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1. Introduction

Fiber-optic transmission is the back-bone of global communication systems, yet its capacity,
i.e. the maximum error-free transmission rate, remains unknown due to intricate non-linear
memory effects [1–8]. In his seminal work in 1948 [9], Shannon proved that Gaussian input signal
distribution gives the maximum rate at which information can be transmitted error-free in a linear
channel with additive white Gaussian noise, forming the basis for signal coding and modulation
in modern communications. The Gaussian distribution for input signal has been widely applied
also in nonlinear fiber-optic systems [1–3, 10] creating a number of new coding schemes and
modulation formats [11] that could improve the maximum throughput by 0.2 bits compared



to uncoded transmission [12–14]. Yet, Gaussian distribution has shown to be a non-optimum
solution for fiber transmission systems, leading to a non-linear threshold at high signal powers.

In fact, it as been pointed out in [15] that Gaussian distribution provides overly pessimistic data
rate estimates, below the nonlinear threshold [6–8,16, 17]. This is because the derived models
assume averaging of signal dynamics and lose information about inter-symbol interference effects.
Other widely used practical approaches, the so-called "perturbative models with deterministic
nonlinearity" [18–21], achieve a first-order perturbative solution of the nonlinear Schrödinger
equation by taking into account only the signal-signal interactions in fiber transmission. Such type
of nonlinear signal distortion is deterministic, and in principle it can be compensated with some
elaborate technical efforts [7], while improving achievable rate [15, 22, 23], making signal-noise
interactions the next frontier. Thus, the principal challenge is to provide an accurate analysis of
the signal-noise interactions with signal-dependent statistics.

In this paper, we develop a discrete-time finite-memory channel model that takes into account
both signal-signal and signal-noise interactions and introduce a novel type of input signal
distribution, which we call ripple distribution. These allow us to show that monotonically
increasing data rates above the conventional limits can be achieved even in the highly nonlinear
regime (i.e. at high signal powers) in the presence of signal-noise interference (expanding results
briefly presented in [24,25]). The findings are also in sharp contrast to estimates based on the
Gaussian distribution of input signal and break the notion of "capacity vanishing to zero at high
signal power", thus, establishing a new direction for coding and practical nonlinear distortions
compensation algorithms.

2. Finite memory discrete-time channel model.

A typical communication system is presented in Fig. 1(a). At the transmitter, the message is
modulated to a discrete time set of constellation symbols (here, 64-QAM plotted in Fig. 1(b) and
after pulse shaping it is mapped to a continuous time signal, see Fig. 1(c), which is subsequently
launched to a multi-span optical fiber link. The propagation of the continuous-time signal E(t, z)
in the optical fiber, see Fig. 1(d), is governed by the well known nonlinear Schrödinger equation
(NLSE) (we follow here notations and assumptions used in [3, 4] and refer for details to that
papers):

∂E
∂z
= −α

2
E − i

β2
2
∂2E
∂2t
+ iγ |E |2E + η(t, z), (1)

where the deterministic distortions, see Fig. 1(e), are introduced by fiber loss α, second-order
dispersion parameter β2, and by Kerr nonlinearity characterized by the coefficient γ. The
stochastic distortions are described by the zero-mean additive white Gaussian noise (AWGN)
η(t, z) of variance 〈η(z, t), η∗(z′, t ′)〉 = ND

L δ(z − z′)δ(t − t ′), with ND and L being the noise
spectral density and the transmission length, respectively.
A discrete-time channel model is crucial for an information-theory based analysis as it

enables optimization of the mutual information functional I(X,Y) for deriving the optimum
signal distribution p(X), see Fig. 1(f), and for calculating the maximum reliable transmission
rate, which is the channel capacity C = max I(X,Y). The transition from continuous-time
modeling, given by Eq. (1), to discrete-time modelling is not straightforward, since it requires
expansion over a complete orthogonal set of basis functions { fk(t)}. This is equivalent to
matched filter demodulation at the receiver for generating observable discrete-time variables
{Yk}, see Fig. 1(g). At the transmitter, signal expansion over the carrier pulses is considered,
that is E(t, 0) = ∑∞

k=−∞ Xk f (t − kT), where Xk are the complex modulated symbols, f (t)
is the time-varying pulse waveform and T is the symbol period. At the receiver, the signal
undergoes matched filtering, dispersion compensation (denoted by operator D[E]) and sampling
at t = kT : Yk(ξ) = S−1/2

