
Two Case Studies on Generating Administrative
Process Applications with AdminDSL

Antonio García-Domínguez1, Ismael Jerez-Ibáñez2, and Inmaculada
Medina-Bulo2

1 Department of Computer Science, University of York, York YO10 5GH, UK,
antonio.garcia-dominguez@york.ac.uk,

WWW home page: https://www-users.cs.york.ac.uk/~agd516/
2 Department of Computer Science, University of Cadiz, Av. Universidad de Cádiz

10, Puerto Real 11519, Spain,
ismael.jerezibanez@alum.uca.es,inmaculada.medina@uca.es

Abstract. Some organizations end up reimplementing the same class of
business process over and over: an “administrative process”, which con-
sists of managing a form through several states and involving various
roles in the organization. This results in wasted time that could be dedi-
cated to better understanding the process or dealing with the fine details
that are specific to the process. Existing virtual office solutions require
specific training and infrastructure and may result in vendor lock-in.
In this paper, we propose using a high-level domain-specific language
(AdminDSL) to describe the administrative process and a separate code
generator targeting a standard web framework. We have implemented
the approach using Xtext, EGL and the Django web framework, and we
illustrate it through two case studies: a synthetic examination process
which illustrates the architecture of the generated code, and a real-world
workplace survey process that identified several future avenues for im-
provement.

Key words: model-driven engineering, domain-specific languages, busi-
ness modeling, code generation

1 Introduction

In many organizations, there is a recurrent kind of business process which we call
an “administrative process”. These administrative processes involve managing a
document with a certain structure and tracking it through different states. In
each state, different parts of the document have to be viewable or editable by
people with different roles in the organization. State transitions usually happen
due to human decisions (possibly after a meeting, a review or some kind of
negotiation), deadlines or a combination of both. The process usually concludes
by reaching a “final” state (e.g. “accepted” or “rejected”).

These processes are usually kept within a single organization and are not
particularly complex by themselves, but their sheer number within some orga-
nizations can produce a high amount of repetitive work. Implementing each of

2 Antonio García-Domínguez et al.

these processes from scratch wastes precious time on writing and debugging the
same basic features (form handling, state tracking, internal directory integration
and so on) which should have been invested in obtaining a better understanding
of the process desired by the users and fine tuning the process-specific business
logic. In some cases, the developer tasked with implementing the process is not
familiar with some of the best practices of the target technology, needing more
time and producing less than ideal solutions.

Another problem is that even after the process is correctly implemented,
the framework the implementation is based upon may become obsolete to the
point of requiring a complete rewrite. This is compounded by the fact that since
the processes may have needed urgent changes and tweaks, they may not be
well-documented anymore and may require careful reverse engineering, which is
time consuming and prone to mistakes. It would have been much better if most
of the code had been produced from a process description: changing the target
framework of several obsolete applications would only require writing a different
code generator and adding some customizations.

Our organization has evaluated various generic “virtual office” solutions for
implementing these administrative processes and having them run in a high-
level process engine. While these solutions were acceptable for the simplest cases,
adding process-specific UI and business logic and integrating them with in-house
systems would have required learning yet another technology that may become
obsolete or lose support in the long run. It would be much better if the resulting
implementations were based upon a standard web framework chosen by IT, so
it could be maintained by regular staff.

This paper is an extended version of a BMSD 2015 conference paper [1]. In the
original paper, we presented the first version of AdminDSL and provided a short
description of the synthetic examination process and the generated Django [2]
website. This version provides a better conceptual introduction to the language,
a detailed description of the architecture of the generated code, and a discussion
of which parts will usually need to be customized and how. It also provides a new
real-world case study in which the authors collaborated with a contractor for the
University of Cadiz to develop a workplace satisfaction survey web application.
This case study covers not only the initial generation of the application, but
also its later evolution until it was deployed to production and what was learned
from it.

2 Related Work

There exist several business process management systems (BPMSs) that include
some support for form-based steps within workflows, such as Bonita [3] or In-
talio [4]. These engines are usually tightly integrated with a design tool which
uses a graphical notation (usually BPMN-based) to describe the processes. This
graphical notation is normally extended with engine-specific annotations to pro-
vide the full semantics of the process, and is persisted using XML-based formats.

Two Case Studies on AdminDSL 3

While these systems can describe a much larger class of business processes
than our DSL, the resulting process definitions are highly dependent on the
underlying engine: migrating the same process to a new technology may require a
rewrite. Version control is still possible with XML-based formats, but meaningful
comparisons and merges require special-purpose tools. In addition, using a BPMS
effectively requires a considerable amount of training, consulting and process
analysis, which may not be feasible in smaller IT departments. Our approach
focuses on a specific kind of business process (manage a complex document
through multiple states, with different access rules in each state) and produces
a standard web app that can be maintained as any other.

