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Improved clinical care for Bipolar Disorder (BD) relies on the identification of diagnostic markers that can
reliably detect disease-related signals in clinically heterogeneous populations. At the very least, diag-
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nostic markers should be able to differentiate patients with BD from healthy individuals and from in-
dividuals at familial risk for BD who either remain well or develop other psychopathology, most com-
monly Major Depressive Disorder (MDD). These issues are particularly pertinent to the development of
translational applications of neuroimaging as they represent challenges for which clinical observation
alone is insufficient. We therefore applied pattern classification to task-based functional magnetic re-
sonance imaging (fMRI) data of the n-back working memory task, to test their predictive value in dif-
ferentiating patients with BD (n¼30) from healthy individuals (n¼30) and from patients’ relatives who
were either diagnosed with MDD (n¼30) or were free of any personal lifetime history of psycho-
pathology (n¼30). Diagnostic stability in these groups was confirmed with 4-year prospective follow-up.
Task-based activation patterns from the fMRI data were analyzed with Gaussian Process Classifiers (GPC),
a machine learning approach to detecting multivariate patterns in neuroimaging datasets. Consistent
significant classification results were only obtained using data from the 3-back versus 0-back contrast.
Using contrast, patients with BD were correctly classified compared to unrelated healthy individuals with
an accuracy of 83.5%, sensitivity of 84.6% and specificity of 92.3%. Classification accuracy, sensitivity and
specificity when comparing patients with BD to their relatives with MDD, were respectively 73.1%, 53.9%
and 94.5%. Classification accuracy, sensitivity and specificity when comparing patients with BD to their
healthy relatives were respectively 81.8%, 72.7% and 90.9%. We show that significant individual classi-
fication can be achieved using whole brain pattern analysis of task-based working memory fMRI data.
The high accuracy and specificity achieved by all three classifiers suggest that multivariate pattern re-
cognition analyses can aid clinicians in the clinical care of BD in situations of true clinical uncertainty
regarding the diagnosis and prognosis.
& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Bipolar disorder (BD) is an affective disorder that ranks amongst
the leading causes of disability worldwide across all age groups (World
Health Organization, 2008). This motivates efforts to characterize valid
and reliable biological markers of disease expression in order to
facilitate early identification and novel treatment discovery.

Magnetic resonance imaging (MRI) has been extensively used
to investigate the neural correlates of disease expression in BD.
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Structural MRI (sMRI) studies have demonstrated that BD is as-
sociated with reductions in whole brain and regional gray matter
volumes (Hallahan et al., 2011; Kempton et al., 2011; Fears et al.,
2014). Functional MRI (fMRI) studies have provided further in-
formation in terms of changes in regional blood-oxygen-level-
dependent (BOLD) signal, most commonly in the domains of affect
processing and executive control, where both genetically-derived
and disease-related deficits have been reported (Glahn et al., 2010;
Fears et al., 2014). The common network for affect processing
notably involves the amygdala (AMG), ventral striatum and puta-
men and the ventral prefrontal (VPFC), ventral anterior cingulate
(ACC) and insular cortices (Lindquist et al., 2012). The common
network supporting executive control functions includes dorsal
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Machine Learning Classification. This is a simplified illustration of the Gaussian Process Classifier functions that outlines the general principles of multivariate
machine learning classification as applied to neuroimaging data from two hypothetical groups, referred to as patient and comparison group. During the training phase (left
panel), the classifier is separately presented with multiple neuroimaging datasets of individuals that belong to one or the other group. The algorithm uses these data to
assign a predictive weight to each voxel as more or less likely to be associated with one or the other group. The output of the classifier is a discrimination maps showing
regions that have the most significant contribution to classification (left panel, bottom left) and values regarding the performance of the classifier based on their separating
hyperplane (left panel, bottom right). During the test phase, a previously unseen dataset is presented to the algorithm and is classified based on its probability of belonging to
either the patient or comparison group.
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striatal structures as well as the dorsolateral prefrontal (DLPFC),
dorsal ACC, and parietal (PAR) cortices (Niendam et al., 2012). In
patients with BD, exaggerated activation during affective and ex-
ecutive tasks has been consistently observed in the AMG, insula,
and ventral ACC coupled with reduced PFC engagement (Chen at
al., 2011; Cusi et al., 2012; Delvecchio et al., 2012; Fusar-Poli et al.,
2012; Jogia et al., 2012; Cremaschi et al., 2013; Dima et al., 2013).
These observations have improved the characterization of the
biological underpinnings of BD but have had limited clinical utility
as they are based on group-level inferences that cannot be readily
applied to the categorization of single individuals.

