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Abstract 

 

The process of lipid oxidation generates a diverse array of small aldehydes and 

carbonyl-containing compounds, which may occur in free form or esterified within 

phospholipids and cholesterol esters. These aldehydes mostly result from fragmentation of 

fatty acyl chains following radical oxidation, and the products can be subdivided into 

alkanals, alkenals (usually a,β-unsaturated), γ-substituted alkenals and bis-aldehydes. 

Isolevuglandins are non-fragmented di-carbonyl compounds derived from H2-isoprostanes, 

and oxidation of the ω-3-fatty acid docosahexenoic acid yield analogous 22 carbon 

neuroketals.  Non-radical oxidation by hypochlorous acid can generate a-chlorofatty 

aldehydes from plasmenyl phospholipids. Most of these compounds are reactive and have 

generally been considered as toxic products of a deleterious process. The reactivity is 

especially high for the a,β-unsaturated alkenals, such as acrolein and crotonaldehyde, and 

for γ-substituted alkenals, of which 4-hydroxy-2-nonenal and 4-oxo-2-nonenal are best 
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known. Nevertheless, in recent years several previously neglected aldehydes have been 

investigated and also found to have significant reactivity and biological effects; notable 

examples are 4-hydroxy-2-hexenal and 4-hydroxy-dodecadienal. This has led to substantial 

interest in the biological effects of all of these lipid oxidation products and their roles in 

disease, including proposals that HNE is a second messenger or signalling molecule. 

However, it is becoming clear that many of the effects elicited by these compounds relate to 

their propensity for forming adducts with nucleophilic groups on proteins, DNA and specific 

phospholipids. This emphasizes the need for good analytical methods, not just for free lipid 

oxidation products but also for the resulting adducts with biomolecules. The most informative 

methods are those utilizing HPLC separations and mass spectrometry, although analysis of 

the wide variety of possible adducts is very challenging. Nevertheless, evidence for the 

occurrence of lipid-derived aldehyde adducts in biological and clinical samples is building, 

and offers an exciting area of future research. 
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Acr-dG, 1,N2-propanodeoxyguanosine; AGEs, advanced glycation end-product; ALEs, 
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glutathione peroxidase 4; GSH, glutathione; HDDA, 4-hydroxydodecadienoic acid; HDDE, 4-
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mass spectrometry; LDL, low density lipoprotein; LLOQ, Lower Limit of Quantification; LOD, 
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Matrix-assisted laser desorption/ionization; MAPK, Mitogen Activated Protein Kinases; MDA, 
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1. Introduction 

Oxidative metabolism and redox reactions are essential for energy production and 

cell survival; however, some of the enzymes and processes that utilize oxygen result in the 

formation of partially reduced oxygen species such as superoxide, hydrogen peroxide and 

hydroxyl radical [1]. These compounds are often referred to as reactive oxygen species 

(ROS), although only the hydroxyl radical is indiscriminately reactive and able to initiate a 

wide variety of radical oxidations by radical addition to, or hydrogen abstraction from 

biomolecules [2]. Phospholipids, especially those containing di-unsaturated or 

polyunsaturated fatty acids (PUFAs), are primary targets of attack by hydroxyl radicals or 

other downstream radicals, and are modified to a wide variety of oxidized products in a 

process called lipid peroxidation. This was broadly defined as the oxidative deterioration of 

polyunsaturated lipids [3]; it has long been understood that polyunsaturated oils and fats 

deteriorate in air, which they take up in large volumes, leading to the development of 

rancidity. The unpleasant flavours, smells and increased viscosity are mainly due to the 

formation of aldehydes as fragmentation products of the oxidized lipids, hence this topic has 

always been of considerable importance in the food industry. However, much early work in 

defining the mechanism of lipid peroxidation was carried out by researchers at the British 

Rubber Producers Association, as this material is also prone to deterioration by oxidation [4]. 

At the time, the relevance of lipid peroxidation to biological systems was not realized, 

but subsequently it was discovered that production of important lipid signalling mediators of 
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the isoprostane family, such as prostaglandins and thromboxanes, involved enzymatically 

catalysed radical processes to peroxidize arachidonic acid [5, 6]. This area of research has 

expanded hugely, as other PUFAs yield analogous products with a plethora of biological 

activities.  In addition, it is now understood that adventitious oxidation, as well as enzymatic, 

has important effects in biological systems by altering physical properties of cells as well as 

cell signalling pathways [7]. Moreover, oxidized phospholipids are also bioactive, but in many 

cases have different effects to the corresponding free oxidized fatty acid, including both pro-

inflammatory and anti-inflammatory effects. Lipid peroxidation has been associated with the 

physiopathology of several diseases, including atherosclerosis, cancer, diabetes and 

neurodegenerative disorders, as previously reviewed [8, 9]. It is also important to bear in 

mind that non-radical lipid oxidation can also occur through the action of hypochlorous acid, 

which generates chlorinated products that have been reported to have bioactivity [10]. The 

aldehyde products mentioned above are notable for their high toxicity to cells and other 

adverse effects, which largely relate to their high chemical reactivity. This topic forms the 

focus of this review, together with an overview of the analysis of these lipid peroxidation 

products. 

Many reviews previously have focused on a small number of products that are 

considered the major products or most reactive and damaging products of lipid oxidation. 

Here, we provide a broader overview of lipid oxidation derived small reactive carbonyl-

containing compounds, including discussion of their reactivity, the formation of protein 

adducts (lipoxidation), and approaches to the analysis of free aldehydes and their protein 

adducts. 

 

2. Lipid peroxidation and its primary products 

The sequence of reactions in lipid peroxidation has been described previously in 

many informative reviews [11-18], and will only be outlined briefly here. The essence is that 

free radical oxidants can abstract a hydrogen atom from bis-allylic carbons in the PUFA 

chains to form a carbon-centred radical (L•). This unstable primary intermediate reacts 

readily with molecular oxygen (which has a di-radical ground state), resulting in formation of 

a lipid peroxyl radical (LOO•). This is also a reactive radical and in a lipid bilayer is able to 

abstract a hydrogen atom from an adjacent fatty acyl chain, thus forming a hydroperoxide 

(LOOH) and propagating the radical chain reaction [16]. Alternatively, the peroxyl radical can 

attack intramolecularly to yield a dioxetane or an endoperoxide. The position of the double 

bonds in an unsaturated fatty acid influences the site where hydrogen abstraction occurs, 

and as the carbon-centred radicals can undergo rearrangement by radical migration, this 

increases the number of sites at which O2 can add; for example, in cis,cis-9,12-linoleic acid, 

9-hydoxyperoxy-octadecadienoate and 13-hydoxyperoxy-octadecadienoate can be formed. 
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The situation is even more complex in fatty acids with three or more double bonds. Thus a 

wide variety of distinct products can be generated via lipid peroxidation. 

The primary products of peroxidation are lipid hydroperoxides (LOOH); these are 

relatively stable compared to their radical precursors, at least in the absence of transition 

metal ions. In appropriately extracted and stored biological samples they can readily be 

detected by mass spectrometry or HPLC with chemiluminescent detection [19, 20].  

Hydroperoxides can be further converted to endoperoxides or isoprostanes and 

neuroprostanes by intramolecular attack and oxidative cyclisation, which represents a further 

stabilization of the structure, and explains why isoprostanes are considered good biomarkers 

of oxidative stress. Additionally, hydroperoxides can be reduced to hydroxy, keto or epoxy 

species; glutathione peroxidase (GPx4) uses glutathione as a reductant to generate 

hydroxides (LOH) [21], while thioredoxin reductase (Trx) and selenoprotein P (SelP) also 

have lipid hydroperoxidase activity [22, 23]. 

 

 

3. Aldehydes are fragmentation products of oxidized lipids 

Lipid hydroperoxides or peroxyl radicals can undergo fragmentation by enzymatic or 

non-enzymatic mechanisms to produce short-chain oxidation products, including a variety of 

different aldehydes, alkanes and alkenes [13, 16], of which malondialdehyde (MDA) and 4-

hydroxy-2-nonenal (HNE) are by far the most studied [17]. Table 1 illustrates the wide 

variety of products that have been detected following oxidative fragmentation of PUFAs. 