Scaling back from full-fledged BPMS engines, there have been many attempts
to simplify the development of form-based applications. One recent initiative in
this regard has been the EMF Forms [5] Eclipse project. Using its tools, users
can define the domain model and abstract layout once and then render it in
various technologies, such as SWT or JavaFX for desktop apps or Tabris for
mobile apps. On the one hand, EMF Forms allows developers to specify the
concrete layout for the resulting forms, unlike our DSL, which delegates on the
generator for the presentation aspects. However, a DSL could cover aspects that
EMF Forms does not, such as access control and state transitions.

Another related topic is domain-driven design (DDD): an approach on soft-
ware development that asserts that the primary focus in most software projects
should be the creation of an adequate model that abstracts the problem do-
main, and the implementation of the relevant business logic around it [6]. In this
regard, several frameworks have been implemented to support DDD, enabling
rapid iterations by generating a large portion of the application from a “pure”
domain model (e.g. a set of Plain Old Java Objects or POJOs), such as Apache
Isis [7] or OpenXava [8]. In a way, a DSL conforms to the same view of producing
software from a description of the problem domain: the only difference is that
the DSL is focused on a specific kind of problem domain, rather than the generic
approach of a DDD tool, making it more productive in that particular case.

In the context of e-government, several works have identified some differences
in the way e-government processes should be modeled, in comparison to the
business processes in the private sector. Klischewski and Lenk argued that in the
public sector, many processes involve unstructured decision making (whether by
a single official or after a meeting) and negotiations, so officials would need to
be able to alter the course of the process [9]. Later in the same work, Klischenski
and Lenk proposed a set of “Admin Points” as reusable process patterns that
could be used as a shared vocabulary for e-government business processes. In a
DSL, many of these admin points which involve negotiation and unstructured
decision making could be modeled using decision-based transitions.

4 Antonio García-Domínguez et al.

3 Language Definition

This section will present AdminDSL, our domain-specific language for defining
administrative processes. Before describing the abstract and concrete syntax in
a more formal way, we will provide a conceptual introduction to the language:

– An administrative process is understood as a succession of states through
which a structured document is viewed and edited by users with certain roles
in the organization.

– A structured document contains a sequence of fields, which may be aggregated
together into sections and then groups. Sections and groups are useful for
presentation and for access control. In addition, groups can be repeated if
desired, which may be useful for representing master/slave records such as
order line items, student grades and so on.

– Roles are defined separately: users can belong to one or more of them, and the
assignments are assumed to be changeable on the fly through the generated
web applications. AdminDSL is decoupled of how these roles are actually im-
plemented (e.g. through a database or an LDAP server), but it should allow
generic key-value pairs that a generator might understand.

– Finally, a collection of states is defined for each process: the form is implicitly in
the “initial” state when it is being created, and then immediately transitions to
a different state. Later transitions can be done by user decision or by deadlines.
In each transition, roles can be given permission to view or edit certain fields,
groups or sections of the document. AdminDSL can limit permissions to the
user with a certain role that participated in a previous transition: this allows
for process isolation between users with the same role.

3.1 Abstract Syntax

Figure 1 shows a UML class diagram with the abstract syntax of our DSL (the
underlying concepts). An Application is divided into Elements. There are
five kinds of Elements. Site is the simplest one: it only declares the name
of the application (e.g. “Billing”). Options elements contain key/name pairs
(Property instances) that may be useful to external generators.

Next are Roles. These represent particular roles within the organization
(such as “Accountant”). These elements provide a name and a set of Property
instances which may be used by the generator to integrate the role with in-house
user directories (such as an LDAP directory).

Entity elements represent data entities that must have been created before
any documents can be filled in, such as “Country”, “State” and so on. An En-
tity contains Field instances with the information to be stored about it. Every
Field has a name and a domain-specific type (such as “currency” or “identity
document”) and zero or more Property instances providing additional infor-
mation to generators.

Finally, the main and most complex kind of element is a Process. These
represent entire administrative processes (e.g. “Request for Leave”). They can
contain three kinds of ProcessElements:

Two Case Studies on AdminDSL 5

PropertyStatePermission

type
targetAll

Property

StateTransitionStatePermissions

StateElement

Group

name

SectionElement

Section

name

State

name

Field

name
type

ProcessElementProperty

name
values

Entity

name

Process

name

Role

name

Options

Site

name

Element

Application

0..n0..n

0..n
0..1

target field

0..1target group

0..1

target
section

target

0..n

assigned to ►

0..n

0..n

0..n

0..n

0..n

0..n

0..n

Fig. 1. UML class diagram of the DSL’s abstract syntax.

