
Efficient Processing Node Proximity via

Random Walk with Restart

Bingqing Lv1, Weiren Yu2, Liping Wang1, and Julie A McCann2

1 East China Normal University, Shanghai, China
2 Imperial College London, UK

lvbingqings@gmail.com {weiren.yu,j.mccann}@imperial.ac.uk

lipingwang@sei.ecnu.edu.cn

Abstract. Graph is a useful tool to model complicated data structures.
One important task in graph analysis is assessing node proximity based
on graph topology. Recently, RandomWalk with Restart (RWR) tends to
pop up as a promising measure of node proximity, due to its proliferative
applications in e.g. recommender systems, and image segmentation. How-
ever, the best-known algorithm for computing RWR resorts to a large
LU matrix factorization on an entire graph, which is cost-inhibitive. In
this paper, we propose hybrid techniques to efficiently compute RWR.
First, a novel divide-and-conquer paradigm is designed, aiming to con-
vert the large LU decomposition into small triangular matrix operations
recursively on several partitioned subgraphs. Then, on every subgraph,
a “sparse accelerator” is devised to further reduce the time of RWR
without any sacrifice in accuracy. Our experimental results on real and
synthetic datasets show that our approach outperforms the baseline al-
gorithms by at least one constant factor without loss of exactness.

1 Introduction

Finding proximities between objects based on graph topology is an impor-
tant task in web data management. It has a wide range of applications, e.g.
nearest neighbor search, image segmentation, and collaborative filtering. With
the growing quantities of complex structured data, many fundamental problems
have been naturally arising in graph analysis: How closely connected are two
nodes in a graph? How to efficiently assess the closeness between two nodes?

To tackle these questions, recent years have witnessed growing attention to
node-to-node proximities (e.g. [5, 6, 4, 8, 10, 11, 9]). Among them, Random Walk
with Restart (RWR) has become a very popular one, which is originally patented
by Tong et al. [5]. RWR is a PageRank-like node proximity based on a random
surfer model. In comparison with other relevance measures, RWR has the follow-
ing two benefits [5]: (1) it can globally capture the entire topology of a graph; (2)
its proximity values can be used for ranking objects with respects to a certain
query, as opposed to PageRank that is query-independent.

Prior Approaches. However, existing methods to compute RWR are less de-
sirable. To the best of our knowledge, there exist two noteworthy methods for



RWR computation: Tong et al. [5] developed a closed form of RWR, convert-
ing the computation of RWR into a matrix inversion problem, which requires
O(n3) time for assessing all RWR proximities for n2 pairs of nodes in a graph.
Very recently, for top-K search, Fujiwara et al. [1] has proposed an excellent
algorithm called k-dash, which can be regarded as the state-of-the-art one for
computing RWR. Unfortunately, their strategy involves a large LU matrix de-
composition over an entire graph, which is still time-consuming. Therefore, it is
very imperative to devise novel techniques for accelerating RWR computation.

Our Contributions. In this paper, hybrid optimization techniques are pro-
posed for optimizing RWR computation. Different to the framework of [1] that
performs large LU decomposition on an entire graph, we utilize a novel divide-
and-conquer method, with the aim to convert large LU decomposition into small
triangular matrix operations on some partitioned subgraphs in a recursive man-
ner. This enables a substantial improvement on the computational time of RWR.
Besides, we take advantage of the sparsity of triangular matrix multiplications
with a node prioritizing strategy, and apply a fast matrix multiplication algo-
rithm, to further accelerate RWR computation. Finally, we conduct extensive
experiments on real and synthetic datasets to verify the high efficiency of our
proposed algorithms against other baselines.

Organization. The rest of this paper is structured as follows. Section 2 revisits
the related work. Section 3 overviews the background of RWR. Section 4 propos-
es our divide-and-conquer method, k-LU-RWR, for RWR acceleration, followed
by some improved strategies in Section 4.3. Experiment results are reported in
Section 5. Section 6 concludes the paper.

2 Related Work

RWR has been widely accepted as a useful measure of node proximity based
on graph topology since the pioneering work of Tong et al. [5]. In that work,
a singular vector decomposition (SVD) based algorithm, B LIN, was also pro-
posed for computing RWR, by taking advantaging of block structure of a graph.
However, this method still involves an matrix inversion on very dense matrices,
which is rather expensive, requiring cubic time in the number of nodes.

Later, Fujiwara et al. [1] proposed a fast top-K search based on RWR prox-
imities. Their algorithm involves two strategies: first, they deployed a large LU
decomposition on an entire graph for computing RWR; second, they used BFS
tree estimation and devised a pruning technique to skip unnecessary scanning
of nodes for top-K results. However, after LU decomposition, matrix inversions
of L and U on the entire graph are still costly. In contrast, our work deploys a
divide-and-conquer method to invert L and U recursively on small subgraphs,
therefore achieving high computational efficiency.