∫
dtD[E(t, ξ)] f (t − kT) (with dimensionless coordinate ξ = z/Ld

and Ld denoting the dispersion length, while S is signal power), which allows the following
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Fig. 1. Fiber-optic communication system. a) The fundamental building blocks of a
communication system where data is coded to a discrete set of symbols Xk (panel b) and
transformed into continuous time form E(t, 0) (panel c) to be transmitted via the fiber
channel. During transmission the signal is governed by the NLSE (panel d), which results in
distortions: dispersion, nonlinearity, noise (panel e), which are reflected in the conditional
pdf P(Y|X), which we can use to optimize constellation and coding (panel f), to receive the
maximum achievable transmission rate – channel capacity C. The received signal E(t, L) is
processed and sampled Yk and, finally, decoded to receive the data (panel g).

discrete-time representation of NLSE - multivariate channel model (MCM):

Y ′k =
Ldε

L
ηk + εV[Y ]k, (2)

V[Y ]k = Ψs(ξ)
M∑

m,n=−M
Yk+m(ξ)Yk+n(ξ)Y ∗k+m+n(ξ)C̃mn(ξ)

where the AWGN noise term ηk is characterized by the correlation 〈ηk(ξ), η∗k′(ξ
′)〉 = Ψn(ξ)δ(ξ −

ξ ′)δkk′ , where Ψn(ξ) = bξ/Lsc2e−αmod(ξ,Ls/Ld) is the noise power profile and bxc denotes floor
function over variable x and mod(x) denotes modulo operation (remainder after division). Here
we employ multiple-scale analysis over the two small parameters that characterize the main signal
degradation effects, that is: a) the nonlinearity ε = Ld/LNL (with dispersion length Ld = T2

0 /β2

and nonlinearity length LNL = 1/(γS)); and b) the noise ε =
√

N/S = 1/
√

SNR (which is the
reversed square root of the signal-to-noise-ratio (SNR) in the corresponding linear system) with
noise power N = NDB and B denoting the signal bandwidth. Also Ψs(ξ) = e−αmod(ξ,Ls/Ld )

represents the signal power profile and Ls is the span length. The coupling coefficients C̃mn

define the memory behavior (within a memory window M) of the transmission channel and
depend on its physical properties and the signal pulseshape:

C̃mn = i
∫ ∫ ∫

dωdω1dω2e−iω1ω2β2Ldξ−iω1mT−iω2nT× (3)

f ∗(ω) f (ω1 + ω) f (ω2 + ω) f ∗(ω1 + ω2 + ω)



Table 1. Review of previous channel models
model and estimations on capacity relevance to MCM

signal-signal interactions
infinite memory Yk = Xk + ξk + ζk ,

Gaussian noise [1, 2, 26, 27] – 1 〈ξkξ∗k〉 = ε
2 ∑

m,n,0 |Cmn |2
infinite memory Yk = XkΦ + ζk

Gaussian noise model [28] – 2 Φ = 1 +
∑

m,n |Cmn |2ε2

finite memory Yk = Xk + ξk + ζk
Gaussian noise [15] – 3 〈ξkξ∗k〉 = 2ε2 ∑

m,n,0 |Cmn |2(2M + 1)−1×
non-decreasing capacity

∑k+M
i=k−M |Xi |2

Nonlinear interference 1st -order representation of MCM
noise (NLIN) [29, 30]

NLIN with Yk = Xkeiθk + ζk
Gaussian approximation [20] θk, ζk - Gaussian variables

which results in concave capacity lower bound
NLIN for phase noise [31] Yk = Xk +