Also, depending on the fatty acid that is oxidized (i.e. its length, and the number and position 

of the double bonds), the oxidation products vary in length, degree of unsaturation and 

number of substitutions. In particular, fatty acids can be divided into 2 classes: the ω-3 and 

ω-6 fatty acids, according to the position of the first double bond from the methyl end, which 

affects the likely sites of fragmentation and resulting breakdown products. Linoleic and 

arachidonic acids are both ω-6-polyunsaturated fatty acyl chains, and are good sources of 

aldehydes by cleavage of a C-C bond. ω-3-PUFAs,  including α-linolenic acid, 

eicosapentenoic acid (EPA) and docosahexenoic acid (DHA) can also undergo 

fragmentation and give rise to many reactive aldehydes.  The non-enzymatic fragmentation 

mechanism of linoleic acid has been extensively studied, whereas the fragmentation 

reactions of polyunsaturated acyl chains (containing more than 2 double bonds) are more 

complicated and less well characterized because of the higher number of possible sites of 

oxidation [13].   

There are three main mechanisms by which a carbon-carbon bond can be cleaved, 

as described and reviewed in several key publications by researchers at Vanderbilt 

University and elsewhere [16, 24-27]. The principles have mostly commonly been explored 
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with linoleic acid and have focused on the formation of 4-hydroxy-2-nonenal (HNE), owing to 

the fact that it is one of the most abundantly formed lipid peroxidation products and has 

interesting biological effects [8, 28, 29]. The mechanisms are (i) reduction of hydroperoxide 

to an alkoxyl radical in the presence of a transition metal followed by β-scission; (ii) Hock 

rearrangement of a hydroperoxide and migration of a C-C to a C-O bond and cleavage; (iii) 

cyclization to form a dioxetane and subsequent cleavage.  Variations of these mechanisms 

can arise in the case where additional oxygens are added to the chain; for example if three 

O2 are added to the chain to form a hydroxyhydroperoxide intermediate it can undergo β-

scission, or with the epoxyhydroperoxide intermediate Hock cleavage can occur. These 

mechanisms have been reviewed previously [15, 16, 24].  

The resulting aldehydes may be classified on the basis of their chemical structure 

into alkanals, alkenals and γ-substituted-alkenals, which has the advantage of focusing on 

their different reactivity towards biomolecules.  

 

4. Formation and chemistry of lipid oxidation-derived aldehydes 

Alkanals  

Alkanals are saturated carbon chains containing an aldehyde group; they are simple 

and comparatively nonpolar aldehydes. Several alkanal products with chain lengths of 3 to 9 

carbons have been identified as lipid peroxidation products from the ω-6 fatty acids linoleic 

and arachidonic acid (Table 1). Identification was performed by comparison of their retention 

time to aldehyde standards using high-performance liquid chromatography. Wu and Lin [30] 

listed butyraldehyde, hexanal and nonanal as the major alkanals generated by lipid 

peroxidation. Interestingly, hexanal was found to be the most abundant aldehyde of all those 

identified, even compared to 4-hydroxy-2-nonenal, a well-studied aldehyde discussed later in 

this review. However, there are few studies regarding these aldehydes, which may be due to 

their lower reactivity and toxicity compared with more complex aldehydes. Their single 

carbonyl functional group, only allows them to react with amine groups to form Schiff bases 

(imines), for example with the amino acid residue lysine or potentially the head groups of 

phosphatidylserine and phosphatidylethanolamine, although this has not yet been 

demonstrated. This limits their biological reactivity and detrimental effects. However, there 

have been several studies on the formation and effects of POVPC [31, 32], which has a five 

carbon chain terminating in an aldehyde moiety esterified at the sn-2 position, and thus has 

structural similarity to pentanal. POVPC has been detected in atherosclerotic plaques by LC-

MSMS [33] and can form adducts with ApoB100 on LDL [34], which may have important 

consequences in disease. 

Alkenals 
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Aldehydes with a double bond in the hydrocarbon chain are called alkenals. Because of the 

structure of PUFAs, with double bonds separated by 2 single bonds, alkenals derived from 

lipid peroxidation are often α,β-unsaturated (trans-2-alkenals, i.e. a double bond between 

carbons 2 and 3). An extensive repertoire of alkenals produced by environmental or 

biological processes exists, but not all of these products may be produced by lipid oxidation 

[14].  Early work identified several alkenals with chain lengths from 3 to 9 carbon atoms that 

resulted from lipid peroxidation of ω-6 fatty acids, with acrolein, heptenal, octenal and 

nonenal appearing in higher amounts than the others [30]. Acrolein, with only three carbons, 

is the shortest alkenal identified as a lipid peroxidation product. It is also by far the strongest 

electrophile and therefore the most reactive compound, especially with thiol groups from 

proteins [35, 36]. Acrolein is a known environmental hazard, as it can be formed by 

incomplete combustion of organic matter, and occurs at significant levels in wood and 

tobacco smoke, as well as in processed foods [36]. It can also be formed endogenously by 

oxidative metabolism of non-lipid precursors such as spermine, spermidine, threonine and 

methionine, and glycerol [37]. While it is known that acrolein could be formed from over-

heating of cooking oils, for some years there was debate over whether it represented a 

significant product of lipid oxidation in vivo. There is now a substantial body of evidence 

supporting its generation by lipid oxidation [14, 37, 38], although the mechanism for its 

formation remains unclear. There are reports of it being formed from ω-6 unsaturated fatty 

acids, but that the yield is higher from ω-3 unsaturated fatty acids and increases with 

increasing number of double bonds [39]. One possible mechanism involves two β-cleavages 

at the centre of the arachidonic aliphatic chain [17], although this has been debated recently 

[14]. 

Crotonaldehyde (2-butenal) is a simple α,β-unsaturated aldehyde of similar structure 

to acrolein; although much less toxic, it can still modify proteins and DNA in vivo [40]. 

Crotonaldehyde and the five carbon analogue 2-pentenal come from the oxidative 

breakdown of ω-3 unsaturated fatty acids such as linolenic acid. In contrast, 2-heptenal, 2-

octenal and 2-nonenal are thought to come from the breakdown oxidation of ω-6 

unsaturated fatty acids. These longer alkenals are less reactive than acrolein or 

crotonaldehyde, possibly owing to their lower solubility in aqueous solvents that favour 

nucleophilic attack; this may explain why they have received less attention as molecules 

capable of modifying biomolecules. However, using an immunoreactivity assay and high 

performance liquid chromatography with on-line electrospray ionization tandem mass 

spectrometry it has been demonstrated that 2-nonenal can cause considerable protein 

modification, formed preferentially on lysine residues [41].  

 

Complex aldehydes, including γ-substituted alkenals 
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Lipid peroxidation can also generate complex aldehydes containing additional 

functional groups, which make them more diverse in their reactivity with biomolecules and 

therefore more interesting biologically. Substituents at the C4 position are common, and 

include hydroperoxyl (-OOH), epoxy, hydroxyl (4-hydroxyalkenals), or keto (4-oxo-alkenals) 

groups, but products with additional double bonds and terminal aldehydic or carboxylic 

groups are also known. The α,β-substituted-alkenals have additional reactivity over alkenals 

owing to the susceptibility of the C3 position to nucleophilic attack, allowing the formation of 

Michael adducts with nucleophilic groups such as thiols and amines. This bi-reactive nature 

is particularly important, as it enables these compounds to crosslink macromolecules such 

as proteins, and is likely to contribute to some of the adverse effects in pathologies 

correlated with lipid peroxidation, such as Alzheimer’s disease [18, 42]. 