Advances in machine learning techniques, a field of artificial
intelligence, represent a major development that could lead to
clinical useful neuroimaging applications in psychiatry. Multi-
variate pattern recognition is a particular type of machine learning
concerned with the discovery of regularities in data through the
use of computer algorithms (Vapnik 1995). Frequently used ma-
chine learning approaches are support vector machines (SVM) and
Gaussian Process Classifiers (GPC) (Fig. 1). Our group and others
have shown that the application of multivariate pattern recogni-
tion analyses can reliably classify patients with BD from healthy
individuals (Rocha-Rego et al., 2014; Mwangi et al., 2014; Schnack
et al., 2014) and from patients with schizophrenia (Schnack et al.,
2014) or Major Depressive Disorder (MDD) (Grotegerd et al., 2013;
Grotegerd et al., 2014) with an accuracy of approximately 70-80%.
It can be argued however, that neuroimaging may be able to
make a unique contribution in situations where clinical assess-
ment and observation are not sufficient for diagnosis and prog-
nosis. For clinicians, one of the greatest challenges lies in the dif-
ferential diagnosis of BD from MDD. Although mania is the diag-
nostic hallmark of BD, in the majority of patients the disorder first
presents with depressive symptoms (Forty et al., 2009). Even after
disease onset, depressive symptoms dominate and contribute to
morbidity and psychosocial disability (Judd et al., 2002). A sub-
stantial body of research has focused on identifying phenomen-
ological features that could differentiate MDD from BD depression;
the weight of evidence suggests that reliable and accurate differ-
entiation at the level of the individual patient is beyond the re-
solution of even rigorous and detailed clinical assessment
(Mitchell et al., 2008), particularly amongst those with a family
history of BD (Mitchell et al., 2011). Consequently, many patients
are misdiagnosed and treated as having MDD either because they
present with depression at illness onset or because they generally
under-report manic symptoms. This has important treatment im-
plications as antidepressant treatment in BD may exaggerate
mood instability (El-Mallakh et al., 2015). A further challenge lies
in predicting the outcome of asymptomatic individuals with a
family history of BD. As a group, these individuals are a higher risk
than the general population for developing BD (Duffy et al., 2015;
Fullerton et al., 2015).
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Therefore the aim of the current study was to test whether
neuroimaging can indeed assist clinicians when faced with true
clinical uncertainty in situations where clinical acumen and ob-
servation are insufficient. We tackle two challenges; one focuses
on the differential diagnosis of BD from MDD in the presence of
family history of BD in the MDD patients. The other on the correct
identification of individuals who have remained well but would be
conventionally considered “at risk” based on having a first-degree
relative with BD. We therefore test the hypothesis that GPCs of
task-based fMRI data during the n-back working memory task can
identify patterns of neural function that will prove useful in dif-
ferentiating patients with BD from healthy unrelated individuals,
and individuals at familial risk for BD who have either developed
MDD or remained free of psychopathology. We focus on the
functional neuroanatomy of the n-back task because it has been
shown to be robust to variations in the paradigms used, scanner
types and acquisition sequences (Owen et al., 2005; Dima et al.,
2014) and has been reliably used to elicit disease-related ab-
normalities in patients with BD and their relatives (Fusar-Poli
et al., 2012; Cremaschi et al., 2013).
Methods

