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 
Abstract—We demonstrated the realization and 

characterization of a solid photonic bandgap fiber (SPBF) with a 
compact size of about 10 mm and a high wavelength sensitivity of 
up to -4.034 nm/ºC by means of fully infiltrating an ultraviolet 
(UV) curable polymer with a high refractive index of 1.515 into air 
holes of a photonic crystal fiber (PCF). To the best of our 
knowledge, it was the first time that the SPBF with tunable 
bandgaps was fabricated in the conventional index-guiding PCF. 
Compared with conventional fluid filled PBFs, the proposed SPBF 
can be stable to temperature and other environmental effects and 
maintain a large extinction ratio of more than 30 dB within a 
broad wavelength. The splicing between the SPBF and single mode 
fibers has been solved. Moreover, it’s observed that the bandwidth 
of bandgap (G2) gradually broadens with the temperature rise. 
 

Index Terms—Microstructured optical fibers, photonic 
bandgaps fiber, tunable bandgaps, sensor 
 

I. INTRODUCTION 

hotonic crystal fiber (PCF) [1], a type of microstructured 
optical fiber (MOF) where a regular-hexagonal lattice of 

hollow channels is arrayed symmetrically around a central 
silica core, has resulted in a number of novel devices and 
sensing applications. In recent years, as a relatively new 
member of the family of MOFs, all-solid photonic bandgap 
fibers have attracted great attention because of their easiness to 
fabricate, splicing with single mode fibers, all-solid structure 
and promising potential application [2-6]. Note that the 
locations of these formed bandgaps are spectrally determined 
by the resonance properties of the high-index inclusions. And 
the high-index rods including into silica background are usually 
Ge-doped ones. We have to admit that the Ge-doped rods have 
a graded index profile with a maximum Δn of 2.03%, which 
forms a low index contrast, and then results in a low-extinction-
ratio bandgap. Although the all-solid photonic bandgap fiber 
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with a high index contrast (e.g. Δn=0.23) has been fabricated 
by the well-known stack-and-draw technique [2-3, 7], it is 
limited by the required pairs of glasses with closely similar 
softening temperatures and thermal expansion coefficients. 

Fortunately, bandgaps with a high extinction ratio can be 
realized with infiltration of fluids into air holes of PCFs [8-9]. 
And the infiltration of various materials into the cladding, such 
as refractive index matched liquids [9], liquid crystals [8, 10-
12], metals [13], ferrofluids [14-16], polymers [17-18], glasses 
[19-20], makes it possible to create highly tunable fiber devices. 
However, those fibers assisted with fluid filling are being 
unstable to temperature and other environmental effects. In 
special, the liquid surface of the liquid infiltrated PCF device at 
the liquid-air interface fluctuates randomly, results in a poor 
temporal stability. 

In this paper we report the realization and characterization of 
a solid optical fiber by the use of a polymer material infiltrating 
into PCF. Note that the periodic alternating layers of dielectric 
material give rise to two-dimensional Bragg scattering forming 
a photonic band gap in the cladding. And frequencies which lie 
within the photonic bandgap are not allowed to propagate 
within the cladding. The bandgaps of the cladding 
spontaneously depend on the refractive index of the inclusions 
in the PCF, i.e. the thermally tunable polymer. In fact, the SPBF 
can be easily fabricated owing to the polymer utilized is an 
ultraviolet (UV) curable liquid. Firstly, the splicing problem of 
the SPBF is solved according to the optimized splicing 
parameters. Secondly, we have numerically simulated and 
experimentally observed the guiding mechanism 
transformation between modified total internal reflection and 
photonic bandgap guidance. Finally, we investigate the 
response of the SPBF to temperature ranging from 25 ˚C to 95 
˚C.  
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II. NUMERICAL SIMULATION OF BANDGAP LOCATION AND 

EXPERIMENTAL RESULTS 

As shown in Fig. 1, a large-mode-area PCF (LAM-10, 
http://www.nktphotonics.com) is employed. The PCF is 
composed of hexagonally arrayed cladding holes with a 
diameter of 3.3 µm while the core is formed by omitting an air 
hole in the center. And the pitch of the PCF is 7.4 µm.  

 
Fig. 1. (Left) Cross-sectional SEM images of the PCF employed; (Right) 
Schematic of PCF fluid filling set-up assisted with Longer Pump. 