  The 4-hydroxyalkenals are a well-known type of lipid oxidation products comprising 

the C6 compound 4-hydroxy-2-hexenal (HHE), the C9 compound 4-hydroxy-2-nonenal 

(HNE) and the C12 compound 4-hydroxydodeca-2,6-dienal (HDDE). HHE derived from ω-3 

PUFAs, whereas HNE is the product of ω-6 PUFAs via 15-hydroperoxyeicosatetraenoic acid 

(15-HpETE) or 13-hydroperoxy-linoleic acid. HDDE is formed from 12-HpETE, which is 

thought to be generated enzymatically by 12-lipoxygenase [43].  HNE can also be produced 

enzymatically by two different 15-lipoxygenases (15-LOX) acting on arachidonate [25]. It is 

probable that hydroperoxyalkenals, for example hydroperoxynonenal (HPNE), are 

intermediates on the reaction pathways to hydroxyalkenals. Of these hydroxyalkenals, 4-

hydroxy-2-nonenal is without doubt the most studied. Following its discovery in the 1960s 

[35], it is now classed as one of the major aldehydes formed during lipid peroxidation of ω-6 

polyunsaturated fatty acids and it can be considered a useful biomarker of lipid peroxidation 

[18]. The non-enzymatic processes of HNE generation mainly occur by oxygen radical-

dependent reactions and have been extensively studied by several groups as mentioned 

above; several detailed reviews are also available [15, 16, 24].  The strong interest in 4-

hydroxynonenal relates to its high reactivity due to its potential for Michael addictions and 

Schiff-base formation [44]. Thus its reactivity and biological effects have been the subject of 

many published articles and it has even been suggested as a signalling molecule, as it has 

been found to affect several key signalling pathways, including the MAPK pathways JNK and 

p38, PKC-β and d, and Nrf2. However, these signalling processes most probably involve its 

reaction and adduct formation with signalling proteins, thus altering their activity (usually 

inhibition), rather than reversible ligand binding [45]. Interestingly, it appears that 

hydroperoxynonenal is not just a reactive intermediate leading to HNE, but also has 

biological effects in its own right, as it has been reported to modify proteins [46]. 

The formation of 4-hydroxy-2-hexenal by decomposition of oxidized 

docosahexaenoic acid (DHA) was first demonstrated by Van Kuijk et al., using liquid 
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chromatography and mass spectrometry [47]. These authors concluded that it was one of 

the major lipid peroxidation products of ω-3 PUFAs, and it has been reported as the most 

prominent hydroxy-alkenal in human plasma, illustrating its potential importance [47, 48]. 

Although the number of studies focusing on this hydroxyalkenal is limited, there is evidence 

that it can cause severe peritonitis, retinal or liver damage when injected [49], and has 

adverse effects via NFkB signalling pathways, including causing apoptosis [48]. 4-

Hydroxydodeca-2,6-dienal (HDDE) has also been demonstrated to be present in human 

plasma samples [50]. Although it was found in lower amounts than HNE and HHE, this 

finding suggests that HDDE can be produced in vivo and that it deserves to be investigated 

further. It has a longer aliphatic chain and is more hydrophobic than HNE and HHE, which 

has previously been suggested to lead to higher reactivity toward less polar biomolecules 

such as phospholipids. Studies carried out to compare the reactivity of HDDE, HNE and 

HHE with phosphatidylethanolamine showed that HDDE was the most reactive with the 

headgroup, resulting in more adduct formation with several different PE molecular species, 

followed by HNE and the least reactive being HHE [43]. It is also important to note that 

oxidation of the fatty acyl chains often occurs in phospholipid-esterified forms, and the Hock 

and β cleavages lead to analogous esterified aldehydes as well as the free forms discussed 

above. For oxidation of esterified linoleate, the esterified products may be almost mirror 

images of the free aldehydes [26]. 

The oxidation and cleavage mechanisms that generate 4-hydroxy-2-alkenals can 

also generate 4-oxo-2-alkenals, such as 4-oxo-2-(E)-nonenal (ONE) [51, 52] and 4-oxo-2-

hexenal (OHE) [53, 54]. Several studies on ONE concurred in concluding that it is an even 

more reactive protein modification and cross-linking agent than HNE [55], although 

interestingly, its reactivity appears to differ: the rate of Michael adduct formation with 

cysteine (cys) and histidine (his) is higher but the rate of Schiff base formation is actually 

slower [56]. Biologically relevant adducts with histones [57] and human serum albumin [58] 

have been demonstrated recently and have increased attention on this aldehyde as an 

oxidative stress marker. While OHE was initially reported from studies in vitro and detected 

in food, there has been interest in its mutagenic properties, which are thought to arise from 

its reactivity and ability to form adducts with nucleosides [54, 55]. 

Hydroxy-alkenals and oxoalkenals can be oxidized to the more stable carboxylic acid 

metabolites 4-hydroxyhexenoic acid (HHA), 4-hydroxynonenoic acid (HNA) and 4-hydroxy 

dodecadienoic acid (HDDA) by the action of aldehyde dehydrogenases, and these have 

been found in human urine samples [50]. Since HNE comes from ω-6 fatty acids, HHE from 

ω-3 fatty acids, and HDDE is a lipoxygenase product, differential increases in their 

corresponding carboxylic acids in urine could potentially be a marker of the type of 

peroxidation  involved in specific pathophysiological conditions [59]. 
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Bis-aldehydes are another category of important short-chain oxidation products and, 

like the α,β-substituted-alkenals, they are bifunctional and have the potential to crosslink 

proteins and DNA [60]. Probably the best known is the 3-carbon molecule malondialdehyde 

(MDA), as it is a very commonly used marker of lipid peroxidation in biological and clinical 

samples [61, 62], although it has also been much criticized in this respect. It is generated by 

the decomposition of oxidised arachidonic acid through enzymatic or non-enzymatic 

mechanisms. Enzymatically, MDA can be generated as a side product of the synthesis of 

thromboxane A2, by a well stablished mechanism [63]. The non-enzymatic generation of 

MDA involves cyclization of peroxyl radicals to form a new free radical that can cyclize again 

to form bicyclic endoperoxides and undergo cleavage to produce MDA [64]. The reactivity 

and toxicity of MDA have been well-characterized previously [62, 65]. Glyoxal is the 2 carbon 

analogue of MDA, but there is less evidence of it as a lipid peroxidation breakdown product; 

the more common source is the auto-oxidation of glucose, especially in diabetes mellitus; 

the same is true of methylglyoxal [14, 66]. Other, less well known products include 2,4-

decadienal, which has been reported as a product of oxidation of fatty acids, and trans-2-

butene-1,4-dial, which is produced on further oxidation of the former [53]. In contrast, cis-2-

butene-1,4-dial is a toxic metabolite of furans, and is thought to contribute to adverse effects 

of this type of carcinogen [14]. However, whether these aldehydes are produced in vivo 

through lipid peroxidation pathways is not yet clearly established. 

 

Isolevuglandins 

The bicyclic endoperoxide H2-isoprostanes, such as prostaglandin-H2, can undergo a 

concerted rearrangement to yield a family of isolevuglandins, which are also known as 

isoketals or γ-ketoaldehydes [67]. Incubation of PGH2 in vitro in phosphate buffer resulted in 

a 22% yield of the isoketal, while in the more organic solvent DMSO the yield was 70%, 

suggesting that in biological membranes these compounds might be expected to form at 

appreciable levels under conditions where arachidonate is oxidized.  Isolevuglandins are γ-

bis-carbonyl compounds, and therefore have the potential to react with amines and crosslink 

proteins. These compounds were found to be extremely reactive, showing much faster 

reactions with albumin than HNE (50% depletion of isoketal in seconds, as opposed to > 1hr 

for HNE). The high reactivity is thought to relate to the fact that isoketals react with amines, 

but as well as forming Schiff bases, the hemiaminal intermediate can also undergo 

cyclization to the pyrrolidine form by intramolecular nucleophilic attack on the remaining 

carbonyl, followed by dehydration (loss of 2 H2O) to produce the pyrrole as a stable end-

product. The dehydration step is essentially irreversible and shifts the equilibrium of the 

reaction to the pyrrole product. This contrasts with the situation for HNE and other a,β-

unsaturated aldehydes, where Michael addition to cysteine residues is favored over the 
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amine-carbonyl reaction and the corresponding hemiaminal cannot be so readily stabilized 

[67, 68].  