The study sample comprised 120 demographically matched
participants consisting of 30 patients with BD-type I, 30 of their
first-degree relatives diagnosed with MDD, 30 psychiatrically
healthy first-degree relatives and 30 unrelated healthy controls
(Table 1). Participants were drawn from with the VIBES study
sample (Frangou 2009; Kempton et al., 2009a, 2009b; Walterfang
et al., 2009; Takahashi et al., 2010; Forcada et al., 2011; Lelli-Chiesa
et al., 2011; Perrier et al., 2011; Pompei et al., 2011a, 2011b; Ru-
berto et al., 2011; Jogia et al., 2011, 2012a, 2012b; Dima et al., 2013;
Rocha-Rego et al., 2014; Delvecchio et al., 2015). Participants with
BD or MDD fulfilled the respective diagnostic criteria outlined in
the Diagnostic and Statistical Manual of Mental Disorders, 4th
Table 1
Demographic, clinical and task performance data.

Unrelated heal-
thy controls
(n¼30)

Healthy re-
latives
(n¼30)

MDD re-
latives
(n¼30)

BD patients
(n¼30)

Age (years) 33.4 (11.6) 35.3 (5.6) 32.9 (9.9) 34.7 (7.7)
Male: Female 15:15 14:16 16:14 15:15
Full scale IQ 108.4 (10.9) 110.5 (10.5) 109 (11.4) 107.1 (12.1)
Age of onset
(years)

n/a n/a 20.1 (9.1) 19.2 (10.8)

HDRSa 0.1 (0.5) 0.1 (0.4) 1.3 (0.9) 3.2 (1.1)
YMRSa 0.1 (0.8) (0) (0) 0.1 (1.3) 1.3 (0.7)
BPRSa 24.4 (0.7) 24.5 (0.6) 25.4 (0.9) 27.1 (2.4)
3-back, %
correctb

73.2 (12.4) 88.5 (14.3) 73.4 (17.2) 69.8 (16.7)

3-back, re-
sponse time
[sec]c

0.85 (0.3) 0.79 (0.3) 0.84 (0.5) 0.87 (0.6)

Except for sex, data are presented as mean (standard deviation). Bipolar dis-
order¼BD; BPRS¼Brief Psychiatric Rating Scale; IQ¼ Intelligence Quotient;
HDRS¼Hamilton depression Rating Scale; MDD¼Major Depressive Disorder;
YMRS¼Young Mania Rating Scale; n/a¼not applicable; there were no group dif-
ferences in age, sex distribution, IQ and age of onset, P40.7;

a Significant effect of group for HDRS, YMRS and BPRS Po0.001; Post-hoc
pairwise Bonferroni corrected comparisons showed that patients with BD more
symptomatic than all other groups, Po0.01.

