using a set_location_assignment
command.

In many cases, it is also important to specify and keep
fixed the routing connections that are used in between
logic elements, especially the routing channels going from
the end of one delay line to the next network node. While
this is usually handled by the compiler, it is possible to
manually assign a connection to a specific wire by writing
a routing constraint file, which then constrains the rout-
ing channels that can be chosen by the compiler. Fur-
thermore, logic elements in adjacent LABs are connected
via so-called local interconnect channels which are speci-
fied by the keyword LOCAL_INTERCONNECT:...,
followed by a coordinate of the wire. We constrain these
lines for all of our work.

Appendix C: Scheme for the occasional perturbation
of traveling edges

To greatly shorten the transient dynamics of the re-
pressilator, we occasionally perturb the time-delay in one
of the network links whose timing is based on detecting
a specific Boolean transition at a fixed location along the
network ring. As described below, we develop a method
for detecting the transition, which is complicated by the
fact that the orientation of the target edge alternates ev-
ery round trip. The goal of the scheme is to only perturb
the target edge every other round trip and to deactivate
the perturbation mechanism for the time in between.

Our method is illustrated in Fig. 10. It employs
an asynchronous mod-3 counter, which counts the num-
ber of edges with the target orientation that pass the
measurement point after the target edge has been per-
turbed. When two edges are counted, the perturbation
mechanism is activated again. The asynchronous mod-3
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FIG. 10. (Color online.) Scheme for perturbing a single
Boolean transition every other round trip using a mod-3 asyn-
chronous counter. The blue rectangles represent a NOT gate
an the yellow rectangles represent the d-type flip-flops.

counter is built with two d-type flip-flops that have an
asynchronous clear input (denoted by ’clr’). We connect
the measurement point to the clock input of the first flip-
flop. The inverted output of the first flip-flop is connected
to its own input so that the output toggles in between
0’ and 1’ at every positive edge it detects at the clock
input. Thus, it behaves as the least significant bit of a
counter, which counts the positive edges. The inverted
output of the first flip-flop is furthermore connected to
the clock input of the second flip-flop. In the second
flip-flop, we again connect the inverted output to its own
input. Thus, the output of the second flip-flop toggles
in between ’0" and '1’ whenever there is a negative edge
in the output of the first flip-flop. It therefore behaves
like the second least significant bit of a counter, which
counts the positive edges at the clock input of the first
flip-flop. The combined output of the two flip-flops con-
stitute an asynchronous counter, which can count from
0 to 3. We make it a mod-3 counter by resetting both
flip-flops to ’0’ as soon as a count of three is reached, cor-
responding to an output of '1” of both flip-flops. This is
accomplished by combining the two flip-flops in an AND
gate (marked green in Fig. 10) and connecting this gate
to the asynchronous clear inputs of the flip-flops.

We let the counter start counting with the target edge
so that a count equal to 1, in combination with the de-
tection of the right edge orientation at the measurement
point, activates the perturbation mechanism. This is
done by combining the counter state with the signal from
the measurement point in a 3-input AND gate, whose
outut is the perturbation signal that selects between the
two alternate paths in the delay line. We add another
AND gate that can completely deactivate the perturba-
tion mechanism with an on-board switch.

The hardware description code for the control pertur-
bations is largely based on the code given in Fig. 9. Ad-
ditional code is used to enable/disable the perturbations



using a combination of Boolean functions as outlined
above. For both control schemes, the propagation time
of the signals from the measurement point through the
two alternate paths to the multiplexer has to match the
control loop latency, i.e., the propagation delay through
the logic determining whether a perturbation should be
applied. This is an important issue for controlling the
repressilator because there is significant control-loop la-
tency so that we have to measure the edges at an earlier
point in the delay line [66]. Ideally, the perturbation sig-
nal arrives at the multiplexer one characteristic rise time
before the arrival of the signal from the shorter path be-
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cause we want to avoid perturbing an earlier edge, which
might have come close to the target edge.
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