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Abstract: We introduce low complexity machine learning method method (based on lasso
regression, which promotes sparsity, to identify the interaction between symbols in different
time slots and to select the minimum number relevant perturbation terms that are employed)
for nonlinearity mitigation. The immense intricacy of the problem calls for the development of
"smart" methodology, simplifying the analysis without losing the key features that are important
for recovery of transmitted data. The proposed sparse identification method for optical systems
(SINO) allows to determine the minimal (optimal) number of degrees of freedom required for
adaptive mitigation of detrimental nonlinear effects. We demonstrate successful application of
the SINO method both for standard fiber communication links and for few-mode spatial-division-
multiplexing systems.
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1. Introduction

There is an enormous pressure on the fiber-optic communication industry to deal with the
exponentially increasing capacity demands from data traffic [1, 2] driven by the existing and
constantly emerging internet and broadband services as well as the fast growing machine-to-
machine traffic. Current technological solutions suggest a combination of advanced modulation
formats and space division multiplexing to achieve substantial enhancement of the spectral
efficiency [3–6], while fiber remains a nonlinear medium leading to signal being strongly degraded
by nonlinear impairments. In future systems, potentially using different types of fibers, nonlinear
effects still will be one of the fundamental limiting factors. Therefore, compensation of the
nonlinear signal distortions is a critical challenge for development of the next generation of
communication systems operating at higher transmission rates.

Up to date, non-linear impairment mitigation has been considered mostly for single mode fiber
links with a number of techniques being proposed both in the optical and electronic domain [7–11].
Most of the research in the field of electronic compensation has been focused on back-propagation
algorithms that emulate optical transmission in the digital domain through an inverse fiber link
(with reversed order segments and opposite sign parameters), realized either by means of a
Split-Step Fourier method [10,11] or Volterra Series Transfer Functions [12–14]. Despite various
simplifications that have been proposed, both approaches are considered to be highly complex
because they require multiple computational steps along the link and at least two samples per
symbol. This has heavily discouraged any effort for future commercial deployment even for
legacy SMF fiber systems.

On the other hand, perturbation analysis of the Manakov equations has led to the development
of efficient equalization methods that can mitigate accumulated intra-channel impairments in a
single computational step and one sample-per-symbol [15, 16]. Central to this approach has been
the identification of the perturbation coefficients that describe the interaction of each symbol
with its preceding and succeeding symbols in the transmission channel [17–20]. For static
connections and specific pulse shapes, such as Gaussian or sinc, the perturbation coefficients
can be derived analytically and stored in a look-up table [15, 21]. Since the total number of
terms can be excessively high for dispersion un-managed links, where the channel memory is
long, exploiting common symmetries and quantizing the coefficients are two of the techniques
that have been recently proposed for complexity reduction. Furthermore, to achieve operation



in reconfigurable network environments, an adaptive version of the method that uses training
sequences and decision-directed least-mean squares algorithms has been introduced in [22]. This
enables to identify the perturbation coefficients before establishing any new connection and
without prior knowledge of the corresponding transmission link parameters. The latter progress
places the perturbation method in a broader context and signifies its practical importance in
future optical networks.

With this paper, we expand the application of perturbation-based nonlinear compensation in few
mode fiber transmission systems by introducing a novel channel model, which captures nonlinear
interplay between different modes in weak and strong coupling regime: Sparse Identification
for Nonlinear Optical communication systems: SINO method. Contrary to the aforementioned
approaches that deal only with the intra-channel nonlinearities, here, the proposed SINO method
takes into account also the nonlinear interaction between the co-propagating modes by introducing
additional inter-channel perturbation terms. The associated complexity scaling was addressed by
adapting sparse identification method [23], which makes use of the Lasso algorithm [24,25], thus,
enabling computation of perturbation coefficients with inherent principal component analysis.
The latter minimizes a mean squared error (MSE) estimation based on the training sequence
and removing redundant predictors to improve model accuracy. The method does not require
knowledge of the transmission line and is applicable for multi-dimensional multichannel systems.