b Significant effect of group F¼15.8, Po0.01; Post-hoc Bonferroni corrected
pairwise comparisons showed healthy relatives outperformed all other groups,
Po0.02; Significant effect of group F¼21.4, Po0.01; Post-hoc Bonferroni corrected
pairwise comparisons showed healthy relatives outperformed all other groups,
Po0.02.
edition, revised (DSM-IV) (APA, 1994). Healthy relatives had no
lifetime history of any major psychiatric disorder. Healthy un-
related controls had no family history or personal lifetime history
of any major psychiatric disorder. All participants were free of any
medical comorbidity and had no lifetime history of substance
dependence or substance abuse in the six months leading to their
brain scan. The diagnostic status of all participants was assessed
using the Structured Clinical Interview for DSM-IV for Axis I di-
agnoses (First et al., 2002a, 2002b). Patients with BD and their
relatives with MDD did not differ in the age of onset of their re-
spective diagnosis. The diagnostic stability of patients with BD,
their MDD and healthy relatives was confirmed through annual
interview over a 4-year period following their brain scan. On the
day of scanning, all participants were assessed using the Hamilton
Depression Rating Scale (HDRS) (Hamilton, 1960), the Young
Mania Rating Scale (YMRS) (Young et al., 1978), the Brief Psy-
chiatric Rating Scale (BPRS) (Lukoff et al., 1986) and the Wechsler
Adult Intelligence Scale 3rd Edition (Wechsler, 1997). To ensure
patients with BD and relatives with MDD were in remission their
psychopathology was assessed weekly over period of 1 month
leading to their scan and at each assessment patients’ scored be-
low 7 in the HDRS and YMRS. Although the level of symptoma-
tology was very low, patients with BD were more symptomatic
than all other groups (po0.001). The BPRS, HDRS and YMRS
scores were highly correlated (all r40.78, all po0.001).BD pa-
tients were medicated at the time of scanning with atypical anti-
psychotics (n¼21), antiepileptics (n¼8), lithium (n¼14), as
monotherapy (n¼18) or combination therapy (n¼12). Three re-
latives with MDD were on selective serotonin re-uptake inhibitors.
All medicated participants had remained on the same type and
dose of medication for a minimum of 6 months prior to scanning.

Informed consent was obtained from all participants. The study
was approved by the institutional ethics review board.

Working memory functional imaging task

The n-back task was employed in a block design incorporating
alternating experimental and sensorimotor control conditions. A
series of letters in yellow font were displayed on a blue screen for
two seconds each. Participants were instructed to indicate by a
button press whether the letter currently displayed matched the
letter from the preceding n trials. In the sensorimotor control (0-
back) the letter “X” was the designated target. In the experimental
conditions (1, 2, 3-back) the target letter was defined as any letter
that was identical to the one presented in the preceding one, two,
or three trials. There were 18 epochs in all, each lasting 30 s,
comprising 14 letters with a ratio of target to non-target letters
ranging from 2:12 to 4:10 per epoch. The entire experiment lasted
9 min and included a total of 49 target and 203 non-target stimuli.
To avoid any systematic order effects the conditions were pseudo-
randomized. Performance was evaluated in terms of reaction time
to target letters and accuracy (% correct responses).The task was
explained to participants prior to scanning but there was no
training.

Image acquisition

Gradient echo planar magnetic resonance (MR) images were
acquired using a 1.5-T GE Neuro-optimized Signa MR system
(General Electric, Milwaukee, WI, USA) fitted with 40 mT/m high-
speed gradients. Foam padding and a forehead strap were used to
limit head motion. A quadrature birdcage head coil was used for
radio frequency (RF) transmission and reception. A total of 180 T2*-
weighted MR brain volumes depicting BOLD contrast were
acquired at each of 36 near-axial planes parallel to the inter-
commissural (AC-PC) plane; repetition time (TR)¼3000 ms, echo
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time (TE)¼40 ms, slice thickness¼3 mm, voxel dimensions¼
3.75�3.75�3.30 mm, interslice gap¼0.3 mm, matrix size¼64*64,
flip angle¼90°. Prior to each acquisition sequence, four dummy
data acquisition scans were performed to allow the scanner to reach
a steady state in T1 contrast. During the same session, a high-
resolution T1-weighted structural image was acquired in the
axial plane (inversion recovery prepared, spoiled gradient-echo
sequence; TR¼18 ms, TE¼5.1 ms, TI¼450 ms, slice thickness¼
1.5 mm, voxel dimensions¼0.9375�0.9375�1.5 mm, matrix size
256*192, field of view¼240�180 mm, flip angle¼20°, number of
excitations¼1) for subsequent co-registration.