– Entity instances, which will be specific to the process in this case. In the
“Request for Leave” process, “LeaveReason” instances could be the various
reasons for the leave.

– Section instances contain the Fields of the managed document, which can
be optionally subdivided into Groups. A section could be “Billing informa-
tion”, and a group could be “bill item” (containing the “Price”, “Quantity” and
“Description” fields, for instance). This structure is useful for generating code
and specifying access rules.

– State instances represent the states that the managed document can be in.
It can contain a set of StatePermissions for each role of interest, which in
turn contain StatePermission instances that describe the kinds of actions
that are available to the role. A role can receive all permissions at once, or it
can receive the ability to edit or view a single section, group or field.
A State can also contain StateTransitions to other states. A transition
can activate when all the conditions (specified using Property instances) are

6 Antonio García-Domínguez et al.

Listing 1. Simplified concrete syntax for our DSL

1 site SiteName;
2 options { (Property;)* }
3 (role RoleName { (Property;)* } | role RoleName;)*
4 (entity EntityName {
5 (Type ((Property (, Property)*))? Name;)*
6 })*
7
8 (process ProcessName {
9 (entity EntityName {

10 (Type ((Property (, Property)*))? Name;)*
11 })*
12 (section SectionName {
13 (Type ((Property (, Property)*))? Name;
14 | group GroupName {
15 (Type ((Property (, Property)*))? Name;)+
16 })*
17 })+
18 (state StateName {
19 (permissions RoleName (from StateName->StateName)? {
20 ((editable|viewable) all;
21 | (editable|viewable) SectionName;
22 | (editable|viewable) SectionName.GroupName;
23 | (editable|viewable) SectionName.FieldName;
24 | (editable|viewable) SectionName.GroupName.FieldName;
25)*
26 })*
27 (transition (Property (, Property)*) StateName;)*
28 })+
29 })*

met: these conditions could combine explicit decisions by users (“Accepted” or
“Rejected”), dates (“Past deadline”) or custom business logic. Alternative paths
to the same state can be modeled with several StateTransitions.

3.2 Concrete Syntax

Since editing and version control should not require any special-purpose tools,
we have picked a textual notation for the DSL which is mostly a one-to-one
mapping to the model entities.

Listing 1 shows a simplified version of our original EBNF grammar for the
concrete syntax. As usual, (x)+ means “one or more x”, (x)* means “zero or
more x”, (x)? means “zero or one x” and x|y means “x or y”. Whitespace is
ignored. Literal (and) and keywords are shown in bold, to avoid confusion. A
Property is of the form Name = Value (, Value)*.

As the grammar can fit into less than 40 lines after some simplifications, we
can conclude that it is a rather simple DSL that should be easy to learn by the
IT staff. However, it has a considerable number of cross-references in it, so it
will require good tooling support to ensure that these references are not stale.

Two Case Studies on AdminDSL 7

4 Case Study: Exam Process

In this section, we will illustrate AdminDSL by presenting a case study that
describes a simple examination process and then generates a web application
that implements it. After outlining the process itself, we will present the features,
general architecture and design of the generated application, and evaluate the
results obtained.

4.1 Description

The process in this case study is a test, involving two roles (“student” and
“teacher”) and these steps:

1. The student starts the test by introducing their personal information and
answering the first part. Some of the questions are free-form, some have a
predefined set of answers, and one of the questions pull answers from the
database. Students cannot see each other’s answers.
The teacher can already see all the partially filled-in exams, but cannot enter
any grades yet.

2. After a certain date, the second part of the test (with two numeric questions)
becomes visible and the first part of the test is no longer editable by the
student. Students can also fill in what they think about the test. Again,
students cannot see each other’s answers. Teachers can still see everything,
but cannot enter any grades yet.
The test can be turned in for examination before a certain deadline: after
that deadline, it is turned in automatically and is no longer editable.

3. Once the test has been turned in, the teacher can grade it, but the student
cannot see the grade yet: they only see their own answers.

4. After the teacher confirms the final grade, the examination is “closed”. Every
student can see their own answers and everyone’s grades. All fields are now
read-only.

A simplified version of the DSL-based description of the process is shown in
Listing 2. Some of the dates and field names have been shortened to save space.

Line 1 declares that the application to be generated has the name “School”.
Lines 2–5 include several options for the code generator that targets the Django
web framework: in particular, they suggest using a certain base template that
follows the organizational image, which is included in a Django app available at
a certain URL. Line 6 declares the previously mentioned “student” and “teacher”
roles.

The rest of the listing from line 8 onwards is dedicated to the “exam” process.
An entity “Answers3” is declared at line 9: its instances are used for the answers
for question 3. In lines 10–27, the fields of the document are organized into three
sections. The “test” section is divided into two groups and one additional field:
using groups simplifies access control specifications later on. The optional fields
have “blank” set to “True”.