∑M
m Xk+mCm + ζk

Cm = ε limM→∞
∑M

n=−M 〈|X |2〉Cmn

nonlinear phase noise – 1 [5, 32] Yk = Xk + εXk |Xk |2C00 + ζk
capacity equals to linear Shannon limit for small nonlinearity Yk = XkeiγL |Xk |2 + ζk

signal-noise interactions
nonlinear phase noise – 2 [32] (Ak)′z = εC00 Ak |Ak |2 + ηk,

capacity is monotonically increasing [32] memoryless model
nonlinear signal-noise [33] continuous-time model

infinite memory approximation pdf is derived in continuous-time approximation

The proposed channel model generalizes a number of previous results, see Table 1. Namely, the
class of infinite-memory Gaussian noise models, reported in [1, 3, 10, 26], can be received from
Eq. (2) after averaging the nonlinear interference term 〈|Cmn |2〉S3, whereas the finite memory
model of [15] can be received by averaging of the coupling matrix 〈|Cmn |2〉 while keeping the
information about interfering symbols X . The model is also related to expansion in Volterra
series [34, 35] including multiple order terms [36]. However, the Volterra approach allows to
receive continuous time-form, while here the focus is on the discrete-time representation suitable
for information theory analysis. Meanwhile, the first order approximation of Eq. (2) was derived
in [29] taking into account only the signal-signal terms and ignoring signal-noise interactions.
Also, for estimating the capacity the model assumed Gaussian noise statistics, thus losing the exact
knowledge of the inter-symbol interference and leading to a concave lower capacity bound that
was vanishing to zero at high powers. As it has been shown in [15], such approximations inevitably
lead to underestimated capacity bounds. Finally, in [33] the conditional pdf for signal-dependent
noise under continuous-time approximation was derived. However, this can not be used for
information theory analysis and capacity estimations, as it requires discrete-time treatment and
accurate description of the intersymbol interference effects. Therefore, our model is the first
finite-memory discrete-time approach that: a) captures pulse-shape and format dependence; b)
includes signal-signal and signal-noise interactions; and c) enables incorporation of higher-order
terms and derivation of conditional pdfs, which are essential for accurate capacity estimations.
In the main order we have a linear channel with the AWGN noise term ζk characterized by

the correlation 〈ζk, ζ∗m〉 = δkm. The discrete-time perturbative multivariate channel model has a
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Fig. 2. Coupling matrix. For various transmission distances a) L = 100 km, b) L = 500 km,
c) L = 1000 km and the corresponding received constellation diagrams below (for input
power 6dBm and span length 100km). We see that the coupling matrix reflects the strength
of the inter symbol interaction and its effect on the signal distortion.

tensor form:
Y = X̂ +Mζ + Lζ∗, ζ =

∫
dξη(ξ) (4)

where the output signal in a vector form Y = ...Yk−1 Yk Yk+1... is represented via a deterministic
part (signal-signal interactions) X̂ and a stochastic part (signal-noise interactions) of two nonlinear
signal dependent matrices M(X̂) and L(X̂), respectively, that capture the mixing of signal with
noise.
The channel model in Eq. (4) can be rewritten as follows

Yk = X̂k +
∑
m

Mk,mζm + Lk,mζ
∗
m (5)

The first term describes the deterministic Kerr-effect induced inter-symbol interference on the
transmitted symbol Xk in the k-th time slot. It can be calculated by solving the deterministic
part of Eq. (2) and it can be compensated at the transmitter or the receiver (e.g. the numerical
algorithm based on Eq. (2) has been implemented in [37] demonstrating high efficiency and
lower complexity compared to the DBP algorithm).
By expanding over small parameter ε we receive:

X̂k = Y (0)
k
+

∞∑
No=1

εNoY (No )
k

, Y (0)
k
= Xk (6)