2. Sparse identification for nonlinear optical systems

2.1. Problem formulation

To demonstrate the application of the SINO method we consider the transmission of a D spatial
modes and two polarizations along a few mode fiber link of Ns amplified spans, see Fig. 1.
At the receiver, a demultiplexer performs an initial separation of the spatial super-channel by
projecting its tributaries onto a fixed mode basis. After coherent detection, matched filtering and
down-sampling, the signals are fed into a linear MIMO equalizer, which compensates dispersion
and remaining mode mixing effects. The transmission nonlinearities are treated separately by
a non-linear MIMO processor (see Fig. 2). Unlike the linear equalizer, the processor creates a
nonlinear matrix Θ(X) (Fig. 3), which we call library, by forming mixing products of the input
symbols. Depending on the channel memory the library will encompass different combinations -
nonlinear mixing - of input symbols, thus, the library will have more elements that the original
modulation format. See how library expands by different combinations of 16-QAM symbols
in Fig. 3: without memory in linear scenario the library has 16 symbols, taking into account
nonlinearity (self-phase modulation) results in additional 16 symbols (formed from the original
16-QAM by a simple nonlinear transformation - xk |xk |2, while adding memory expands the
library further - for M = 1 there are 48 new symbols formed as xk |xk+1 |2, further increase of
memory expands the library even more. Subsequently, it combines together the resulting terms
through a coupling matrix Ξ, which contains information about the transmission line parameters
and the pulse-shape of the signal. As symbols interact with different weights, the impact of
some of these terms can be negligible, hence the matrix Ξ is sparse and we can employ machine
learning tools in identifying it. We may write:

Y = Θ(X)Ξ (1)

where Y is a vector of length m representing the output signal. The nonlinear system of Eq.
(1) can be viewed as a representation of the output Y via a set of coordinates Ξ on a complex
functional space Θ(X). The sparsity of Ξ allows us to simplify significantly the computational
complexity of the nonlinear filtering process by removing redundant coefficients. As we will see
below, this is an inherent characteristic of the lasso method, which has been adopted here for
identifying the optimum Ξ.



SINO

Fig. 1. Scheme: SINO performs nonlinear MIMO equalization where the library is formed
by nonlinear time-delayed function of the sampled symbols Θ(X) and the sparsity matrix Ξ,
which contains information about nonlinear properties of the channel

Fig. 2. Schematic representation of the principle: the output signal Y is represented through
nonlinear combination of input signal Θ(X) via sparse matrix Ξ

Fig. 3. The library is constructed from the received symbols according to the channel
model Eq. (5), i.e. Θ(X) = [...xk xk |xk |2...xk+mxk+nx∗

k+m+n
...] (here 16 QAM is plotted

for illustration).



On the other hand, the exact form of the library matrix Θ(X) depends on the type of non-
linearity the equalizer has to address. Given that in our case the fiber channel has memory we
should expect each row of the matrix to involve not only elements, such as, x(t1)...x2(t1)..., but
also the non-instantaneous interactions between the symbols in different time slots, such us
|x(t1)|2x(t2), therefore Θ(X) will be a dynamic matrix. Being able to identify its exact form is
expected to improve significantly the accuracy and the convergence of the equalization process.
This was achieved through a perturbation analysis on the Manakov equations that govern signal
propagation along the FMF link and the derivation of a novel discrete-time multivariate channel
model, which is described in detail below. An important result of this derivation was the fact that
we could analytically define the memory effects characterizing nonlinear interference within each
channel and among the co-propagating modes and incorporate this dynamic behavior into Θ(X).

2.2. SDM Channel Model

For deriving the discrete-time channel model, and consequently the library matrix Θ(X), we
assume that the propagation of an optical signal via an few mode optical fiber is governed by the
Manakov equation for the D-modes [26–28]:

∂Up

∂z
= −α

2
Up− βp1

∂Up

∂t
− i
β
p
2
2
∂2Up

∂2t
+ iκppγpp |Up |2Up+ iκpq

D∑
q,p

γpq |Uq |2Up+ηp(t, z), (2)

here deterministic distortions are described by fiber losses α, second-order dispersion β2, and
nonlinearity coefficient γ, whereas noise is zero-mean AWGN with variance 〈η(z, t), η∗(z′, t ′)〉 =
ND

L δ(z − z′)δ(t − t ′) where ND and L are notations for noise spectral density and transmission
length correspondingly. The formula captures both a) weak and b) strong coupling regimes, when
a) κpp = 8/9, κpq = 4/3 and b) κpq = κpq = 8D/3/(2D + 1).
Given the expansion of the signal over pulses (i.e. the field component of polariza-

tion state i Upi(t, 0) =
∑∞

k=−∞ xkpi f (t − kT)), after matched filter the continuous-time sig-
nal Up(t, L) = {Up1,Up2} undergoes dispersion compensation and is sampled at t = kT :
Ykpi(z) = P−1/2

∫
dtD[Upi(t, z)] f (t − kT) results in a discrete-time channel model:

Y ′kpi =
ρ

L
ηkpi + εV[Y ]kpi, (3)

with nonlinear potential

V[Y ]kpi =
∑
j=1,2
Ψs(z)
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with AWGN noise term having correlation 〈ηkpi(z), η∗k′p′i′(z
′)〉 = δ(z − z′)δkk′δpp′δii′ and

where Ψs(z) = e−αmod(z,Ls ) is the signal power profile and Ls is the span length. The coupling
coefficients define the memory effects in the channel, it depends on pulseshape and system
parameters:

Cpq
mn = i

∫
dzΨs(z)

∫ ∫ ∫
dωdω1dω2eiω1(βp

1 −β
q
1 )z+i(ω

2
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q
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(4)
f ∗(ω) f (ω1 + ω) f (ω2 + ω) f ∗(ω1 + ω2 + ω)

Thus, we employ multiple scale analysis with small parameters: εpp = κppγppPzd, εpq =

κpqγpqPzd, ρ =
√

NDB/P with B denoting signal bandwidth. Assuming solution in the form:



Y =
∑∞

n=0 ε
nYn, in the main order we have linear channel with AWGN noise ζk having statistics

〈ζk, ζ∗m〉 = δkm:
Y0
kpi = Xkpi + ρζkpi, ζkpi =

∫
dzηkpi(z)

Then in the first order over nonlinearity we have the nonlinear distortion:

Y1
kpi =

∞∑
m,n=−∞

Xk+n,pj

(
εppCpp

mnXk+m,piX∗k+n+m,pi +
D∑

q,p

εpqCpq
mnXk+m,qiX∗k+n+m,qi

)
(5)

Equation 5 reveals the memory property of the channel, which is that the interference between
symbols decays exponentially with the symbol distance. Having exact knowledge of this property
enables the development of a more efficient equalization process.
The impact of simplifications on coupling matrix was studied in [19], where Cmn was

approximated by a finite number of quantized levels and the degradation was estimated in terms
of Q2-factor. To calculate the latter one needs to calculate numerically a (2M + 1)2-number
of 4-dimensional integrals (for a single channel case or D(2M + 1)2 for D-mode case). For a
specific case of sinc-pulses single-channel WDM the problem has been reduced to 1-dimensional
integrals [21] and has experimentally demonstrated the benefits of the model application for
nonlinearity mitigation of intra-channel interference in multichannel-WDM.
In the next section we show how to obtain the matrix numerically using sparse identification

and generalization of the model for higher nonlinearity.

2.3. Stage1: Building library

As we know the type of nonlinearity that takes place we can construct the library (see Fig. 4(a))
as follows

Θ(X) =

... ... ...... ... ...... ... ...
... xk xk |xk |2 xk |xk+1 |2 ... xk+mxk+nx∗

k+m+n
...

... ... ...... ... ...... ... ...

 (6)

Also, as all vectors are complex we will separate real and imaginary parts (see Fig. 4(b)):

Yr = Θr
Ξ
r − Θi

Ξ
i, Yi = Θi

Ξ
r + Θr

Ξ
i (7)

Finally, we can apply this method directly to output signal A(t), while it is very important to
receive discrete-time representation by using appropriate filter, e.g. matched filter. The latter is
particularly fit for identification of discrete-time model within information-theoretic treatment.
For real symmetric pulseshapes f (ω) = − f (ω) = f ∗(ω) and β

p
1,2 = β

q
1,2 we can reduce

complexity by exploiting matrix symmetries: Cmn = Cnm = C−m,−n = −C∗−m,0,n, which reflects
in the appropriate reduced-dimensionality of the library Θ(X).

2.4. Stage2: LASSO application

As the problem is formulated, next we can apply any of the machine learning algorithms for
a sparse solution of an overdetermined system. So that LASSO inherently performs principal
component analysis, determining the minimum number of non-zero elements in Ξ, consequently,
the minimum number of required operations. Once we have the function basis we can use various
methods to calculate the sparse matrix Ξ. In particular, here we applied least absolute shrinkage
and selection operator (LASSO) [24, 25] using mean-squared error as a cost function.
As data and library are prepared we are looking to solve the problem to find a minimum:

min
β={β0,Ξ}

( 1
2d

d∑
j=1
(yi − β0 − (Θr

Ξ
r
j − Θi

Ξ
i
j)T )2 + λPα(β)

)
(8)



Stage 3: Obtained model

Stage 1: Problem Formulation

Build a library:

Separate real and imiginary 
                                    parts

a) 

d) 

Stage 2: LASSO algorithm

c) 

b) 