In recent years there has been a flurry of activity in this field. There is mounting evidence 

that isolevuglandins form covalent adducts with proteins in various biological milieux, such 

as in normal and fibrotic lung tissue [69], human retina [70], and dendritic cells [71]. The 

mechanisms of protein crossing-linking by isolevuglandins have been investigated, and 

found to occur both by aminal and pyrrole-pyrrole cross-links [72].  Treatment of hepatic 

stellate cells with isolevuglandins caused their activation, and was thought to depend on 

formation of protein adducts, although this was not explicitly demonstrated [73]. 

Isolevuglandins have been found to react with the head group of phosphatidylethanolamine, 

and the resulting adducts can be detoxified by an N-acyl phosphatidylethanolamine-

hydrolyzing phospholipase D [74]. Isolevuglandin-PE contributes to an NFkB-dependent 

inflammatory response in macrophages exposed to isolevuglandins by a mechanism 

involving binding to the receptor for advanced glycation end-products (RAGE).  Moreover, 

isoLG adducts of PE were increased in hyperlipidemic and inflammatory conditions, such 

familial hypercholesterolemia in humans and high-fat diet induced obesity and 

hepatosteatosis in mice [75].  Analogous compounds called neuroketals can be formed from 

DHA via H4-neuroprostanes; these have been detected in brain tissue and age-related 

increases in protein adducts observed [76]. The emerging evidence on the role of 

isolevuglandins has been reviewed recently by Salomon [68]. 

 

Alpha-chlorofatty aldehydes 

 Phospholipids containing fatty alcohols esterified by a vinyl ether bond 

(plasmalogens) are susceptible to oxidative damage by myeloperoxidase and its product 

hypochlorous acid. Attack by this oxidant leads to cleavage of the vinyl ether by a 2-electron 

mechanisms to yield an a-chlorofatty aldehyde and a lysolipid [77]. a-chlorohexadecanal 

and a-chlorooctadecanal have both been detected as plasmalogen oxidation products in 

activated neutrophils [78], and have been found to be elevated significantly in atherosclerotic 

lesions in cardiovascular disease [79], and in mouse brain following systemic injection of 

endotoxin [80]. The formation and biological effects of these α-halogenated aldehydes have 

been reviewed recently [81], but as yet their reactivity is not very well established compared 

to the other lipid oxidation products described here. 

 

5. Methods of analysing aldehydic oxidation products. 

A key aspect in understanding the production and biological significance of lipid 

oxidation products is the availability of reliable and sensitive methods of identifying and 
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quantifying them.  Unlike markers of lipid oxidation such as isoprostanes, which are relatively 

stable, the aldehydes described in this review have additional challenges owing to their 

higher reactivity. Most lipid oxidation-derived aldehydes can be identified in the free form in 

vitro, in the absence of nucleophilic biomolecules, but the reactive alkenals, bis-carbonyls 

and isolevuglandins are more likely to be present in biological samples as covalent adducts 

with proteins, DNA or aminophospholipids. Thus attempting to quantify free aldehydes in 

complex biological or clinical samples can be fraught with difficulties, and may not reflect the 

actual extent of their formation. On the other hand, while adduct formation can effectively 

stabilize and trap the aldehydes, analysis of these secondary products presents a 

considerable challenge owing to the plethora of possible products. The choice of analyte 

should therefore be defined by the research question, as in some cases information about 

the exact aldehydes formed and their specific targets is required, and in others a general 

assessment of the extent of oxidative lipid damage may be sufficient. 

 

Analysis of free aldehydic oxidation products and their metabolites 

Methods for the detection of free alkanals, 2-alkenals, 2,4-alkadienals, 4-

hydroxyalkenals and their quantification include spectrophotometric methods and gas or 

liquid chromatography coupled to mass spectrometry [82, 83]. The simplest approaches 

depend on direct spectrophotometric measurements; for example, HNE absorbs in the UV 

range at 220 nm, and it can be detected free in samples after separation from other 

aldehydes by HPLC [65]. However, a better approach is to take advantage of the intrinsic 

reactivity of the aldehydes by using aldehyde-reactive probes, as this allows more specific 

and usually more sensitive detection, and has the further advantage that it converts the 

aldehyde to a more stable form. Probably the best known (and most infamous) assay is the 

TBARS assay for malondialdehyde; it is extensively used owing to its simplicity and low cost, 

and for specific applications has been found to be a robust method [84], but even when 

combined with HPLC it has poor specificity and other limitations [61, 62].  A chromophore 

that reacts with a broader range of aldehydes is 1,3-cyclohexanedione (CHD) [85, 86], 

although it has declined in popularity in favor of other reagents. 2,4-dinitrophenylhydrazine 

(DNPH) is a very commonly used probe that reacts to give a dinitrophenylhydrazone product 

with an absorbance at 380 nm [87]; it can be used to quantify free aldehydes, although it is 

also often used to detect carbonyls on proteins by ELISA or western blotting, as described 

below. Recently, a number of new methods and probes have been developed as improved 

methods to measure free lipid peroxidation derived aldehydes, and applied to the analysis of 

human plasma, serum or urine samples, as detailed in Table 2.  In most cases the probes 

do not distinguish between different aldehydes in a complex mixture, so chromatographic 

separation is required with either pre-column or post-column derivatization. For chromogenic 
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or fluorescence assays, separation is usually achieved by reverse phase HPLC, often with a 

C18 stationary phase [88].  

Gas chromatography can also be used to separate different aldehydes, but it 

requires derivatization of the sample to obtain a volatile analyte, and is usually coupled to 

mass spectrometry as a detection method.  For example, GC coupled to electron-capture 

negative-ion chemical ionization (NICI) MS has recently been used to analyse HNE in 

patients with thyroid dysfunction or migraines [89].  Free HNE was converted to 

pentafluorobenzyl oximes (PFBO) by reaction with pentafluorobenzyl hydroxylamine, 

followed by formation of trimethylsilyl ethers; the ions of m/z 152 and 333 were chosen for 

selected ion monitoring (SIM) of PFBO-TMS derivatives of HNE. The LOD and LLOQ were 

2.0 and 2.5 nM respectively.  A more recent study used a similar approach with GC-MSMS 

to analyse MDA and HNE in human serum samples.  The derivatised aldehydes were 

quantified by selected reaction monitoring for relevant mass transitions (m/z 442 > 243 for 

MDA, m/z 403 > 283 for HNE) [83]. Analysis of transitions resulting from specific 

fragmentations of the analytes should offer greater selectivity over SIM. The concentrations 

of the aldehydes ranged from 0.2-2.5 µM in the serum of patients with coronary or peripheral 

artery disease, but MDA levels tended to be 2-3-fold higher than the HNE. Advances in GC-

MS and LC-MS methods for measuring MDA and comparison with traditional derivatization 

methods have been reviewed by Giera et al. [65].  Gas chromatography coupled to NICI–MS 

is also the preferred method for detection of α-chloroaldehydes such as 2-

chlorohexadecanal [90], as they are less polar than many other aldehydes and relatively 

unstable under the conditions required for liquid chromatography. The α-chloroaldehydes 

are analysed as the corresponding PFBO derivatives; using SIM, a structurally-relevant ion 

fragment is produced identifying the aldehyde [91]. For example, the PFBO of 2-

chlorohexadecanal is detected by the ion at m/z 288. For quantitative analysis it is 

recommended to use a stable internal standard; the most commonly used is 2-chloro-[d4-

7,7,8,8]-hexadecanal (2-Cl-[d4]HDA), which can be detected at m/z 292.  