8 Antonio García-Domínguez et al.

Listing 2. DSL-based examination process

1 site School;
2 options {
3 django_base_template = "template/base.html";
4 django_extra_apps = "template = https://.../";
5 }
6 role student; role teacher;
7
8 process exam {
9 entity Answers3 { string answer; }

10 section personal {
11 fullName studentname;
12 identityDocument(label="National ID:") nid;
13 email(label="Email") mail;
14 }
15 section test {
16 group part1 {
17 string(blank="True") q1;
18 choice(values="A1,A2,A3",blank="True") q2;
19 choice(table="Answers3",blank="True") q3;
20 }
21 group part2 {
22 currency(label="Q4 (euros):",blank="True") q4;
23 integer(label="Q5 (integer):",blank="True") q5;
24 }
25 choice(values="Good,OK,Bad",blank="True") opinion;
26 }
27 section evaluation { float grade; }
28
29 state initial {
30 transition(decision_by="student",
31 after_date="2015/03/01-14:00:00",
32 before_date="2015/03/07-14:00:00") part1;
33 }
34 state part1 {
35 permissions teacher { viewable all; }
36 permissions student from initial->part1 {
37 editable personal, test.part1; }
38 transition(after_date="...") part2;
39 }
40 state part2 {
41 permissions teacher { viewable all; }
42 permissions student from initial->part1 {
43 viewable test.part1;
44 editable personal, test.part2, test.opinion;
45 }
46 transition(decision_by="student",
47 before_date="...") evaluation;
48 transition(after_date="...") evaluation;
49 }
50 state evaluation {
51 permissions teacher { viewable all;
52 editable evaluation; }
53 permissions student
54 from initial->part1 { viewable personal, test; }
55 transition(decision_by="teacher") closed;
56 }
57 state closed {
58 permissions teacher { viewable all; }
59 permissions student
60 from initial->part1 { viewable all; }
61 permissions student { viewable evaluation; } }
62 }

Two Case Studies on AdminDSL 9

Lines 29–61 describe the 5 different states the process can be in. The “initial”
state is a special case: it represents the state before the process starts, and its
transitions describe who can start the process and when. The other 4 states
match the four stages of the examination which were described before.

Line 36 illustrates the from A->B syntax that AdminDSL uses to limit
the granted permissions to the user that triggered a certain state transition,
providing process isolation between users with the same role. In this particular
example, it ensures that students cannot see each other’s answers. It is possible to
have multiple permissions blocks for the same role, with different restrictions:
for instance, the “closed” state allows students to see their own answers and each
other’s grades.

4.2 Implementation in AdminDSL

Fig. 2. Generated web app: process list

The parser and editor for the language in Section 3 have been implemented
using Xtext [10]. From an EBNF grammar, Xtext generates a metamodel with
the abstract syntax of the language and a set of Eclipse plugins which provide
a parser and an advanced editor with live syntax checking and highlighting,
autocompletion and an outline view.

We have also implemented a separate code generator that takes an Appli-
cation described with our DSL and produces a web application in the Django
framework. The generator is written in the Epsilon Generation Language [11],
which provides modularity and the ability to have “protected regions” that are

10 Antonio García-Domínguez et al.

Fig. 3. Generated web app: process form

preserved when overwriting an existing file. Our current version of the EGL
source code for the Django generator has 3045 LOC.

4.3 Generated application

The code generator produced from the example in Section 4.1 a ready-to-use
Django site backed by a PostgreSQL relational database (shown in Figures 2
and 3). The generated site is largely divided into two parts:

– A support library that extends Django with the building blocks for imple-
menting forms with fine-grained stateful permissions. This library was written
manually in tandem with the code generator and is essentially copied into the
project.

– A set of modules that are generated automatically, using the above support li-
brary to implement the processes defined in the AdminDSL description. Most
elements in AdminDSL map directly to various combinations of the compo-
nents in the support library.

This structure makes it possible to produce a high-quality web application
based on a well-tested set of components, which can be rearranged by advanced

Two Case Studies on AdminDSL 11

users that need a different user interface or additional functionality. The gen-
erated code can be more concise and thus be closer to what a developer would
write manually.

This section will introduce the basic concepts behind the Django framework
and present the key details of the support library and the generated modules.
The section will then discuss the features included by default and the various
ways in which the application can be extended.

Background: Django framework Django 1 is a web development framework
that follows the Model-View Controller (MVC) pattern [12], providing a clear
separation between the data managed by the application (the models), the ways
in which users interact with this data (the views) and the logic that redirects
incoming requests to the appropriate views (the controllers).