Image processing

Conventional fMRI analyses were implemented using Statistical
Parametric Mapping (SPM8) (www.fil.ion.ucl.ac.uk/spm/software/
spm8/). fMRI images were realigned, normalized and smoothed
using an 8 mm full-width-half-maximum Gaussian kernel. To
ensure data quality, task registration parameters were extracted
and were used to identify participants with excessive interscan
motion (defined as 44 mm translation, 44° rotation) and to
conduct group comparisons. No subjects were excluded and there
were no significant group differences in motion. The smoothed
single-participant images were analyzed via multiple regressions
using the linear convolution model, with vectors of onset re-
presenting the memory load conditions (1, 2, and 3 back) and the
0-back condition as sensorimotor control. Six movement para-
meters were also entered as nuisance covariates. Serial correla-
tions were removed using an AR(1) model. A high pass filter
(128 s) was applied to remove low-frequency noise. Contrast
images of each memory load condition (1-, 2-, 3- back) versus
0-back were produced for each participant. At the individual
subject level, a standard general linear modeling (GLM) approach
was used to obtain estimates of the response size (beta) in each
the memory load condition against the 0-back control condition.

Conventional fMRI analysis

We examined the effect of group (patients with BD, MDD re-
latives, healthy relatives and unrelated healthy controls) on BOLD
signal using a standard general linear modeling (GLM) in SPM8 se-
parately for each memory load condition (1-, 2-, 3- back) against the
0-back control. We examined each condition separately, instead of
modeling activation changes with increasing load. This is because it
has long been known that cortical loci, particularly in prefrontal re-
gions, show non-linear changes in activation with increasing mem-
ory load (Callicott et al., 1999) which could increase voxel level
variability. Suprathreshold clusters were identified using family wise
error (FWE) voxel-wise correction of po0.05. Stereotactic co-
ordinates were converted from MNI spatial array to that of Talairach
and Tournoux (www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html)
and corresponding anatomical and Brodmann area (BA) labels were
identified with The Talairach Daemon Client (www.talairach.org).
Measures of brain activation (weighted parameter estimates) from
each subject were extracted using the MarsBaR toolbox (marsbar.
sourceforge.net) from regions of interest (ROIs) defined on the basis
of the whole brain analysis as 5 mm radius spheres at peak height
coordinates within each suprathreshold cluster. These measures
were also used to examine the role of potentially confounding vari-
ables of age, IQ, age of onset, task performance and medication. Al-
though we report uncorrected P values, due to the large number of
correlations undertaken the level of significant inference was set at a
conservative P vale of 0.005.
Multivariate pattern classification

Probability of group membership was determined using
Gaussian Process Classifiers (GPCs) implemented in the Pattern
Recognition for Neuroimaging Toolbox (PRoNTo) (www.mlnl.cs.
ucl.ac.uk/pronto/) using whole-brain individual beta maps/GLM
coefficients for the contrasts of 1-back, 2-back and 3-back versus
0-back. Technical descriptions of GPC inference have been pre-
sented elsewhere (Schrouff et al., 2013). Briefly, the classifier is
first trained to determine a predictive distribution that best dis-
tinguishes between two groups (e.g., case and controls); any
parameters controlling the behavior of this distribution are com-
puted by maximizing the logarithm of the marginal likelihood on
the training data only. Then in the test phase, the classifier predicts
the group membership of a previously unseen example. This is
achieved by integrating over the predictive distribution for the test
case and passing the output through a sigmoidal function, re-
sulting in predictive probabilities scaled between 0 and 1 which
precisely quantify the predictive uncertainty of the classifier for
the test case.