Most recently, Yu et al. [7] have developed an incremental algorithm that
supports link incremental updates for RWR on dynamical graphs. In comparison,
our work focuses on efficient computations of RWR on static graphs.



3 Preliminaries

Notations. Table 1 lists the notations used throughout this paper.

Symbols Definitions

n total number of nodes in a graph

c restarting probability, 0 ≤ c ≤ 1

A = [ai,j ] column-normalized adjacency matrix

pi = [pi,j ] n× 1 RWR vector for query i, with pi,j the proximity of node j w.r.t. i

W W := I− (1− c)A

vi n× 1 vector, whose ith element is 1, and 0 otherwise

L lower triangular matrix

U upper triangular matrix

I identity matrix
Table 1. Symbols and Definitions

RWR Overview. The formal definition of RWR is as follows [5]:

pi = cApi + (1− c)vi. (1)

Intuitively, Equation (1) suggests that a random particle starts to walk from a
given query node i, and the particle iteratively transmits to its neighbor with
the transition possibility in proportion to the edge weight between them. At
each step, it has a probability c to return to the original node i until it reaches a
steady state. The element pi,j in vector pi refers to the probability of the particle
finally stays at node j.

Based on Equation (1), we have the following closed-form of pi:

pi = (1− c)(I− cA)−1
vi = (1− c)W−1

vi. (2)

The straightforward way of solving pi in Equation (1) is to adopt an iterative
paradigm: pi

(k+1) = cApi
(k) + (1− c)vi, where pi

(k) is the k-th iterative RWR
vector w.r.t. query node i. There are two stopping criteria for this iterative
method: one is, given a threshold ǫ, to check whether the norm of the difference of
two consecutive iterative RWR vectors is below ǫ, i.e., ‖pi

(k+1)−pi
(k)‖ ≤ ǫ; the

other is, given the total number of iterations K, to check whether the number of
iterations increasingly reaches K. However, both of these criteria may sacrifice a
little accuracy, as compared with non-iterative methods. Therefore, in this paper
our optimization techniques for RWR are based on non-iterative framework.

LU Factorization. Regarding the non-iterative methods for RWR, LU decom-
position is the best-known method, which is based on a closed-form of pi, as
shown in Equation (2). However, directly calculating W−1 requires high com-
putation time as the inversion matrix could be dense even though W is sparse
in most cases. To deal with this problem, we take advantage of the Crout’s algo-
rithm [2] to do LU decomposition. Consequently, we can compute the inversions
of L and U instead, namely, W−1 = U−1L−1.



Algorithm 1 k-LU-RWR Algorithm

Input:

A : the normalized adjacency matrix
n : total number of nodes
i : query node
c : restarting probability
k : partitioning times

Output:

pi: ranking vector of node i

1: Compute W = I− cA

2: Do LU decomposition for W = LU according to Crout’s algorithm
3: L−1=recInvLU(L, n, k)
4: U−1=recInvLU(U, n, k)
5: pi = (1− c)U−1L−1

vi

6: return pi

4 Our Solution

4.1 A Divide-and-Conquer Strategy for RWR

To meet the challenges raised by RWR, we propose an algorithm named
k-LU-RWR shown in Algorithm 1. In consideration of Equation (2), we pre-
compute and store W−1 offline which is from step 1 to step 4 in the algorithm.
When a query node i comes, we simply calculate the proximities pi online by
only two multiplication operations of matrix-vector according to step 5.

Now let us concentrate on step 3 and step 4. As we have decided in Section
3, we take advantage of LU decomposition on W. However, directly utilizing LU
decomposition still requires to compute inversion matrices for both L and U, so
we apply following optimization strategies. We partition L and U into four parts,
as presented in Figure 1. After that, we compute the matrix inversions of L and
U according to Equation (3). Specifically, we do matrix inversions on L1,1, L2,2,
U1,1 and U2,2, referred to as triangle inversion, and matrix multiplications on
L2,1, U1,2 part, referred to as rectangle multiplication. When finished, we merge
the block matrices into L−1 and U−1.

L−1 =

[

L−1

1,1 0

−L−1

2,2L2,1L
−1

1,1 L−1

2,2

]

U−1 =

[

U−1

1,1 −U−1

1,1U1,2U
−1

2,2

0 U−1

2,2

]

(3)

From Figure 1, it is clear that L1,1, L2,2 remain to be lower triangular
matrices, and U1,1, U1,2 remain to be upper triangular matrices. This inspires
us to do the partition and inversion procedures recursively, as represented in
Figure 2. So we further devise a recursive algorithm recInvLU in Algorithm 2 to
calculate triangle matrix inversions in step 3 and step 4 of Algorithm 1.