Django applications are modular, consisting of a set of apps: most applica-
tions combine a set of pre-built apps for common functionalities (e.g. forums
or blogs) with a set of custom apps for application-specific logic (e.g. business
logic). Every module can provide some of the following:

– Models: data entities that are persisted to the database. Most models are
directly translated into database tables. Django provides its own object-to-
relational mapping facilities and an incremental database migration frame-
work.

– Views: Python functions that handle an incoming request for certain URLs in
the web application. Most functions will then render a response by passing a
context to a Django template.
Django applications generally use a hierarchical approach for dispatching in-
coming requests to views: a global dispatcher forwards requests to an app-
specific dispatcher, which then forwards the request to the appropriate view.

– Forms: in-memory representations of the data managed by a web form. These
forms provide the required cleanup and validation logic. Developers can extend
the Django form library with new fields and form types.

– Administration pages: apps can extend the built-in administration area with
new pages for managing their models.

– Signals and receivers: some apps may want to react to events produced by
other apps. In order to keep these apps decoupled, Django makes it possible to
define signals that apps can send and receivers that can handle those signals.

The Django library also provides most of the basic functionality required by
current web applications, such as user authentication and authorization, session
management and internationalization, among others.

Support library The support library is a Django app (called “base_admindsl”)
that was manually written together with the Django code generator, making it
possible to increase the abstraction level of the generated code and make it more
readable and maintainable.
1 https://www.djangoproject.com/

12 Antonio García-Domínguez et al.

Fig. 4. Excerpt of the base Django models defined by the support library.

First, the support library contributes a set of Django models for persisting
the processes and their instances. The most important ones are shown in the
UML class diagram in Figure 4, and reuse some of the default models provided
by the Django framework (shown in the “Django” package). The models are
organized roughly into three groups:

– The Transition, State, and MaxProcessInstance models operate at the
process description level. Every process has a collection of Transitions that
link together various States. MaxProcessInstance models can limit the
number of instances of a process that a certain group of users may create.
These models allow administrators to configure parts of the processes without
having to regenerate the code.

– The Process, BasePermSection, BasePermGroup, TransitionLog,
DraftProcess, and CopiedFile models operate at the process instance
level.
Process is an abstract superclass for all the process models that represents
a single instance of a process and stores the current state of the process, the
start and last modification dates and whether it is closed (i.e. cannot trigger
any more transitions).
BasePermSection and BasePermGroup are abstract superclasses for all
the generated models that implement the various sections and groups, respec-
tively. These classes provide various utility methods that deal with permis-
sions, such as is_editable, can_view and can_edit.
TransitionLog keeps track of every state transition triggered by a process
instance, storing the date, source and target states, and the user and group

Two Case Studies on AdminDSL 13

that triggered the transition. They are used to implement the process isolation
restrictions that were shown in Listing 2 (see line 36).
DraftProcess and CopiedFile store draft process forms and uploaded files
before they are persisted to the real models. Draft process forms are serialized
as JSON data, so DraftProcess is kept decoupled from the structure of the
real models.

The support library also contains various building blocks for the functionality
required by the generated processes:

– Utility classes that extend the Django form handling components with new
field types and the stateful permissions system required by AdminDSL.

– Generic views that can be reused from the app-specific dispatchers: these
include user authentication, role switching and process management.

– Signals and default receivers for three kinds of events: process creation, manual
process updates and automatic process updates.

– A command-line tool (update_states) that can be run periodically to per-
form automatic state transitions based on the current date.

Generated processes Every Process in the AdminDSL description is turned
into a Django app that combines the building blocks provided by the support
library to implement the described process.

Fig. 5. Django models generated for each process

14 Antonio García-Domínguez et al.

Every process-specific app defines its own set of Django models based on the
abstract superclasses provided by the support library. As shown in Figure 5,
the mapping is relatively straightforward: AdminDSL processes are turned into
subclasses of the Process model, AdminDSL sections are turned into subclasses
of BasePermSection and AdminDSL groups are turned into subclasses of
BasePermGroup.

The generator also produces default HTML templates for rendering the forms
and extends the Django administration area with pages for managing the various
process instances. The generator does not need to produce any Django views: in-
stead, it generates an app-specific dispatcher that reuses the views in the support
library.

The rest of the AdminDSL elements are mapped as follows:

– AdminDSL roles are mapped to Django roles, created through database mi-
grations that ensure these roles exist in the database.

– Global AdminDSL entities are added as extra models to the support library.
– Process-specific AdminDSL entities are added as extra models to the process-

specific Django app.
– AdminDSL states are mapped to instances of the State model of the support

library.
– AdminDSL transitions are mapped to instances of the Transition model of

the support library.
– AdminDSL permissions are mapped to Django permissions, which are assigned

to the appropriate Django roles. This makes it possible to change the permis-
sions of the various states without regenerating the code.