In contrast to GC-MS, LC-MS requires minimal sample manipulation other than 

extraction prior to analysis [83], and consequently can be considered to have an advantage, 

although overall it is less used. Several studies have demonstrated the value of LC-MS or 

LC-MSMS approaches to analyse lipid oxidation derived aldehydes, often following reaction 

with DNPH to stabilize them [92]. For example, Douny et al. [93] used DNPH derivatization 

to measure eight different aldehydes in animal feed: malondialdehyde (MDA), 

crotonaldehyde (CRT), benzaldehyde (BNZ), hexanal (HXL), 4-hydroxy-2-hexenal (4-HHE), 

4-hydroxy-2-nonenal (4-HNE), 2,4-nonadienal and 2,4-decadienal. The first 6 could be 

readily quantified in a single run, whereas the latter 2 showed a more limited linear range, 
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especially for the upper limit of quantification (ULOQ). MSMS transition for all the aldehydes 

were reported. 

It is important to bear in mind that as well as reacting with macromolecules, free 

aldehydes may be metabolized and detoxified, so analysis of the metabolite may represent a 

good approach to detecting formation of the aldehyde in vivo. It is well known that HNE can 

be detoxified by conjugation to glutathione, catalysed by glutathione-S-transferases [94], and 

metabolized further to yield 1,4-dihydroxynonane-mercapturic acid, which can be detected in 

the urine together with other metabolites [95]. Trans,trans-2,4-decadienal (tt-DDE), a lipid 

peroxidation product of linoleic acid, can be oxidized to the two metabolites 2,4-decadienoic 

acid and cysteine-conjugated 2,4-decadien-1-ol. These have been found in cell culture 

models and urine of mice gavaged with tt-DDE, using liquid chromatography coupled to 

tandem mass spectrometry to identify the structures [96]. Carboxylic acid metabolites of 

HHE (4-hydroxy-2E-hexenoic acid; 4-HHA), HNE (4-hydroxy-2E-nonenoic acid; 4-HNA) and 

HDDE (4-hydroxy-2E,6Z-dodecadienoic acid; 4-HDDA) were detected in human urine using 

NICI-MS, and occurred at higher concentrations in aging and diabetes [50]. Similarly, under 

oxidative conditions in vivo, a-chloroaldehydes can be converted to the corresponding acid 

form. These can be analysed by conversion to the PFB ester, and the derivative analysed 

using GC with NICI–MS [97]. Alternatively, direct analysis by liquid chromatography mass 

spectrometry (LC-MS) using 2-Cl-[d4]HA as an internal standard can be carried out [98]. 

Moreover, it has recently been reported that a-chloro fatty aldehydes may form adducts with 

GSH, and these can be detected by LC-ESI-MS using selected reaction monitoring [99]. 

 

Analysis of aldehydic oxidation products as adducts with macromolecules. 

As mentioned above, the analysis of free aldehydes has several disadvantages for 

understanding the extent of their production in vivo, as their high reactivity means that they 

readily form adducts with a variety of biological molecules, including small antioxidants such 

as glutathione, proteins and nucleic acid. Thus a large proportion of the aldehydes formed 

are likely to exist sequestered as adducts and the free aldehyde level depends on the 

reversibility, or equilibria, of these reactions.  Consequently, a full understanding of the levels 

and roles of lipid oxidation derived aldehydes depends on analysis of the adducts formed 

through Schiff base reactions and Michael additions or rearrangement of these products. 

Although adducts with DNA bases are known to occur and are thought to contribute to the 

mutagenicity of acrolein and crotonaldehyde, most attention has focused on detecting the 

formation of adducts with proteins (lipoxidation). The structures of a substantial number of 

protein adducts have been elucidated, and examples are shown in Figure 1.  To this end, 

two main approaches exist: antibody-dependent techniques, and proteomic methods 
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including proteins identification and sequencing by mass spectrometry. These two 

approaches may also be combined. 

Use of antibody-based methods  

Since the realization in the 1990s that many lipid peroxidation products have 

interesting biological effects, there have been significant efforts to develop specific 

antibodies against the adducts formed from MDA, HNE and several other aldehydes, which 

have subsequently been tested and validated for use in ELISAs, western blotting, and 

immunocytochemistry and immunohistochemistry. Antibodies against MDA- and HNE-

modified proteins have been available for many years [100, 101] and polyclonal sera are 

now commercially available from several suppliers. The antibodies and antisera available for 

HNE have been reviewed previously [15]. A monoclonal antibody against acrolein adducts 

with proteins was also developed and tested around the same time [102, 103]; subsequently 

other researchers produced an antibody against the same immunogen, and showed that it 

recognized acrolein-modified albumin [104]. Using this antiserum they developed an ELISA 

and reported limited cross-reactivity with adducts of formaldehyde, malondialdehyde, or 4-

hydroxynonenal with albumin. Salomon’s group raised polyclonal antibodies against 15-E2-

IsoK or 12-E2-IsoK adducts with keyhole limpet hemocyanin, and used them in an ELISA to 

measure the levels of these isolevuglandin adducts in the plasma from patients with 

atherosclerosis and with endstage renal disease [105]. A goat anti-neuroketal antibody is 

now commercially available and has been used to show increased levels of neuroketal 

adducts in elderly brain [76]. Recently, a monoclonal (mAb 27Q4) has been raised against 

nonenal-modified keyhole limpet hemocyanin, and used to investigate the presence of 

protein-bound 2-nonenal in vivo; it was found that the antibody recognises cis- and trans-N
ε-

3-[(hept-1-enyl)-4-hexylpyridinium]lysine (HHP-lysine), a novel nonenal-lysine adduct [41], 

formed via the addition of two equivalents of nonenal. Monoclonal antibodies have also been 

produced against the acrolein-derived cyclic DNA adduct 1,N2-propanodeoxyguanosine 

(Acr-dG) which were only weakly cross-reactive against crotonaldehyde- and HNE-

deoxyguanosine adducts; a FACS-based assay and two ELISAs were developed based on 

these antibodies and tested in experiments with HT29 cells [106].  

The antibodies described above have proved invaluable in demonstrating the 

occurrence of adducts of lipid oxidation derived aldehydes in tissues, and have provided 

novel information on the structure of some adducts. Some of them, most notably anti-HNE 

antibodies, have been applied to western blotting to identify lipoxidized proteins [107]. Anti-

DNP antibodies are very widely used in western blotting (oxyblotting) and ELISAs for 

carbonyl-containing proteins [108], but it is important to realize that protein carbonyls can 

arise from other oxidative modifications and that reactions of lipid peroxidation products with 

proteins will only result in free carbonyls for bis-carbonyls or bi-reactive compounds that can 
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form adducts by Michael addition. Although most of the monoclonal antibodies are reported 

to show high specificity, several of the commercially available antibodies are polyclonal 

antisera, and likely to have higher cross-reactivity. Ultimately, a potential limitation of all work 

with antibodies is a dependence on their specificity, and the possibility that the epitope may 

be hidden or not recognized in some target proteins through altered folding or aggregation. 

 

Protein analysis by mass spectrometry 

 In order to identify the protein targets of reactive carbonyl compounds that have been 

detected by western blotting on one- or two-dimensional SDS-polyacrylamide gels, mass 

spectrometry analysis of the gel spot or band on an equivalent Coomassie-stained gel is 

often carried out [109, 110], as mass spectrometry is the most informative and reliable 

technique for this purpose. The spots of interest are excised from the gel and digested to 

peptides, an enzymatic process usually carried out using trypsin, but other proteases such 

as AspN  or GluC  can be used [111].  The resulting peptide mixture can be analysed directly 

by MALDI-TOF, and the peptide mass fingerprinting used to identify the proteins present, 

which involves matching the observed peptide mases to theoretical masses of possible 

peptides in a database [112]. This is the most common method for peptide mass 

fingerprinting, but the same data can also be achieved by LC-MS with electrospray 

ionization. In both cases, proteins present in the sample are identified based on the 

identification of two or more unique peptides; however, this does not demonstrate that the 

modification was present in that protein unless a peptide with increased mass corresponding 

exactly to the adduct is observed. In practice, the probability of finding the modified peptide 

is low, so many studies have reported the identity of the proteins that were identified in spots 

corresponding to the location of those that reacted in the western blot, and assumed that 

these are the proteins modified by the aldehyde of interest, without firm evidence for it. For 

example, using MALDI-TOF specific targets of 4-hydroxy-2-nonenal modifications were 

identified in Down syndrome cases, supporting similarities with Alzheimer disease.  Western 

blotting after 2D electrophoresis was carried out with a mouse monoclonal anti-HNE 

antibody, proteins in the corresponding digested spots were identified by MALDI-TOF 

peptide mass fingerprinting, and the data were searched using the Mascot search engine 