4.2 Time Complexity of k-LU-RWR

In the pre-computation stage, i.e. step 1 to step 4, the main time cost includes
LU decomposition and matrix inversion. In LU decomposition part, we adopt



L1,1

L2,1 L2,2

U1,1 U1,2

U2,2

Fig. 1. L and U Partitions

L1,1

L2,1 L2,2

U1,1 U1,2

U2,2

Fig. 2. Recursive L and U Partitions

Algorithm 2 recInvLU(M, n, k)

Input:

M : the lower or upper triangular matrix after LU factorization
n : size of matrix M

k : partitioning times
Output:

M−1: the inversion matrix of M
1: if k = 0 then

2: M−1 = inverse(M)
3: return M−1

4: else

5: Partition M into M1,1, M1,2, M2,1, and M2,2

6: M−1

1,1=recInvLU(M1,1,
⌊

n

2

⌋

, k − 1)

7: M−1

2,2=recInvLU(M2,2,
⌈

n

2

⌉

, k − 1)
8: if M is lower triangular matrix then

9: M−1

2,1 = −M−1

2,2M2,1M
−1

1,1

10: Merge M−1

1,1, M
−1

2,2 and M−1

2,1 into M−1

11: else

12: M−1

1,2 = −M−1

1,1M1,2M
−1

2,2

13: Merge M−1

1,1, M
−1

2,2 and M−1

1,2 into M−1

14: end if

15: end if

Crout’s algorithm, whose theoretical time complexity is O(n3). Similarly, in the
inversion part, if we inverse L and U directly, the time complexity is O(n3) too.
However, we applied partitioning strategy and the time complexity is given by
Equation (4), where T (MM(n2 )) represents the cost of rectangle multiplication

part in Algorithm 2.

T (recInvLU(n)) = 2T (recInvLU(
n

2
)) + 2T (MM(

n

2
))

= n log(n) + 2T (MM(
n

2
)) (4)

In the query stage, we simply do two multiplications of matrix-vector. For this
reason, the query response is nearly real-time.



4.3 Further Improvement of k-LU-RWR

From Equation (4), we know that the time of RWR mainly depends on the
matrix multiplications. A straightforward implementation of the matrix mul-
tiplications needs cubic time in the number of nodes. We now introduce two
enhanced versions for accelerating the matrix multiplications: (1) We can adop-
t sparse matrix storage data structure. Since the adjacency matrix A is often
sparse, we can use the reordering strategy [1] to keep the sparsity of LU decom-
position. This reordering strategy has a good performance in practice. However,
when matrices are becoming dense, the worst case time is still O(n3). (2) We can
also apply Strassen’s algorithm [3] to reduce the time of the matrix multiplica-
tions to O(nlog

2
7). Combining these two methods together, it requires O(nlog

2
7)

time in total for computing RWR, while eliminating unnecessary multiplications
by filtering zero entries.

5 Performance Evaluation

5.1 Experiments Settings

We set the restart probability c = 0.9, as previously used in [5].

We conduct a set of experiments on the value of partition times k, to see
how it effects on the experiment performance. To verify the effect of the Re-
order strategy, we also do experiments on k-LU-RWR without reorder procedure
called Un-LU-RWR, compared with k-LU-RWR, to contrast ratio of the number
of nonzero entries in L−1 and U−1 to the edges in matrices, which indicates the
time and storage costs we preserve. Moreover, the proposed algorithm is com-
pared with NB LIN [5] and k-dash [1] in terms of pre-computation time to show
the efficiency of our algorithm. In k-dash, we compute proximities of top-n nodes
for fair comparison. Besides, we do experiments to show the high response time
on queries of k-LU-RWR.

We use real and synthetic datasets. All experiments were conducted on the
machine with 2.5GHz CPU and 4.00GB main memory. Our algorithms are im-
plemented in C++. The details of datasets are listed in Table 2.