4.4 Observed limitations

The DSL, its tooling and the evaluated generator currently present several lim-
itations. One self-imposed limitation is that they do not aim to produce 100%
of the required code in all cases: the generated code will usually need to be
customized in some way, due to additional requirements on the user interface,
custom business logic that has to be added, or unexpected integrations with
legacy systems. Following the accepted approach in the existing literature [13],
we have chosen to keep the DSL small and focused on describing administrative
processes.

As shown in Section 4.3, the resulting web applications are divided into a
manually written support library with all the required building blocks and a
set of automatically generated components that arrange these blocks according
to the AdminDSL description. These generated components are further divided
into code (for the parts that do not need to change as often) and data (for the
parts that must be editable by regular users). This separation allows users with
special requirements to rearrange or further extend the generated applications,
while helping produce quickly a first version that can be validated with the end
users.

Two Case Studies on AdminDSL 15

The DSL is focused on describing the current process, and does not have any
provisions for migrating running processes to a new version with different states
or very different information. Our current approach is to delegate on the target
framework of the generator: for instance, since version 1.7 the Django framework
has built-in data and schema migrations.

Since we transition to a new state as soon as its conditions are met and
ignore all other transitions in the old state, we implicitly only allow one state to
be active at a time. While this makes the DSL less general than a full-fledged
business process modeling language such as BPMN [14], largely based on Petri
nets, it is on par with some of the “virtual office” platforms we evaluated and
the legacy applications it is intended to replace.

States do not enforce preconditions, invariants or postconditions yet, beyond
simply checking that the mandatory editable fields have been filled in. We intend
to add support for the most common conditions to the DSL in the short term:
the most advanced cases will be delegated to a protected region, which will have
to be filled in by the developer.

5 Case Study: Workplace Satisfaction Survey

This section presents a different case study in which a web application for per-
forming workplace satisfaction polls was developed. Unlike the previous synthetic
example, this application has been successfully deployed within the University
of Cadiz and is currently under active use.

Similarly to the previous section, this section starts by describing the first
version of the process and showing how it was translated to AdminDSL. The
section will then discuss how the generated application evolved through several
iterations, adding new variants of the original processes and acquiring custom
features coded manually. Finally, the overall experience of using AdminDSL will
be evaluated and future avenues of improvement will be identified.

5.1 Description

The original intent of the system was collecting the impressions of the staff at
the University of Cadiz about their work environment, in order to evaluate the
current situation and make plans for improvement. The system would collect
information initially from each employee, which would then be revised by their
line manager and their area supervisor, and if necessary go through several
iterations until there was mutual agreement between all parties. The system
would be monitored by external observers, which would make sure that the
necessary data quality concerns were being addressed.

The form itself consisted of 16 sections, some of which would be filled in
through external systems and some of which would be filled in manually. Forms
would go through five states:

1. On the “initial” state, the employee would fill in most of the form and tran-
sition it into the “revision” state.

16 Antonio García-Domínguez et al.

2. On the “revision” state, the line manager would review the form and pass it
on to the area supervisor (state “arearevision”). In this state, the employee
and the observer could still read the form, but not edit.

3. On the “arearevision” state, the area supervisor would review the form and
add some special comments if necessary, and then either close the form (state
“closed”) or return it to the employee for further improvement (state “empre-
vision”). The employee, line manager and observer would still have read-only
access to the form.

4. On the “emprevision” state, the employee would correct some of the issues
identified by the area supervisor and return it to the “revision” state.

5. On the “closed” state, the form would be read-only for all the parties involved,
and no further transitions are allowed.

An excerpt of the resulting AdminDSL description is shown in Listing 3.
One minor detail is the requirement for a “Month” entity, as some of the sections
require indicating the specific months in the year in which certain work sites are
used.

5.2 Evolution

The first prototype of the application was developed and validated in record time,
thanks to the AdminDSL code generator. However, as anticipated in Section 4.4,
it required various iterations and manual adjustments before a final version could
be deployed to production.

The first set of manual changes integrated the system with third party sys-
tems. Some of the sections in Listing 3 are never editable manually, such as the
employee identification section. Instead, the BaseProcessForm superclass of
all forms was modified to implicitly fill in this section based on the logged in em-
ployee. The Django templating system was extended with new tags that pulled
in from these third party systems as well.

Another set of manual changes dealt with the user interface: help texts were
added, and the layout was changed to use the Bootstrap library for a more
attractive appearance. The UI was simplified from a generic “virtual office” ar-
rangement to a closer match with the underlying process, hiding some of the
internal complexity in the stateful forms implemented in AdminDSL. A screen-
shot of the final UI is shown in Figure 6.