We focus on the usefulness of fMRI data derived from the
n-back task in differentiating patients with BD from (a) healthy
individuals, (b) their relatives with MDD, and (c) from their psy-
chiatrically healthy relatives. Each classifiers was trained a leave-
two-out cross-validation. For each cross-validation iteration, a
matched pair of subjects from each group was excluded first and
then the data were partitioned into training and test sets. For each
trial, we thresholded the probabilistic predictions at 0.5 to convert
the probabilistic predictions to class labels allowing the sensitivity
and specificity of classification to be computed over all trials
(Rasmussen and Williams, 2006). Statistical significance of each
classifier was determined by permutation testing, as described
previously (Marquand et al., 2010). Briefly, permutation testing
was performed by repeatedly retraining the classifier after per-
muting the class labels (1000 permutations). A P-value for classi-
fication accuracy was computed by counting the number of per-
mutations for which the permuted accuracy was equal or greater
than the true accuracy (obtained with non-permuted labels), then
dividing by 1000. In addition for each classifier, Pearson correla-
tion analyses were carried out between GPC predictive probability
and total BPRS scores, age, IQ, task performance, age of onset and
medication dose.

As a secondary outcome we generated an unthresholded GPC
weight map for each classifier. As GPC classifiers are multivariate,
these discrimination maps do not describe focal activation effects
but instead they represent the spatially distributed pattern of
coefficients that quantify the contribution of each voxel to the
classifier's decision function. We then estimated the positive (PPV)
and negative (NPV) predictive value of each classifier.
Results

Conventional fMRI analysis

There were no group differences in the 1-back or 2-back versus
0-back contrasts. In the 3-back versus 0-back contrast a main ef-
fect of group was found (p¼0.05 FWE voxel level corrected) in the
middle frontal gyrus (BA10) (x¼36 y¼58 z¼0, F score¼6.64,
cluster size 240), the superior temporal gyrus (BA22) (x¼58
y¼�44 z¼12, F score¼6.54, cluster size 169) and the posterior
cingulate cortex (BA30) (x¼�28 y¼�68 z¼8, F score¼6.97,
cluster size 76). Patients with BD had reduced mean level of ac-
tivation in the middle frontal gyrus compared to healthy relatives
and unrelated controls (po0.02); however relatives with MDD did
not differ compared to any other group and had an intermediate
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level of mean activation between healthy relatives/ unrelated
controls and BD patients. In the superior temporal gyrus, BD pa-
tients showed a greater mean level of activation compared to
healthy controls and psychiatrically well relatives (po0.05);
however, relatives with MDD did not differ compared to any group
and had an intermediate level of mean activation between healthy
relatives/controls and BD patients. In the posterior cingulate cor-
tex, the mean level of activation was reduced in relatives with
MDD compared to all the other groups (po0.04); all other pair-
wise comparisons were not significant.

We examined the role of potential confounders in several ways.
We used three multivariate analyses of variance with medication
status (antiepileptics vs. not on antiepileptic, lithium vs. not on
lithium and antipsychotic vs. not on antipsychotics) as the in-
dependent factors and levels of activation in suprathreshold
clusters in patients with BD as dependent variables. No group
differences were found (all P40.28). We examined correlations
between activation in suprathreshold regions in patients with BD
and dose of lithium and antipsychotics on the day of scanning.
None were significant (all ro0.21, P40.28). Similarly, we did not
observe any correlation with age of onset in patients and relatives
with MDD (all ro0.23, P40.07). Further analyses in the entire
sample did not reveal significant correlations between the level of
activation in any suprathreshold cluster and age (all ro0.10,
P40.27), IQ (all ro0.08, P40.38), accuracy (all ro0.06, P40.51)
and response time (all ro0.16, P40.08). None of these correla-
tions survive correction for multiple testing.