Here, we take advantage of a commercially available 
Norland Optical Adhesive, i.e., NOA65. The NOA65 is a clear, 
colorless, liquid photopolymer, whose viscosity is about 300 
cps at room temperature. Frankly speaking, infiltrating NOA65 
into air holes of PCFs is a complicated and time-consuming 
process, owing to not only its viscosity but the time required for 
capillary filling grows as the square of the length [21]. To solve 
it, we submerge one end-facet of the PCF into a liquid bottle 
full of NOA65, while leaving the other end-facet connected to 
an injection syringe to apply pressure to the fluid. As a result, 
the filling time can be significantly reduced owing to the 
existence of the pressure difference between the PCF end-facets. 
We utilize a commercial machine (LSP02-2A, 
http://www.longerpump.com.cn), where an electrically 
controlled moving stage has been exploited.  Considering that 
bubbles may undesirably form and result in a discontinuous 
strand of fluid, the flow rate cannot be too rapid. As a result, it 
takes one hour for filling material to fill a ~50 mm long PCF in 
this experiment.  

 
Fig. 2. Schematic of the NOA65-filled PCF. The insets side image shows the 
fusion joint of the NOA65-filled PCF with a single mode fiber. 

Next, we focus on solving the splicing difficulty between 
single mode fibers (SMFs) and the fully NOA65-filled PCF. 
We know that the high temperature involved during fusion 
splicing will induce the polymer, i.e., NOA65 to boil and 
evaporate. As a result, it eventually leads to a bad physical 
strength. In the previous report [8], we take advantage of the 
optimized splicing parameters of a commercial fusion splicer 
(Fujikura-60S) to implement the splicing between liquid crystal 
filled PCFs and SMFs. To solve it, optimized splicing 
parameters for the Fujikura-60S are listed in Table I. For our 

fiber device, the insertion losses mainly derived from splicing 
joints losses at the input/output and absorption loss of the 
polymer in the holes. In fact, the couplings between the filled 
and unfilled sections of the PCF can also lead to loss. 
Furthermore, the mode field mismatch resulting from an index 
guiding mode and PBG guiding mode at the splices would 
further bring losses. 

Table I Splicing parameters for a commercial fusion splicer (Fujikura-60s) 

Parameters Values Units 

Prefusion power standard-25 bit 

Prefusion time 180 ms 

Overlap 6 µm 

Fusion power standard-30 bit 

Fusion time 300 ms 

offset -30 µm 

Fortunately, the NOA65-filled PCF can be cured by UV light 
(a wavelength from 320 nm to 380 nm) with an intensity of 
approximately 270 mW/cm2 in this experiment. In this UV-
curing process, the NOA65 with a refractive index of about 
1.515 is gradually transformed into a solid polymer with a 
refractive index of 1.524 [22]. Consequently, a solid photonic 
bandgap fiber (SPBF) with a compact size of about 10 mm has 
been fabricated. Such a compact size can probably be attributed 
to the higher refractive index (n=1.524) of the polymer 
employed.  

 
Fig. 3. (a) First Brillouin zone and k-path for a hexagonal lattice. (b) Index 
profile for the single unit cell. 

A full-vectorial plane wave method (FV-PWM) is applied to 
calculate the location of photonic bandgaps of the cladding unit 
cell, i.e., effective-index curves, for the fundamental mode 
guided in the SPBF at a temperature of 25˚C. We first solve the 
frequency eigenvalues of the vector Helmholtz equation, and 
then calculate the band structure of the SPBF by considering the 
irreducible first Brillouin zone of the hexagonal fiber lattice, 
where the number of plane waves used to resolve the unit cell 
is 256×256 and βΛ is scanned in steps of 0.05. The first 
Brillouin zone of triangular lattice in cladding of SPBF is 
shown in Fig. 3(a), where the axis is considered to be parallel 
to the Γ-M direction owing to that the x-y plane is periodic. 
Furthermore, a single primitive unit cell, as shown in Fig. 3(b), 
is chosen.  
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Fig. 4. Calculated bandgap maps (gray color) for the SPBF and the transmission 
spectra of the filled (purple line) and unfilled PCF (green line). Insets: 
Calculated mode field distributions of the SPBF at 1290 and 1400 nm 
wavelength.  