The coupling matrix Cmn =
∫

dzΨs(z)C̃mn(z) governs the signal-signal interactions, par-
ticularly those which are responsible for the non-circular distribution of the distortion. This
is achieved by taking also into account the pulse-shape impact. The elements of the cou-
pling matrix represent weights of the interference between symbols in different time slots.
To demonstrate the effect we considered the transmission of a single-channel in a disper-
sion unmanaged fiber link. For simplicity, we used Gaussian pulses of 10 ps duration,
at full width at half maximum, and a baudrate of 28 GBaud. The link parameters were
α = 0.2dB/km, β2 = −20ps2/km, γ = 1.3 1/W/km, Ls = 100km. The multi-span modeling of
the 1st order approximation was verified numerically and experimentally [38, 39]. Fig. 2 shows
that the strength of interference between neighboring symbols decays exponentially with their
distance (denoted by m, n), whereas the slope is defined by the parameters of the transmission



system. At small transmission distances this interference causes dominance of phase distortion,
shown in Fig. 2(a). As the distance increases, the number of interacting symbols also increases and
the symbol distortion becomes more circular, see Fig. 2(b), (c). The coupling matrix accurately
identifies the interacting symbols and the non-uniform strength of their interference. This is an
extremely important characteristic, since by preserving all relevant information about the signal
interaction the effect can be completely compensated at the transceiver, and it cannot be achieved
with a conventional approach that is based on signal statistics averaging [1, 3, 10, 26].

In Fig. 3(a), we calculate the achievable data rates on a nonlinear transmission system of 1000
km length (without any type of nonlinear compensation), using the existing GN-model [10] and
we compare them with our approach based on calculating the variance of nonlinear distortions
in Eq. (5) NS−S = 〈|X − X̃e−iφnl |2〉 = 2ε2 ∑

m,n,0 |Cmn |2 (the limit on summation reflects
compensation of the stationary phase shift φnl = 2ε2 ∑

m |Cm0 |2). We can see that our model
converges to a Gaussian noise model under an infinite-memory approximation, i.e. Eq. (6) is
considered as "nonlinear noise" with variance given by NS−S [10].
Deterministic distortions can be compensated with traditional digital back propagation or

pre-distortion methods, or alternatively, with the perturbation approach of our developed channel
model. Expansion over the parameter ε allows to define the deterministic signal distortion Y (No )

of order No by the recurrence relation:

Y (No )
k

=

No−1∑
i, j,l=0

i+j+l=No−1

∑
m,n

CmnY (i)
k+n

Y (j)
k+m
(Y (l)

k+n+m
)∗ (7)

The discrete-time characteristic of the approach makes possible the compensation of the nonlinear
interference at the receiver without increasing the signal bandwidth. This is in contrast to the
traditional pre-distortion techniques that are based on continuous-time waveform processing.
After removing the deterministic nonlinear distortions, signal-noise interference becomes the
main limitation for increasing the transmitted information rates. Our proposed approach represents
the first accurate discrete-time channel model with memory, which can uniquely capture such
signal-noise beating effects.

In the main order the matrices are Mk,m = δk,m and Lk,m = 0 and we receive a linear AWGN
channel; in the next order over parameter ε the signal-noise mixing effects are taken into account

Mk,m = εδk,m + εε
∑
n

Kn,m−k(X̂k+n X̂∗m+n + X̂m+n X̂∗k+n), (8a)

Lk,m = εε
∑
n

Kn,m−k−n X̂k+n X̂m−n (8b)

with the matrix
Kmn =

∫
dz

√
Ψn(z)Ψs(z)C̃mn(z) (9)

To summarize, the model can be applied by the following steps: (i) we calculate the coupling
matrix C̃m,n(z) along the transmission path using Eq. (3), then (ii) we calculate matrices Cmn

and Kmn from expressions below Eq. (2) and Eq. (9); (iii) finally the deterministic distortions
are defined for different perturbation orders by setting a zero perturbation order as input signal
Y (0)
k
= Xk and we calculate the next nonlinearity orders Y (1)

k
,Y (2)

k
, ... from Eq. (7) and (iv) we

finally combine them to obtain the distorted signal X̃k using Eq. (6), while (v) the signal-noise
interactions are governed by the signal-dependent matrices Mkm and Lkm given by Eq. (8). This
process allows to characterize signal-signal and signal-noise interactions by a single discrete-time
finite memory channel model expressed by Eq. (5) or in tensor form by Eq. (4).