Multivariate classification

Patients with BD versus unrelated healthy controls: Classifiers
using the 1-back or 2-back versus 0-back contrast did not lead to a
Fig. 2. Unthresholded discrimination maps for the classifier based on the 3-back 40
individuals. In the corresponding discrimination map, positive coefficients (red) indicat
Major Depressive Disorder. In the corresponding discrimination map, positive coefficien
healthy relatives. In the corresponding discrimination map, positive coefficients (red)
statistically significant differentiation between patients with BD
and healthy controls. Classification based on the 1-back versus
0-back contrast resulted in 65.5% accuracy, 61. 5% sensitivity (true
positives for BD) and 69.2% specificity (true negatives for unrelated
controls) and was not significant (p¼0.01). Classification based on
the 2-back versus 0-back contrast resulted in 73.1% accuracy, 76.9%
sensitivity and 69.3% specificity and was also not significant
(p¼0.08). In contrast, the classifier based on the 3-back versus
0-back contrast significantly differentiated patients from unrelated
controls with an accuracy of 83.5% (p¼0.001). The sensitivity of
the classification was 84.6% and the specificity 92.3%/. The PPV
(probability that individuals classified as BD patients were cor-
rectly identified) and NPV (probability that individuals classified as
healthy controls were correctly identified) values were respec-
tively 0.91 and 0.85. The unthresholded discrimination map
showing the global spatial pattern by which the two groups differ
based on the 3-back versus 0-back classifier is displayed in Fig. 2A;
the largest clusters discriminating patients with BD from unrelated
controls were located in the left inferior/middle/superior frontal
gyrus and in the superior parietal lobule.

Patients with BD versus relatives with MDD: Significant results
were found for classifiers based on contrast images from the
1-back (p¼0.003), 2-back (p¼0.001) and 3-back (p¼0.001) con-
ditions. The classifier based on the 1-back versus 0-back contrast
resulted in 76.9% accuracy, 53.9% sensitivity (true positives for
patients with BD), 100% specificity (true negatives for relatives
with MDD), PPV of 1 and NPV of 0.68. The classifier based on the
2-back versus 0-back contrast resulted in 73% accuracy, 61.5%
sensitivity, 84.6% specificity, 0.79 PPV and 0.68 NPV. The classifier
based on the 3-back versus 0-back contrast resulted in 73.1% ac-
curacy, 53.9% sensitivity, 94.5%specificity, 0.90 PPV and 0.67 NPV.
To maintain consistency with the results of the other classification
-back contrast: (A). Patients with Bipolar Disorder (BD) versus unrelated healthy
e clusters with predictive value for BD (B). Patients with BD versus relatives with
ts (red) indicate clusters with predictive value for BD (C). Patients with BD versus
indicate clusters with predictive value for psychiatrically healthy relatives.

http://dx.doi.org/10.1016/j.neuroimage.2016.08.066
http://dx.doi.org/10.1016/j.neuroimage.2016.08.066
http://dx.doi.org/10.1016/j.neuroimage.2016.08.066
mvargas
Sticky Note
Marked set by mvargas

mvargas
Sticky Note
Marked set by mvargas

mvargas
Sticky Note
Marked set by mvargas



S. Frangou et al. / NeuroImage 235145 (2017) 230-237
problems, the unthresholded discrimination map showing the
global spatial pattern by which the two groups differ based on the
3-back versus 0-back classifier is displayed in Fig. 2B; the largest
discriminating clusters were located in the left superior frontal
gyrus, right middle frontal gyrus, bilaterally in the middle /su-
perior frontal gyrus and the right temporal lobe.

Patients with BD versus healthy relatives: Classifiers using the
1-back or 2-back versus 0-back contrast did not differentiate be-
tween patients with BD and healthy relatives. Classification based
on the 1-back versus 0-back contrast resulted in 54.5% accuracy,
36.6% sensitivity (true positives for patients with BD) and 72.3%
specificity (true negatives for healthy relatives) but the results
were not significant (p¼0.41). Classification based on the 2-back
versus 0-back contrast resulted in 59.1% accuracy, 36.3% sensitivity
and 81.2% specificity and was also not significant (p¼0.17). In
contrast, the classifier based on the 3-back versus 0-back contrast
was significant (p¼0.004) and had 81.8% accuracy, 72.7% sensi-
tivity, 90.9% specificity (true for healthy relative), 0.88 PPV and
NPV 0.76. The unthresholded discrimination map showing the
global spatial pattern by which the two groups differ based on the
3-back versus 0-back classifier is displayed in Fig. 2C; the largest
discriminating clusters were located in the lingual gyrus and the
cerebellum on the left.