[113].   A similar method was also successfully applied in the identification of complex I 

subunits modified by HNE in mitochondria from diabetic kidney. HNE-modified proteins were 

first identified by western blotting, but then two different types of electrophoresis were 

performed: blue native polyacrylamide gel electrophoresis (BN-PAGE) to isolate the whole 

complex I, followed by SDS-PAGE to resolve individual complex I subunits. After in-gel 

digestion, nano-liquid chromatography mass spectrometry was performed for peptide 

mapping and protein identification [114]. As the complexes were separated through 
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additional electrophoresis steps and only 1 protein was identified in each band, the evidence 

for HNE modification in this case is stronger. In other studies, the presence of several 

resolved spots, i.e. at slightly different pIs and molecular weights, but with the same provided 

support for the existence of post-translational modifications [115]. Generally, the same 

approach has been used when investigating other types of lipoxidation, such as the 

occurrence of neuroketal adducts in brain of middle-aged and old individuals [76]. 

 

Protein sequencing and identification of modifications by LC-MSMS 

Ultimately, absolute confirmation of the presence of lipoxidation or other post-

translational modifications requires tandem MS to sequence the peptide and demonstrate 

the specific site and nature of the modification [116]. This is most routinely done by LC-

MSMS; this bottom-up approach is advantageous in complex protein mixtures and has the 

potential to identify low abundance proteins, given the appropriate experimental parameters. 

However, untargeted or discovery techniques are extremely difficult to implement in complex 

samples, and have most commonly been applied to individual proteins. Nevertheless, 

important information can be obtained about the potential modification sites, the nature of 

the adducts formed, and the different propensities of individual proteins for modification, as 

shown in some recent studies.  

Zhu et al. incubated chymotrypsin, cytochrome c, β-lactoglobulin (β-LG) and RNase 

A with 2,4-dodecadienal and used a label-free LC-MSMS approach to investigate the sites of 

modifications [117]. They observed that β-lactoglobulin was far more susceptible to 

dodecadienal adduct formation than the other proteins.  A characteristic fragment ion at m/z 

286 was observed and deduced to correspond to the protonated pyridine moiety, indicating 

the presence of a lysyl-pyridinium adduct. These diagnostic fragment ions are extremely 

useful as they offer potential for semi-targeted (precursor ion scanning) or targeted (single or 

multiple reaction monitoring) mass spectrometry routines to find particular modifications. 

Another study focused on rat ApoE protein and using MALDI-TOF/TOF MS demonstrated a 

series of adducts induced by acrolein, including an aldimine adduct at K149 and K155 (+38 

Da); a propanal adduct at K135 and K138 (+56 Da); an Nε-(3-methylpyridinium)lysine (MP-

lysine) at K64, K67, and K254 (+76 Da), and an N
ε-(3-formyl-3,4-dehydropiperidino)lysine 

(FDP-lysine) derivative at position K68 (+94 Da) [118]. (MALDI-TOF/TOF MS). The rat ApoE 

treated with acrolein was found to have impaired binding to the LDL receptor and heparin, 

which was thought to result from overall changes in folding of the protein, and illustrates 

some important biological outcomes of lipoxidation.  

Such studies with purified proteins can direct subsequent studies on biological and 

clinical samples, as demonstrated elegantly by Charvet et al [70] for isolevuglandin adducts 

of the sterol-metabolizing enzyme CYP27A1.  Bottom up LC-MS/MS analysis showed that 
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CYP27A1 was modified by iso[4]LGE2 in vitro specifically at three Lys residues: Lys134, 

Lys358, and Lys476. This enabled the generation of an internal standard, 15N-labeled 

CYP27A1 modified with iso[4]LGE2, and design of transitions for multiple reaction 

monitoring for the modified peptides AVLK358(-C20H26O3)ETLR and VVLAPETGELK476(-

C20H26O3)SVAR,  and demonstration of iso[4]LGE2 adducts in a human retinal sample. 

More recently, a similar approach was used to study the formation of isoketal-lysine-lactam 

adducts in dendritic cells by stable isotope dilution multiple reaction monitoring mass 

spectrometry [71]. The ability to identify isolevuglandin adducts in vivo is important to 

demonstrate the formation of these lipid oxidation products, as free isolevuglandins as 

cannot be detected in tissues, owing to their very high reactivity with amines [67]. 

Is it worth remembering that several esterified chain-shortened products of lipid 

oxidation contain aldehydes, such as POVPC and PONPC, and that these can also form 

adducts with proteins. In fact, the E06 antibody that has been used extensively in clinical 

studies is thought to recognize the phosphocholine headgroup and bind to lipoproteins 

containing POVPC adducts [119]. The formation of these adducts has now also been 

demonstrated using a semi-targeted approach, involving mining high resolution LC-MSMS 

data of Apo-B100 digested with trypsin for the diagnostic fragment at m/z 184 indicative of 

phosphocholine [34]. 

 

Enrichment and labelling approaches to identifying oxidized lipid adducts with proteins 

Despite the positive findings described in the section above, a major challenge of 

label-free MS analysis is that post-translationally modified proteins are generally only 

present at low stoichiometric levels in a sample protein pool, and thus are difficult to identify 

amongst proteins thousands of times more abundant. One way to overcome this issue is to 

apply enrichment tools to bottom-up LC-MS approaches, which can lead significantly 

increase the sensitivity and specificity [120]. The most common principle is to use a biotin 

hydrazide to label protein carbonyls and then enrich these proteins by avidin capture on a 

solid phase. In 2006 Chavez et al. introduced a biotin-tagged aldehyde reactive probe (ARP) 

that is able to react with protein aldehydes present on Michael-type conjugates to form a 

C=N bond and a stable biotinylated oxime derivative; this can be detected by either western 

blotting or mass spectrometry, following fragmentation of the labelled peptide [121]. This 

affinity approach was subsequently applied to lipoxidation adducts in cardiac mitochondria, 

where adduction by acrolein, β-hydroxyacrolein, crotonaldehyde, 4-hydroxy-2-hexenal, 4-

hydroxy-2-nonenal and 4-oxo-2-nonenal was observed [122].  A more recent study used 

ARP to quantify the susceptibility of proteins from hepatic mitochondria to HNE damage, 

using magnetic streptavidin beads for enrichment either at the level of modified protein or 

modified peptide after tryptic digestion [123]. Many protein targets and modification sites 
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were identified, which may be useful in future targeted assays. An alternative method 

involving d0/d4-succinic anhydride labelling followed by enrichment using hydrazine-

functionalized beads (Affi-gel Hz beads) has been developed by the same group for relative 

quantification of site-specific carbonyl adducts, and it was reported that hydroxy-2-hexenal 

(HHE) Michael adducts were most abundant, although adducts of acrolein, 4-hydroxy-2-

nonenal (HNE) and 4-oxo-2-noneal (ONE) to cysteine, histidine and lysine were also 

identified [124]. A comparison of 2,4-dinitrophenylhydrazine (DNPH), biotin hydrazide (BHZ) 

and O-(biotinylcarbazoylmethyl) hydroxylamine (ARP) as carbonyl-labeling reagents has 

been carried out, and it was concluded that all were selective for aliphatic aldehydes and 

ketones, and that the best method is to digest the proteins first and then label the peptides 

[125].  

Thus the biotin affinity labelling with MS based peptide sequencing can provide 

detailed information about a variety of protein modifications in biological samples. However, 

it can also detect carbonyl-containing modifications produced by direct, free radical attack on 

proteins (e.g. lysine, arginine, proline and threonine residues), and will miss Schiff base 

adducts formed by mono-aldehydes.  