After a pilot run, it was found that the sheer number of responses to the
survey required reorganizing the approach into a hierarchy of forms rather than
a simple collection. Employees would fill in a form, and the forms would be first
grouped by work area and campus, then by campus and then finally for the
university. The original process in the AdminDSL was turned into four processes
(one per level):

– The “employee form” process: the employee fills in the form, and in the other
the form is read-only to all parties.

– The “campus-area form” process: the system aggregates all responses from
each work area in each campus, and the line manager reviews the form.

Two Case Studies on AdminDSL 17

Listing 3. First version of the UCA Workplace Satisfaction Survey process

1 site WorkplaceSurveys;
2 ...
3 role admin; role manager;
4 role employee; role observer;
5
6 process survey {
7 entity Month { string name; }
8 section(label="1. Workplace ID") id { ... }
9 section(label="2. Work schedule") schedule { ... }

10 section(label="3. Work description") desc { ... }
11 ...
12 section(label="6. Work conditions") cond { ... }
13 ...
14 section(label="14. Workload metrics") load { ... }
15 section(label="15. Other aspects") other { ... }
16 section(label="16. Manager comments") obs { ... }
17
18 state initial {
19 permissions employee {
20 editable desc, ..., cond, load, other;
21 viewable idworkplace, schedule, ..., obs;
22 }
23 transition(decision_by="employee",
24 max="1") revision;
25 }
26 state revision {
27 permissions manager {
28 editable desc, ..., cond, load, other;
29 viewable idworkplace, schedule, ..., obs;
30 }
31 permissions employee from initial->revision {
32 viewable all;
33 }
34 permissions observer { viewable all; }
35 transition(decision_by="manager") arearevision;
36 }
37 state arearevision {
38 permissions admin {
39 editable desc, ..., cond, load, other, obs;
40 viewable idworkplace, schedule, ...;
41 }
42 ... rest can only view ...
43 transition(decision_by="admin") closed;
44 transition(decision_by="admin") emprevision;
45 }
46 state emprevision {
47 permissions employee from initial->revision {
48 editable desc, ..., cond, load, other;
49 viewable idworkplace, schedule, ..., obs;
50 }
51 ... other roles can view all ...
52 transition(decision_by="employee") revision;
53 }
54 state closed {
55 ... all above can only view ...
56 }
57 }

18 Antonio García-Domínguez et al.

Fig. 6. Screenshot of the final user interface for the workplace satisfaction survey web
application

– The “area form”: the system aggregates all responses from each campus, and
the area supervisor reviews the form.

– The “general form”: the system aggregates all responses from the area forms,
and the central administrators review the form.

AdminDSL does not directly support this concept of “aggregate” forms, so
the developers had to manually implement Django views that would produce
them. In addition, since AdminDSL could not capture the relationships between
line managers and employees and between area supervisors and line managers,
it was necessary to extend the data model to include this information and use
it to assign the appropriate aggregate forms to the relevant line managers and
area supervisors.

5.3 Evaluation

In this case study, AdminDSL helped produce the first prototype in record time.
In addition to the process form itself, the code generator took care of the routine
setup work that consists of defining the base models, configuring Django and
bringing in dependencies. With the prototype in hand, the project managers
were able to quickly ascertain that a different approach based on aggregate
forms would scale better with the available personnel for the survey.

As expected, the code generated by AdminDSL had to be customized to cover
for the aspects that are not covered by the language: a simplified user interface,
integration with third party systems and starting new processes by aggregating
results from others. Perhaps some of these aspects could be covered by other
small DSLs in the future.

Two Case Studies on AdminDSL 19

As iterations went on, many protected regions were added to the code gen-
erated by AdminDSL, so the customizations could be preserved across regener-
ations. This approach did not scale as well as intended, as in many cases it was
necessary to add code outside the protected regions. Rather than a limitation
of AdminDSL, this would be a limitation of the code generator itself, which is
purely text-based: perhaps a language-aware generator could detect most manual
changes and merge newly generated code with them.

In fact, having done most of the work, the final refinement iterations stopped
using the AdminDSL code generator and instead manually recombined the build-
ing blocks in the support library from Section 4.3. This backs our assertion that
using a support library is a best practice for generating code, as the inevitable
manual iterations at the end of a project will still take advantage of it.

One issue that we identified during the manual iterations is that the generated
per-section and per-group Django models (shown in Figure 5) introduced an
unnecessary level of complexity when writing manual code or SQL queries. We
are currently working into simplifying our approach, using a single model per
process and leaving sections/groups to the user interface.

The case study also highlighted several limitations in the current version of
the AdminDSL language, which could be revised in later revisions:

– The permissions block did not allow for specifying multiple roles at once,
which results in repetition in some states in which several roles had the same
permissions.

– The “initial” state could not be reused in Listing 3, as it is a special case:
instead, a new copy named “emprevision” had to be defined.