Moreover, the matrix model of Eq. (4) represents a general form that can be easily expanded to
cover multi-wavelength operation. In that case, Eq. (5) can be rewritten as follows:

Ykθ = X̂kθ +
∑
m,α

Mkθmαζmα + Lkθmαζ
∗
mα (10)

here Greek and Latin letters denote frequency and time indexes respectively.

3. Capacity lower bounds

3.1. Capacity and conditional pdf.

To derive the capacity it is necessary to optimize the mutual information functional [40]:

C = lim
d=dim(X)→∞

sup
1
d

I(X,Y) (11)

under the power constraint:
∫

dx| |x| |2Px = d. Here input and output vectors of length d are
given by: X = (X1, ..., Xd) and similarly for Y = (Y1, ...,Yd). To optimize the mutual information
over input pdf one must calculate the multivariate conditional pdf that takes into account the
memory effects defined by the channel model of Eq. (4). Next, we derive the conditional pdf
for the transmitted symbols. The channel model of Eq. (4) represents a mixing of signal and
noise components as a result of the intersymbol interference. A linear combination of univariate
independent and identically distributed normal vectors can be represented as a complex normal
distribution [41]

P(Y|X) = (π)−d(|Γ| |P|)−1/2 (12)

exp
[
− 1

2
[(y − x̂)H, (y − x̂)T ]

(
Γ Υ

ΥH Γ∗
)−1 (

y − x̂
y∗ − x̂∗

) ]
Notations: ∗ means the complex conjugate, T means transposition, and H means transposition
and complex conjugate.

The covariance matrix Γ (real, symmetric, non-negative definite and Hermitian) and relation
matrix Υ (real and symmetric) are given as

Γ = E[(Y − X̂)(Y − X̂)H ], Υ = E[(Y − X̂)(Y − X̂)T ] (13)

P = Γ∗ − ΥHΓ−1Υ

Recalling Eq. (4)
Γ = (MMH + LLH ), Υ = (MLT + LMT ) (14)

This is the first result that presents the conditional pdf derived from a discrete-time model with
memory that has been accurately defined by the nonlinear properties of the fiber optic channel.
This approach allows to capture any non-circular behavior of signal distortions and it contains
precise information about intersymbol and signal-noise interfering effect. In the particular case of
Υ = 0 and E(Y) = 0 we have circularly symmetric complex normal distribution Y ∼ CN(0,Γ),
i.e. P(y) = (π)−d |Γ|−1e−yH Γ−1y.

3.2. Ripple distribution and monotonically increasing lower bound.

Once the conditional pdf is determined, one can use different input pdfs to determine lower
bounds on capacity. Here we introduce ripple distribution as the input signal distribution. To
construct this distribution we consider a set of α = 1..q Gaussian distributions with uniform
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Fig. 3. Capacity and ripple distribution. a) Capacity lower bounds for uncompensated
signal-signal (S-S) distortions IS−S (GNmodel (red, dotted) and the proposed model (green))
and compensated deterministic distortions with account of signal-noise (S-N) interference.
Previous lower bound (denoted by I0) decreases to zero, whereas ripple distribution as input
pdf (Eq. (15)) allows to achieve higher monotonically increasing bounds, denoted by I1
and I2 for the increased number of ripples in an input pdf as shown in panels b) and c)
correspondingly (Gaussian pdf is shown in red dashed lines for comparison).