A different and novel approach to determining targets of small reactive aldehydes 

involves the chemical synthesis of aldehyde analogues with alkyne or azido termini, which 

allows their adducts to be selectively extracted from biological samples [126]. For example, 

Vila et al worked with alkynyl analogues of HNE to form adducts that can be label with azido-

biotin tags by Cu+-catalyzed cycloaddition (Click chemistry), and they found that heat shock 

proteins 70 and 90, and the 78-kDa glucose-regulated protein, were selectively adducted 

[127].  While clearly a very effective approach to determining targets of HNE, unfortunately it 

cannot as yet be used to study the physiological occurrence of aldehydes in biological or 

clinical samples. 

 

Detection of adducts on intact proteins 

While bottom-up proteomic approaches to detecting lipoxidation are most common, 

they have the limitation that they do not provide information on the modification of the whole 

protein, only on the peptides that can be sequenced. Understanding the extent and kinetics 

of modification of a protein requires analysis of the intact protein, using a high resolution 

instrument. As a protein has many residues that can carry surface charge, it can exist in a 

variety of charged states, each with a different mass-to-charge ratio.  Deconvolution 

software facilitates the conversion of the m/z envelope to the observed mass of the protein. 

Treatment with a reactive carbonyl compound can result in the formation of multiple adducts, 

as shown for acrolein adducts of lysozyme in Figure 2. This approach has been used to 

investigate the susceptibility of several proteins to 2,4-dodecadienal (DDE), by monitoring 
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mass increments of 134 Da corresponding to Lys Schiff bases or Michael adducts at +152 

Da. It was found that β–lactoglobulin became much more extensively modified than 

cytochrome c or RNase A, and the adducts appeared to be more stable over the incubation 

period [117]. In another study, ubiquitin was selected as a model protein to investigate the 

formation of AGEs (with methylglyoxal and glyoxal), and ALEs (with malondialdehyde and 4-

hydroxy-2-nonenal). The order of reactivity with this protein was found to be 

MGO > GO > HNE > MDA. The top-down approach was supplemented with typical nano LC-

ESI-MS/MS analysis of peptides from a tryptic digest as described above to map the specific 

sites of modification [128]. 

 

6. Quantification of aldehydes in human plasma or serum 

The physiological serum concentrations of free aldehydes may depend on a number 

of factors, such as the rate of production versus breakdown or detoxification, as well as the 

amount of adduction of aldehydes to biomolecules [129]. Moreover, Schiffs base and even 

Michael adduct formation is reversible unless the adducts are stabilized by reduction or a 

rearrangement such as cyclization, which may affect quantification. The concentrations of 

free aldehydes in plasma or serum have been measured in healthy subjects and in a number 

of disease states using GC, HPLC with a range of different spectrophotometric detection 

methods, or GC/LC-MS, with the most comprehensive data coming from patients suffering 

from diabetes, rheumatoid arthritis and lung cancer.  A representative sample of these data 

is summarized in Table 3. There appear to be significant levels of most of the aldehydes 

measured even in healthy subjects, although it is worth noting that there is generally a lack 

of consensus on plasma concentrations for individual aldehydes between different studies, 

which may be due to the different techniques being used.  For example, in healthy subjects 

HNE concentrations of 80 to 960 nM are reported, and malondialdehyde varies from 0.36 to 

15 µM.  This issue has been noted previously: even when a single batch of samples was 

prepared and distributed to several laboratories for analysis; in this study, malondialdehyde 

was found to have the lowest inter-laboratory variability compared to HNE and isoprostanes 

[84]. The analysis and levels of MDA and HNE in clinical samples have been discussed in an 

extensive recent review [83], and the same author also reported that sample storage time 

can significantly affect the concentrations [130]. In general, no or only a small (approximately 

2-fold) increase in plasma aldehyde concentration is seen in disease, although some of 

these are statistically significant. Larger increases have been reported for hexanal and 

heptanal in lung cancer and acrolein in diabetics. However, care needs to be taken in 

interpreting increases in acrolein concentration as it may come from sources other than lipid 

oxidation, such as the catabolism of threonine and spermidine or the oxidation of sugars 

[37].  
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7. Perspectives 

Of the very wide number of different carbonyl-containing and reactive lipid oxidation 

products known, still a relatively small fraction have been thoroughly investigated, although 

the area continues to broaden. This may in part be due to the availability of the compounds, 

which are not all commercially available currently. Specific antibodies to aldehyde-protein 

adducts have also been a major contributing factor to detecting the formation of adducts and 

understanding their role in pathology, but again, a fairly limited selection are currently 

available. Development of antibodies to a wider range of adducts, including those resulting 

from less commonly studied aldehydes such as OHE and HDDE, will be an important area 

for future research. However, it is challenging because of the large number of different 

chemical structures that can result following cyclization or cross-linking reactions, which 

therefore requires prioritization of the adducts. Data to inform such decisions requires the 

application of the advanced mass spectrometry analytical methods described above, as this 

can help to identify the chemical structures that occur in vivo, and characterize or confirm the 

structures of adducts used as antigens. On the other hand, bottom-up LC-MSMS is a very 

data- and labor-intensive approach to finding lipoxidation adducts, akin to looking for a 

needle in a haystack, hence there is a substantial benefit to the development of specific 

enrichment and labelling techniques that reduce the number of proteins that need  to be 

sequenced. 

An important message that is emerging from studies of reactive carbonyl-containing 

compounds is that their reactions with proteins are selective; some proteins are more 

susceptible to adduction by a particular aldehyde than other proteins and the types of 

residues modified is different. For example, in one protein HNE might react preferentially 

with lysine, while in another histidine and cysteine are most modified.  Moreover, within a 

single protein all lysine residues are not equal, and the same applies to cysteine and 

histidine. This may depend both on solvent accessibility of the residues and its pKa, which 

can be greatly affected by the local environment within the protein. More comprehensive 

mapping of modification sites within pathophysiologically relevant proteins will allow 

improved understanding of the mechanisms by which reactive lipid-derived aldehydes affect 

signalling pathways and alter cell behaviour. Notwithstanding these challenges, it is already 

clear that lipoxidation is an important research topic that deserves future attention. 
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Figure 1. An overview of cyclic products formed by the reaction of aldehyde-

containing lipid oxidation products with amino acid side chains.  Where reactions 

depend on Michael additions only the lysine product is shown, but as indicated this can be 

replaced by cysteine or histidine. Reactions that can form crosslinks between amino acid 

side chains are identified as such. Reactions are shown for representative members (usually 

the most abundantly formed) of the class of oxidation product. 

 

Figure 2. Formation of acrolein adducts on lysozyme. Lysozyme (1 mg/mL) was reduced 

with dithiothreitol, treated with 4 mM acrolein for 2 hours and the adducts stabilized by 

reduction with NaBH4. Untreated lysozyme solution (A) or acrolein-treated lysozyme (B) 

were infused into an SCIEX 5600 TripleTOF. The raw MS data containing the charge state 

envelopes were deconvoluted using Biotools within the PeakView software (Sciex) to give 

actual mass spectra. Adducts of acrolein correspond to mass additions of 58 Da. Minor 

peaks in the native protein correspond to salt adducts that were lost on zip-tip purification of 

the treated sample. 
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Table 1. Structures of carbonyl-containing lipid oxidation products 

Name  Structure Comments Ref. 

Alkanals 

Propionaldehyde C3 
 

Identified as produced from both linoleic 
and arachidonic acid radical oxidation in 

vitro by GC and LC. Found in rat heart 
oxidative stress and other conditions.  

[30, 
37, 
131, 
132]  

Butyraldehyde C4 
 

Identified as produced from both linoleic 
and arachidonic acid radical oxidation in 

vitro by GC and LC. 