Fig. 4. The figure shows the operating principle of our scheme. a) First we form the library
matrixΘ(X). Then we apply sparse regression to identify the strength of interference between
the components of Ξ. Here, the LASSO algorithm is applied which works with real elements,
therefore real and imaginary parts needs to be separated; b) the real part of the received
symbol is plotted by red circles; c) LASSO identifies the matrix Ξ by minimizing mean
squared error as a function of optimization parameter λ; the resulted matrix Ξ enables to
establish a relation between output (red circles) and nonlinear combination of input symbols
Θ. Compare simulations (blue crosses) with the symbols obtained from the model (red
circles), while difference between them is plotted in black squares; d) once the channel
is fully identified it can be used for compensation of the non-linearity, compare distorted
symbols in red and recovered in blue.

where the penalty term:

Pα(β) =
1 − α

2
| |β | |22 + α | |β | |1 (9)

The penalty term converges to lasso algorithm when α = 1 and ridge regression when α = 0.
Note, varying α may yield additional optimization possibilities, which will be studied in future
research. Here in our simulations we applied the lasso fit with ten-fold cross validation to the test
data (see Fig. 4(c)). The extracted matrix Ξ corresponds to the value of λ that minimizes the
MSE (see Fig. 4(c)). The resulted matrix Ξ comprises coefficients of the Cmn matrix in Eq. (4)
with simultaneous principle component analysis, which determines the minimum complexity
operation. Once, the system is fully identified -the matrix Ξ is determined, one can use it to
compensate nonlinear impairments (see Fig. 4(d)).

3. Results and discussion

The simulations parameters are summarized in Table 1. We investigated the transmission of
a single wavelength spatial super-channel, along a 10-span FMF link of total length 10x100-
km=1000-km. We considered D spatial modes, each one of them including two polarization
states, with D taking values of 1, 3, and 6. On each of the 2D subchannels we launched a



Table 1: System parameters
Bandwidth 32 GBaud
RRC Roll off 0.01
Distance 10×100 km

Noise Figure 4.5 dB
Attenuation coefficient 0.2 dB/km

CD 17 ps/nm/km
Nonlinearity 1.4 1/W/km

-6 -4 -2 0 2 4 6
12

14

16

18

20

22

6 modes

3 modes

Power  [dBm]

1 mode

Q
2 -fa

ct
or

 [d
B

]

Fig. 5. Q2-factor vs. Launch power per spatial mode (i.e. average power of two pol.
multiplexed sub-channels) using the proposed method (dotted) compared to ideal digital
back propagation (solid) and linear compensation (dashed), for 1, 3 and 6 spatial modes
(green, blue, red). Analytic expressions Eqs. 10-13 are plotted by filled symbols.

4096-symbol, 16-QAM modulated stream of root-raised cosine pules (0.01 roll-off) at a symbol
rate of 32GBaud and sampling rate of 16 samples-per-symbol (SpS). A FM-EDFA of 4.5 dB
noise figure was considered after each span for compensating the propagation losses. Our focus
was on investigating the equalization performance on the Kerr nonlinear effects only. Therefore,
for the signal transmission we considered for every mode a Manakov-type of the propagation
equation, see 3, where the nonlinear effects are already averaged over all polarization states
due to the randomly changing birefringence. Also, for simplicity and without loss of generality,
the modes belonged in the same group and they were strongly coupled, which implies a single
nonlinear coefficient both for intra- and inter-modal effects (i.e. 1.4 1/W/km), and common
group velocity and chromatic dispersion parameters. Finally, the performance was compared in
terms of Q2-factor which as calculated from the error vector magnitude (EVM), according to
Q2 = 1/EV M2.
In Fig. 5, we compare the equalization performance of our proposed technique (dotted

lines) with the case of equalizing linear impairments only (dashed lines), as well as, with the



-6 -4 -2 0 2 4 6 8 10
12

13

14

15

16

17

18

19

20

21

22

23

24

25

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

6-10

5
4

3

2

 

Q
2 -fa

ct
or

 [d
B

]

Power [dBm]

1

6-10

5
4

3

2

1

6-10

5
4

3

2

1

a)   1 Mode b)   3 Modes c)   6 Modes

  

Power [dBm]

 

Power [dBm]

Fig. 6. Q2-factor vs. Launch power per spatial mode using the proposed method (dotted)
compared to a symmetric digital back propagation algorithms with a different number of
steps per span (1...10) and to linear compensation only (dashed) for 1, 3 and 6 spatial modes.

case of having ideal digital back propagation (DBP) (solid lines). Ideal DBP endures the full
compensation of deterministic non-linearity and it is limited by nonlinear signal-noise interactions
(here we ignored modal dispersion effects). Thus, the numerical estimations can be captured in a
straightforward way by a simple analytic expression:

SNR =
S

N + aS3 + bS2N
, (10)

the coefficient governing signal-signal interactions for ideal DBP scenario aDBP = 0, while for
phase shift equalization

aPSE = 2
D∑
q=1

∑
m,n,0

ε2
pq(2 − δpq)|C

pq
m,n |2 (11)

while for the considered case βp2 = β
q
2 , β

p
1 = 0, γpq = γqq the above expression can be easily

simplified as

aPSE =
8
27
(1 + 2(D − 1))

Nsγ
2Le f f ln(π2β2Le f f B2)

πβ2B2 ,

(where Le f f is an effective length). Since numerical estimations for the coupling matrix �Cpq
m,n

might deviate from the precise estimation, the coefficient transforms to

aSINO = 2
D∑
q=1

∑
m,n,0

ε2
pq(2 − δpq)|C

pq
m,n −�Cpq

m,n |2 (12)



Fig. 7. Uncompensated (red) and recovered (blue) constellations for 16-, 64-, 256-, and
1024-QAM after 1000km of single mode transmission with average launched power of
−3dBm.

here δpq is the Kronecker symbol. While the coefficient governing signal-noise interactions is
given as

b =
4
9
(1 + 2(D − 1))

Nsγ
2Le f f ln(π2β2Le f f B2)

πβ2B2 (13)

The aforementioned Eqs. 10-13 give a good estimate of the non-linearity impact for the
different mode propagation scenarios (filled symbols in Fig. 5 by green, blue and red for 1, 3, 6-
spatial modes - each including two polarizations states). For single mode propagation and at high
launched powers, a deviation occurs suggesting the need of considering higher order nonlinear
terms.

The proposed nonlinear equalization scheme, results in an above 3 dB improvement for single
mode transmission, which decreases to 2 and 1 dB for the 3 and 6 mode cases, respectively. The
decrease in performance is attributed to the fact that we had considered only the 1st order terms in
the nonlinear expansion of the perturbation model. Our proposed method can be straightforwardly
applied to higher orders by augmenting the library matrixΘwith higher order term of X, however,
this is an issue to be addressed in a future work.

The performance of the proposed algorithm depends strongly on the calculation accuracy of the
coupling matrix C through the evaluation of the sparse matrix Ξ. The calculations can be further
improved by using more advanced methods for sparse matrix calculation than LASSO. Yet, in
this simple configuration, which operated with a single sample per symbol and required just a
single matrix multiplication, we were able to outperform conventional compensation techniques
such as DBP. In Fig. 6 we have compared, in terms of received signal quality, our approach with
the symmetric DBP algorithm which was solved for different number of steps per span and 2



samples per symbol. For single mode systems our method slightly outperforms the DBP of 2
steps per span. As the number of modes increases the performance difference is reversed in favor
of DBP, so that for 6 modes our method compares to a DBP of single step per span. Even in that
case, the complexity of the achieved equalization is significantly lower.

Indeed, an important advantage of the proposed algorithm is that it ensures lowest complexity
by evaluating the coupling matrix elements while removing the redundant terms. For example,
in the simulated case the number of unique non-zero elements was 48 compared to the
estimation of lowest complexity previous algorithm with adaptive filtering [22] 96 components
(M − 1) log(M − 1) + 3M − 1 and non-optimized 324 (2M + 1)2 [15], where M = bB2β2L/2c
- estimation on channel memory (bxc denotes a floor function of a variable x). Furthermore,
the previous algorithms were developed only for compensation of inter-channel nonlinearities,
while in multichannel operation the complexity will increase proportionally to the number of
channels. And the proposed algorithm with the inherent principal component analysis is crucial.
In comparison using conventional DBP with 2 samples per symbol and single step per span
calculation requires about 1550 operations. The physical performance of both methods (proposed
SINO and DBP) can be compared in Fig. 6.
Finally, the SINO method is scalable to different modulation formats and signal powers as

the matrix Ξ remains unchanged, while power and modulation format influence are naturally
incorporated in Θ. Thus, once the matrix Ξ has been identified during the establishment of a
connection, and as long as the memory properties of the channel do not change, there is no need
for retraining the algorithm and the same Ξ can be used for any other modulation format (see Fig.
7). This property makes the method extremely useful for flexible smart-grid network applications.

4. Conclusions

We have developed a low complexity machine learning based nonlinear impairment equalization
scheme and demonstrated its successful performance in SDM transmission links achieving
compensation of both inter- and intra- channel Kerr-based nonlinear effects. The method operates
in one sample per symbol and in one computational step. It is adaptive, i.e. it does not require
a knowledge of system parameters, and it is scalable to different power levels and modulation
formats. Finally, although it has been developed for single wavelength spatial super-channels it
can be straightforwardly expanded to multi-channel systems and to any other type of nonlinear
impairment.
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