Datasets Number of nodes Number of edges Type

bcsstk25 ≈ 15K ≈ 252K real

bcsstk31 ≈ 36K ≈ 1, 181K binary

bauru5727 ≈ 40K ≈ 145K binary

crystm03 ≈ 25K ≈ 584K real

pcrystk03 ≈ 25K ≈ 1, 751K binary

synthetic10000 10k 200k real

synthetic15000 15k 250k real

synthetic20000 20k 1000k real
Table 2. Datasets



0 2 4 6 8 10

102

103

104

L
o
g
T
im

e
C
o
st
(S
ec
)

bauru5727

bcsstk25

bcsstk31

synthetic10000

synthetic20000

Fig. 3. Different k values of k-LU-RWR

bauru5727crystm03 pcrystk03 bcsstk25 bcsstk31

0

20

40

60

R
a
ti
o
o
f
N
o
n
ze
ro

E
n
tr
y
N
u
m
b
er

LU-RWR

UN-LU-RWR

Fig. 4. Effect of Reorder Strategy

bauru5727crystm03pcrystk03 bcsstk25 bcsstk31

100

101

102

103

104

L
o
g
T
im

e
C
o
st

(s
)

k-LU-RWR

NB LIN

K-dash

Fig. 5. Pre-computation Cost on RealData

synthetic10000 synthetic15000 synthetic20000

102

103

104

L
o
g
T
im

e
C
o
st

(s
)

k-LU-RWR

NB LIN

K-dash

Fig. 6. Pre-computation Cost on SyntheticData

5.2 Experiment Results

We first conduct experiments on how the value of k influences on the efficiency
of k-LU-RWR. The results are shown in Figure 3. When k varies from 0 to 10,
we see the time costs decrease gradually on both real datasets and synthetic
datasets. For the case k = 0, we directly calculate the inversions of L and U

without partition technique. When k increases, the falling speeds differ on each
dataset due to the different architectures, but the performance changes little
when k grows to a certain degree. When k = 10, it preserves about 50% pre-
computation cost with regard to k = 0.

To demonstrate the sparsity of matrices after applying Reorder strategy,
we show the ratio of non-zero element numbers to matrix edges in Figure 4.
From the figure, we can see almost 70% storage costs are saved by reordering
the elements. It also indicates the storages and computation costs we saved by
adopting Reorder strategy and sparse storage.

We compare pre-computation costs between k-LU-RWR, NB LIN and k-dash.
The results on real datasets are shown in Figure 5 and the results on synthetic
datasets are shown in Figure 6. Figure 5 demonstrates that our algorithm pre-
serves about 50% pre-computation w.r.t NB LIN and about 70% pre-computation



w.r.t k-dash. Figure 6 shows our algorithm saves over 50% pre-computation cost
w.r.t NB LIN and k-dash. There are mainly two reasons for the enhancements:
(1) our algorithm adopts the idea of divide and conquer and takes advantage of a
sparse manner so that it skips unnecessary calculations by ignoring zero entries;
(2) by utilizing a fast matrix multiplication algorithm Strassen’s Algorithm we
saved one multiplication operation in each iteration by partitioning k times and
reduce the time complexity.

We also do experiments to verify the efficiency of the query stage, in which
we perform two matrix-vector multiplications. The query time on each datasets
is a few hundred milliseconds, as expected.

6 Conclusion

This paper addressed the problem of efficiently computing RWR proximities
based on graph topology. We first devised a divide-and-conquer paradigm to re-
cursively do LU factorization over small subgraphs. Then, by taking advantage
of sparsity of triangular matrix structure, we further accelerated RWR compu-
tation via fast matrix multiplication. Finally, we conducted extensive empirical
results using real and synthetic dataset, showing the superiority of our proposed
algorithm against the baselines in terms of computational time.

References

1. Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa. Fast and exact top-k
search for Random Walk with Restart. PVLDB, 5:442–453, 2012.

2. W. H. Press. Numerical recipes 3rd edition: The art of scientific computing. Cam-
bridge university press, 2007.

3. V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, 1969.

4. Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. PathSim: Meta path-based top-
k similarity search in heterogeneous information networks. PVLDB, 4:992–1003,
2011.

5. H. Tong, C. Faloutsos, and J.-Y. Pan. Fast Random Walk with Restart and its
applications. In ICDM, pages 613–622, 2006.

6. W. Yu, J. Le, X. Lin, and W. Zhang. On the efficiency of estimating Penetrating
Rank on large graphs. In SSDBM, pages 231–249, 2012.

7. W. Yu and X. Lin. IRWR: Incremental Random Walk with Restart. In SIGIR,
pages 1017–1020, 2013.

8. W. Yu, X. Lin, and W. Zhang. Towards efficient SimRank computation on large
networks. In ICDE, pages 601–612, 2013.

9. W. Yu, X. Lin, and W. Zhang. Fast incremental SimRank on link-evolving graphs.
In ICDE, pages 304–315, 2014.

10. W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei. More is simpler: Effectively and
efficiently assessing node-pair similarities based on hyperlinks. PVLDB, 7(1):13–24,
2013.

11. W. Yu, X. Lin, W. Zhang, Y. Zhang, and J. Le. SimFusion+: Extending simfusion
towards efficient estimation on large and dynamic networks. In SIGIR, pages 365–
374, 2012.