[30, 
37]  

Valeraldehyde 
(pentanal) 

C5 
 

Identified as produced from both linoleic 
and arachidonic acid radical oxidation in 

vitro by GC and LC. The analogous 
alkanals hexanal (C6), heptanal (C7), 
octanal (C8) and nonanal (C9) were also 
identified. 

[30, 
37] 

α-Substituted alkanals 

2-
hydroxyhexanal 

C6 

 

Derived from peroxidation of n-6 
polyunsaturated fatty acids 

[133] 

2-
hydroxyheptanal 

C7 
 

Major product from all n-6 
polyunsaturated fatty acids peroxidation.  

[133-
135] 

2-hydroxyoctanal C8 
 

From oleic acid acid hydroperoxide, 
identified as PFBO derivative by GC from 
Fe

2+
/ascorbate oxidation. The analogous 

substituted alkanals 2-OH-nonanal (C8) 
and 2-OH-decanal (C10) were also 
identified. 

[133, 
134] 

α-Chloro-
hexadecanal 

C16 

 

Generated from reaction of 
plasmalogens with HOCl 

[78] 

α-Chloro-
octadecanal 

C18 

 

Generated from reaction of 
plasmalogens with HOCl 

[78] 

Alkenals 

Acrolein 
(propenal) 

C3 
 

Highly reactive electrophile and most 
cytotoxic. Formation requires two β-
cleavages. 2-alkenal cytotoxicity 
depends on chain length. 

[35, 
37, 
136] 

Crotonaldehyde 
((2E)-but-2-enal) 

C4 
 

Derived from peroxidation of ω-3 
polyunsaturated fatty acids (e.g. 15-OOH 
of linolenic acid) 

[37] 

2-pentenal C5 
 

Derived from lipid peroxidation of ω-3 
polyunsaturated fatty acids (e.g. linolenic 
18:3). 2-heptenal and 2-octenal (C8) 
were also identified. 

[37] 

2,4-heptadienal C7  

Derived from lipid peroxidation of ω-3 
polyunsaturated fatty acids; identified in 
oxidized LDL and cooking oils. 

[137-
139] 

2,4-octadienal C8  

Derived from lipid peroxidation of ω-3 
polyunsaturated fatty acids; identified in 
cooking oils. 

[140] 

2-nonenal C9  

Less reactive than other 2-alkenals, such 
as acrolein and crotonaldehyde, so has 
received relatively little attention as an 

[41, 
136] 
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agent for modification of proteins. 2-
alkenal cytotoxicity depends on chain 
length  

2,4-decadienal C10  

Lipid peroxidation of ω-6 
polyunsaturated fatty acids. Found in 
plant material e.g. peanuts, cooked meat 
(used as a flavour ingredient), and 
mammalian cells.  Possible intermediate 
in the formation of HNE.  

[50, 
53, 
96, 
137] 

2,4-
undecadienal 

C11  

Lipid peroxidation of ω-6 
polyunsaturated fatty acids. Found in 
plant material, cooked meat and peanuts 
and used as a flavour ingredient.   

[141, 
142] 

γ-Substituted alkenals 

4-hydroxy-2-
hexenal (HHE) 

C6 

 

Derived from peroxidation products of ω-
3 polyunsaturated fatty acids. A potential 
mediator of mitochondrial permeability 
transition. 

[49, 
143, 
144] 

4-hydroxy-2-
octenal (HOE) 

C8 
 

Derived from peroxidation products of ω-
6 polyunsaturated fatty acids.  

[143] 

4-hydroxy-2-
nonenal (HNE) 

C9 
 

The main aldehyde formed during 
peroxidation of ω-6 polyunsaturated fatty 
acids. Formed via 15-hydroperoxy-
eicosatetraenoic acid 15-HpETE (from 
arachidonic acid) and from 13-
hydroperoxy-octadecadienoic acid 13-
HpODE (from linoleic acid). 

[37, 
144] 

4-hydroperoxy-2-
nonenal (HpNE) 

C9 
 

Derived from double peroxidation of ω-6 
polyunsaturated fatty acids. Equivalent 
hydroperoxy forms would be expected 
for other α,β-unsaturated aldehydes and 
as precursors to hydroxides in this table, 

[46] 

4-hydroxy-
decenal 

C10 
 

Derived from peroxidation of ω-6 
polyunsaturated FA.  

[143] 

4,5-
Dihydroxydecen

al 
C10 

 

Identified in NADPH-Fe induced 
peroxidation of liver microsomes  

[138] 

6-hydroxy-2,4-
undecadienal 

C11 
 

Derived from peroxidation of ω-6 
polyunsaturated FA.  

[133, 
134] 

4-hydroxy-2,6-
dodecadienal 

(HDDE) 
C12 

 

Derived from the breakdown of 12-
hydroperoxy-eicosatetraenoic acid 12-
HpETE (from arachidonic acid). 

[42, 
43, 
59] 

Bis-aldehydes 

Glyoxal 
(oxaldehyde) 

C2 
 

Oxidation product common to all 
polyunsaturated fatty acids. Precursor of 
N
ε
-(carboxymethyl)lysine (CML). Point of 

interplay between glycation and lipid 
peroxidation. 

[145, 
146] 

Malondialdehyde 
(1,3-propanedial, 

MDA) 
C3 

 

Arachidonic acid is the main precursor of 
the bicyclic endoperoxides which 
undergo further reactions to form MDA. 
Global marker of lipid peroxidation. 

[17, 
27, 
35]  

4-oxo-2-hexenal 
(OHE) 

C6 

 

Derived from lipid peroxidation of ω-3 
polyunsaturated fatty acids 

[147] 

4-oxo-2-nonenal 
(ONE) 

C9 
 

From 13-hydroperoxy-octadecadienoic 
acid 13-HpODE (linoleic acid). Highly 
reactive aldehyde originating from the 
peroxidation of n-6 polyunsaturated fatty 

[58] 
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acid. 

Levuglandins and Isoketals 

Isoketal 
(Levuglandin E2) 

C20 

 

Formed from the H2-isoprostane 
pathway. From the rearrangement of 
prostaglandin H2. 

[67] 

Isoketal 
(Levuglandin D2) 

C20 
Formed from the H2-isoprostane 
pathway. From the rearrangement of 
prostaglandin H2. 

[67] 
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Table 2. Recently reported probes for analysis of lipid peroxidation derived aldehydes 

and their application to biological systems. 

Aldehyde 
Reactive Probe  

Detection 
method 

Aldehydes 
analysed 

Linear Range Levels in 
biological 
samples 

Reference 

2,2’-furil (with 
ammonium 
acetate)  
 

Fluorescence 
(250/355 nm) 

Glyoxal 
Acrolein 
HNE 
MD 

0.10–5.00 µM 
0.20–10.0 µM 
0.20–40.0 µM 
0.40–10.0 µM  
 

0.7-4.0 µM 
0.7-9.3 µM 
13-40 µM 
0.8-2.5 µM 
(sera) 

[148] 

4-(N,N-dimethyl-
aminosulfonyl)-7-
hydrazino-2,1,3-
benzoxadiazole  
 

Peroxyoxalate-
dependent 
chemi-
luminescence 

Methylglyoxal, 
Acrolein, 
Crotonaldehyde 
Trans-2-hexenal 
 

20–420 nM 
16–320 nM 
15–360 nM 
20–320 nM 
 

141-310 
nM  
42-76 nM 
57-68 nM 
54-71 nM 
(sera) 

[149] and 
refs therein 

Rhodamine B 
hydrazide (RBH)  
 

Fluorescence 
(560/580 nm) & 
LC-MS 

MDA 0.8-1500 nM 
LOD=0.25 nM 
LOQ=0.80 nM 

40-250 nM 
(plasma) 
20-70 nM 
(urine) 

[88] and 
refs therein 

2,4-dinitrophenyl-
hydrazine (DNPH) 

LC-MSMS 
ketone gave an 
m/z 179 ion; 
aldehyde gave 
m/z 163. 

Acrolein  
Crotonaldehyde 
Pentanal 
Hexanal 
Heptanal 

Not quoted n/a [117, 150] 
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