Table2: Statistical properties of ripple distribution
Ripple Normal

pdf r
πσ e−

r2+ρ2
σ I0

(
2rρ
σ

)
1
πσ exp

(
− (x−x0)2+(y−y0)2

σ

)
mean 0 ρ =

√
x2

0 + y2
0

mode ρ ρ =
√

x2
0 + y2

0
2-nd order non-central moment ρ2 + σ ρ2 + σ
4-th order non-central moment 2σ2 + 4σρ2 + ρ4 3σ2 + 6ρ2σ + ρ4

Kurtosis 1 + σ σ+2ρ2

(σ+ρ2)2 1 + 2σ σ+2ρ2

(σ+ρ2)2

phase, each of which is localized around a different amplitude level (mode) ρα and it has different
variance σα and weight pα, so that in polar coordinates it is represented as:

PX =

d∏
i=1

PXi , PXi (xi = {ri, ϕi}) =
q∑
α=1

ripα
πσα

e−
r2
i
+ρ2

α
Sα I0

(2riρα
σα

)
(15)

here the Latin alphabet is used to denote the time-index, and the Greek, the coding level. Note,
that random variables are denoted by uppercase letters X whereas their (deterministic) outcomes
by the lowercase letter x.
Note that the ripple distribution is a new kind of probability distribution. Although different

shaping algorithms have been previously used, they were mostly focusing on applying Gaussian
pdfs to discrete [12–14] or quasi-continuous (e.g. rings [4]) formats. As a result, all of them have
led to capacity lower bounds vanishing to zero at high powers. In [15] a different distribution with
a heavy tale has been used (similar to "Satellite constellations" [42]) which enabled to receive a
lower capacity bound saturating to plateau. A similar plateau-like behavior for signal-noise case
has been claimed in [23], however the distribution has not been reported. It has been shown that
Gaussian distribution is not the optimal input distribution in the nonlinear optical channel and
distributions with heavier tails might be more beneficial [15, 43]. The statistical properties of the



ripple distribution with one ripple are presented in the Table 2.
In the simplest case of q = 1, with mean ρ1 = 0 and variance σ1 we receive the conventional

result:

PX =

d∏
i=1

ri
πσ1

e−
r2
i

σ1 (16)

which is the Gaussian pdf with zero mean and variance σ1 in polar coordinates. The resulting
lower bound is

I0 = log2

(
1 +

σ1

ε2 + Cnlσ
2
1

)
(17)

which is plotted in Fig. 3(a), where Cnl = 6ε2ε2 ∑
m,n,0 |Kmn |2, and is in agreement with

the asymptotic closed form expression of [44]. The proposed model is applicable in a regime
of operation where spectral broadening is small, thus fulfilling the condition LD < LNL . For
the parameters used in Fig.3 and a maximum signal power 13 dBm LD/LNL ' 1 numerical
simulations have shown that the spectral broadening is indeed small (limit set by the vertical line
in Fig. 3(a)). Further increase of signal power above this level will violate the aforementioned
condition and the model will need to be further expanded.

For ε < C−1/2
nl

we consider a two-ripple distribution (q = 2): one centered around zero power
level and having variance σ1 = εC

−1/2
nl

, whereas the second ripple has a small variance σ2 � ρ2

with vanishingly small probability δ→ 0 and centered around distant power level ρ2 � σ1 (see
Fig. 3(b)). Thus, we consider pα=1,2 = {1 − δ, δ}, σα=1,2 = {σ1, σ2}, and ρα=1,2 = {0, ρ}.

The aforementioned constrains on probability for δ→ 0 can be rewritten as:

1 =
∫

dxPx ' pd
1 + dpd−1

1 p2

d =
∫

dx| |x| |2Px ' dpd
1σ1 + dpd−1

1 p2((d − 1)σ1 + σ2 + ρ
2)

and the corresponding lower bound on capacity (assuming ρ2 � σ1, ρ
2 � σ2, δ→ 0) is found

as

I1 = lim
δ→0
d→∞

pd
1 log2

(
1+

σ1

ε2 + 6ε2ε2 ∑
m,n |Kmn |2σ2

1 )