As shown in Fig. 4, it’s evident that three bandgaps (denoted 
in gray color) are observed in the calculated modal maps at the 
temperature of 25 ˚C within the wavelength range from 900 to 
1700 nm, where the thermo-optic effect of the pure silica 
background is taken into consideration in the calculations. 
Furthermore, the transmission spectrum of the SPBF can be 
measured by connecting a white-light source (NKT SuperK 
Compact) and an optical spectrum analyzer (YOKOGAWA 
AQ6370C). We also found that three bandgaps occurred within 
the whole wavelength range in accordance with the simulation. 
Some slight discrepancy in the bandgaps location is attributed 
to the fact that the material property of the polymer, i.e., 
NOA65 is not thoroughly researched. Intuitively, the operation 
of the SPBF may be explained in terms of antiresonant 
reflecting optical waveguides (ARROW), where individual 
rods (NOA65-filled holes) form isolated waveguides. 
Furthermore, the ARROW model predicts the spectral 
stopbands to be positioned at wavelengths corresponding to 
modal cutoff wavelengths of a single NOA65-filled hole. The 
insets shown in Fig. 4 illustrate that light at wavelengths near 
the cutoff wavelengths, i.e., λ=1290 nm of the individual rods’ 
modes can couple to these rods while the cladding becomes 
transparent to the light and light cannot remain confined in the 
core. Between cutoff wavelengths, i.e., λ=1400 nm, however, 
light cannot couple to the resonances of the high-index 
inclusions and thus remains in the core.  

 
Fig. 5. Measured transmission spectra and the corresponding bandgap maps of 
the SPBF at a temperature of (a) 25 ˚C and (b) 90 ˚C. 

We then investigate the temperature response of the SPBF by 
placing it in a column oven, where the temperature is raised 
from 25 ˚C to 90 ˚C in step of 10 ˚C. As shown in Fig. 5, three 
bandgaps, i.e. G2, G3 and G4, appears at the temperature of 25 
˚C, while another bandgaps, i.e., G1 and G5, located at the 

shortest and longest wavelength are gradually observed at the 
temperature of 90 ˚C. As the temperature is increased, the edge 
wavelengths of the bandgap shift toward a shorter wavelength, 
i.e. ‘blue’ shift, due to a negative thermo-optic coefficient (-
1.83×10-4/˚C) of the polymer, i.e. NOA65 [23]. As shown in Fig. 
6, we tend to attribute the decline in wavelength of the G2 edges 
at higher temperatures to the negative thermo-optic coefficient 
of the NOA65 owing to that the cutoff wavelengths of the high-
index inclusion’s modes shift toward a shorter wavelength with 
the increased temperature. Moreover, the simulation results 
show, in general, good qualitative agreement with the 
experimental measurements. 

 
Fig. 6. The transmission spectra of the SPBF corresponding to variations in 
temperature ranging from 25 ˚C to 90 ˚C. 

In order to evaluate quantitatively the temperature-induced 
shift of this device, we illustrate the wavelength, corresponding 
to -20 dB, of the left and right edges of the bandgap. This is 
because it is very difficult to measure the center wavelength of 
each bandgap. In this experiment, we characterize the bandgap 
2 (G2) at different temperature for convenience’s sake. It can 
be seen from Fig. 7 that the left edges of G2 linearly shifted 
toward a shorter wavelength, i.e., ‘blue’ shift with a high 
sensitivity of -4.034 nm/˚C while the right edges of G2 also 
present a ‘blue’ shift with a lower sensitivity of -1.319 nm/˚C 
during the temperature rise. The temperature sensitivity of the 
reported AS-PCF is close to 2 times higher than that of the 
liquid-filled PCF [24]. Note that the proposed AS-PCF takes 
advantage over the previous results [25-26] in regard to the 
temperature sensitivity. As a result, the bandwidth of G2 
gradual broadens with the temperature rise owing to the 
different sensitivity between the left and right edges of G2.  

 
Fig. 7. Wavelengths, corresponding to a transmission of -20 dB, at the left and 
right edges of the G2, and the bandwidth of G2 versus the temperature. 
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III. CONCLUSION 

In this paper, we presented a solid photonic bandgap fiber 
fabricated from the conventional index-guiding PCF with a 
curable polymer-filled cladding. The polymer inclusions 
introduce a high index contrast between the core and the 
cladding and consequently lead to lots of bandgaps. We 
simulated and measured the transmission spectrum from 900-
1700 nm and recorded the response of the SPBF to temperature. 
The results illustrated our proposed SPBF is wavelength-
tunable with a sensitivity of up to -4.034 nm/˚C and has a large 
extinction ratio of more than 30 dB (G2). In conclusion, the 
proposed SPBF provides a new and simple highway for 
guidance of light and appears to extremely temporal stability. 
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