– The aggregate form processes mentioned in 5.2 were mostly the same: it may
be useful to allow for process inheritance or reuse, to avoid these repetitions.

– The application had to be manually extended to support employee-manager
relations, in order to limit the employee forms that each manager could see.
It would be useful to be able to limit a permissions block not only by the
transition log, but also by relations between users.

6 Conclusions

A simpler class of business processes (administrative processes) are very common
in many organizations today: these processes basically consist of managing a form
through many states, involving various roles in the organization. Implementing
the basic logic and infrastructure for them again and again wastes precious time
that could be used on understanding better the process and implementing the
fine details correctly.

This paper has presented an approach to improve the efficiency of implement-
ing these solutions, while avoiding lock-in into a particular technology: using a
high-level domain-specific language (DSL) for describing the process and writ-
ing a separate code generator for each target technology. The approach has been
illustrated by describing an examination process, and has been implemented

20 Antonio García-Domínguez et al.

with Xtext [10] on the DSL side and EGL [11] on the code generation side. The
code generator produces a ready-to-use site that follows the best practices of
the Django web framework [2], accelerating the implementation of the process.
The generated code is based on a manually-written support library: when later
iterations hit the limits of our code generator, developers are still able to extend
and reuse its building blocks.

After the synthetic case study, a real-world case study for a workplace sat-
isfaction survey developed within the University of Cádiz was discussed. The
first version of the original survey was quickly developed with AdminDSL, and
the developers were able to ascertain in the early stages of development that an
alternative approach based on aggregating multiple levels of forms was needed.
After rapid iteration of prototypes of AdminDSL, developers then manually ex-
tended the application to cover for the aspects that AdminDSL did not cover
(custom user interface, external system integration, form aggregation and so on).
While the experience with AdminDSL has been positive, it has highlighted the
need for a smarter code generator that is friendlier to manual modifications, and
has shown several ways in which AdminDSL could be improved or assisted by
other small DSLs.

We are currently running two more case studies within the University of Cádiz
and studying their results. After taking into account the feedback from our first
real-world case study, we intend to use these two case studies to obtain more
detailed metrics of the usability and productivity of AdminDSL. Once the Django
support in AdminDSL is mature, we will open the tool to the general public and
start working on generators for other web frameworks that are common in our
organization (e.g. Symfony 2).

Acknowledgments

This work was funded by the research project “Mejora de la calidad de los
datos y sistema de inteligencia empresarial para la toma de decisiones” (2013-
031/PV/UCA-G/PR) of the University of Cádiz.

References

1. García-Domínguez, A., Jerez-Ibáñez, I., Medina Bulo, I.: Domain-Specific Lan-
guage for Generating Administrative Process Applications. In: Proceedings of the
5th International Symposium of Business Modeling and Software Design, Milan,
Italy, SciTePress (July 2015) 178–183

2. Django Software Foundation: Home page of the Django web framework. https:
//djangoproject.com (March 2015) Last checked: March 6th, 2015.

3. Bonitasoft: Homepage of the Bonita BPM project. http://www.bonitasoft.
com/ (March 2015) Last checked: March 3rd, 2015.

4. Intalio, Inc.: Homepage of the Intalio|BPMS project. http://www.intalio.
com/products/bpms/overview/ (March 2015) Last checked: March 3rd, 2015.

Two Case Studies on AdminDSL 21

5. Eclipse Foundation: Homepage of the EMF Forms project. https://www.
eclipse.org/ecp/emfforms/ (March 2015) Last checked: March 3rd, 2015.

6. Evans, E.J.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
first edn. Addison Wesley, Boston (August 2003)

7. Apache Software Foundation: Apache Isis. http://isis.apache.org/ (March
2015) Last checked: March 3rd, 2015.

8. OpenXava.org: OpenXava homepage. http://www.openxava.org/web/
guest/home (March 2015) Last checked: March 3rd, 2015.

9. Klischewski, R., Lenk, K.: Understanding and modelling flexibility in adminis-
trative processes. In: Electronic Government. Volume 2456 of Lecture Notes in
Computer Science. Springer (2002) 129–136

10. Eclipse Foundation: Xtext project homepage. http://www.eclipse.org/
Xtext/ (September 2014) Last checked: March 2nd, 2015.

11. Eclipse Foundation: Epsilon project homepage. https://eclipse.org/
epsilon/ (2015) Last checked: March 5th, 2015.

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. 1 edn. Addison Wesley, Reading, Mass (October
1994)

13. Fowler, M.: Domain Specific Languages. first edn. Addison-Wesley Professional
(September 2010)

14. Object Management Group: Business Process Model and Notation 2.0.2. http:
//www.omg.org/spec/BPMN/2.0.2/ (January 2014) Last checked: March 2nd,
2015.