)
−pd

1 log2 p1−pd−1
0 p2 log2(pd−1

1 p2)+
pd−1

1 p2

d

d/2∑
l=−d/2[

log2

( 2
√
πρ2σ2

ε2 + 6ε2ε2 ∑
m,n,l |Kmn |2σ2

1 + 12ε2ε2 ∑
m |Kml |2σ1(σ2 + ρ2) + 6ε2ε2 |Kll |2(σ2 + ρ2)2

)
+

(d−1) log2

(
1+

σ1

ε2 + 6ε2ε2 ∑
m,n,l |Kmn |2σ2

1 + 12ε2ε2 ∑
m |Kml |2σ1(σ2 + ρ2) + 6ε2ε2 |Kll |2(σ2 + ρ2)2

)]
given the adopted notation the equation is simplified as

I1 = (1−δ) log2

(
1+

1
2ε−1√Cnl

)
+δ log2

(2
√
πρ2σ2

σ1

)
+δ log2 e−δ log2 δ−δ(σ2+ρ

2−σ1)ε−1C1/2
nl

log2 e

optimization over free δ results in

I1 = log2

(
1 +

1
2ε
√

Cnl

)
+

√
2πρ2ε−1C1/2

nl
e−ρ

2ε−1C1/2
nl log2 e (18)

and parameter ρ can be found from power requirement:
√

2πρ2ε−1C1/2
nl

ρ2e−ρ
2ε−1C1/2

nl = 1 − σ1.



The result shows that with the considered suboptimal input pdf, we can receive a monotonically
increasing lower capacity bound, which is asymptotically close to the plateau level. Therefore,
we proved that signal-noise effects do not degrade the capacity with the increase of the signal
power. As we show below, further optimization of the pdf can only improve this bound.

Note that the proposed channel model and the corresponding conditional pdf enable numerical
calculation of lower bounds (i.e. the mutual information for a given input pdf), without invoking
approximations or asymptotics. For a discrete-time finite-channel memory model with signal-
signal interactions this methodology was demonstrated in [15] for a single-channel and expanded
recently in [23] for multichannel (WDM) operation. Here, we follow the same recipe as in [15],
but we also include the signal-noise interactions, resulting in a conditional pdf which captures
signal-noise interactions. The calculation is as follows: (i) we derive the discrete-time finite-
memory model (Eq. (5)); (ii) derive conditional pdf (Eq. (12)); (iii) we select the input pdf (Eq.
(15)); (iv) we calculate the corresponding mutual information (Eq. (11)).

We consider a ripple distribution for larger number of levels q (e.g. Fig. 3(c)) and with
adjustable variances and centers. Using Monte Carlo simulations for multidimensional integration
in Eq. (11) we have found that the numerical optimization (i.e. selecting the optimum parameters
pα, σα, ρα and varying the number q for every power S) results in a monotonically increasing
I2 numerical bound, as shown in Fig. 3(a)). We stress that these are the first monotonically
increasing lower bound calculated asymptotically I1 and numerically I2.

As we have shown, ripple distribution can provide the mutual information that is monotonically
increasing with signal power. This distribution has similarities with the optimum input pdf for
another type of nonlinear channels - regenerative channels [45].
Note that the ripple distribution can be considered as a generalization of the so-called ring

constellations [46] under the condition that the variance of each ripple Sα tends to zero. While
ring distribution has been shown to provide improved lower bounds than the Gaussian distribution,
these bounds are decreasing with signal power (for uncompensated signal-signal interactions).
On the other hand, when taking into account only two ripples and setting the variance of the
second ripple to zero one can reproduce the so-called satellite constellations, the optimization of
which [42] results in non-decreasing lower bounds that saturate to a plateau level. Contrary to
both of these cases, a ripple distribution with finite variance introduces additional degrees of
freedom in the optimization of the constellation, which results in increasing lower bounds.

4. Conclusion

We demonstrated that channel capacity is a monotonically increasing function of signal power
when ripple distribution of the input signal is used. This was achieved by deriving a novel finite
memory discrete-time multivariate channel model capable of describing nonlinear signal-signal
and signal-noise inter-symbol interfering effects in transmission links. Both model and ripple
distribution form a complete information-theoretic tool for capacity calculations, which can be
used for the practical design of efficient compensation algorithms and coding schemes tailored
by nonlinearity in fiber optic communication channels.
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