For each classifier, Pearson correlation analyses between GPC
predictive probabilities and age, IQ, task accuracy and reaction
time, age of onset, BPRS total score and medication dose were not
significant (ro0.28; p40.14).
Discussion

We demonstrate the potential translational utility of task-based
fMRI in aiding diagnosis and prognosis in BD. The approach
highlighted here provides proof of concept for the development of
new tools for the categorization of individuals where there is
general agreement that clinical data alone are insufficient.

In this study we show that patients diagnosed with BD, show
sufficient consistency in their neurofunctional patterns for them to
be reliably differentiated from healthy individuals with an accu-
racy of 83.4%. Using structural MRI data alone, we have previously
achieved classification accuracies of 69–78% in differentiating pa-
tients with BD from healthy individuals based on whole-brain gray
or white matter classifiers (Rocha-Rego et al., 2014). Others who
have also used structural MRI data have reported similar or lower
accuracies (Schnack et al., 2014). It would therefore appear that
task-based fMRI data may improve classification accuracy in BD as
they may be more sensitive to disease-related pathology. Ad-
ditionally, it is encouraging that the clusters that contribute to the
correct classification of patients compared to controls, show bio-
logical plausibility. The conventional fMRI analysis of this same
dataset, as well as results from independent samples (Cremaschi
et al., 2013; Fusar-Poli et al., 2012), have consistently identified
decreased prefrontal activation in patients with BD in the 3-back
vs 0-back contrast compared to healthy controls. This is consistent
with the clusters contributing to successful classification of pa-
tients from controls which implicate the prefrontal cortex, parti-
cularly lateral and frontopolar regions, and the dorsal parietal
cortex, both key functional nodes of the working memory network
(Niendam et al., 2012). Nevertheless, it could be argued that dif-
ferentiating patients with established BD from healthy controls is
of marginal clinical interest as real-life diagnostic assessments
deal with more complex issues than separating people that have
been ill for some time from those who are not ill at all (Wolfers
et al., 2015). The value of testing classifiers for patients versus
controls based on different imaging modalities is threefold. First, it
serves to identify the type of data, or combinations of data, derived
from neuroimaging applications that would be adapted for clinical
practice. Once this is achieved, one could test the best-performing
classifiers on different clinical groups that are prodromal or have
atypical or comorbid presentations. Second, examining the re-
lationship between the multivariate neuroimaging signature and
the clinical or demographic features of a disorder can lead to
mechanistic insights regarding etiology and progression. Third, the
availability of objective brain imaging tests can improve the social
perception of psychiatry. At the level of individual patients, ob-
jective tests would provide re-assurance that clinical assessment
and diagnostic assignment are not purely based on subjective
judgment. At the societal level, it would help integrate psychiatry
into mainstream medicine.

To our knowledge this is the first study to employ neuroima-
ging to address core issues of clinical uncertainty. We provide
preliminary evidence for using neuroimaging classifiers to differ-
entiate MDD from BD, especially in individuals who have a family
history of BD. There are several clinical indicators of increased
likelihood of conversion to BD in those who present with de-
pression and have a family history of the disorder (Mitchell et al.,
2008; 2011). However, none can be reliably applied to individual
patients. In contrast, GPC classifiers differentiated patients with BD
from relatives with MDD with an accuracy ranging from 73 to 77%.
The sensitivity of these classifiers were low (53–62%). This is not
surprizing given the phenomenological overlap between BD and
MDD and the dominance of depressive psychopathology in both
disorders (Judd et al., 2002; Forty et al., 2009). What is more im-
portant however is that the classifier had very high specificity
ranging from 84 to 100%. In principle this means that at the level
of the individual patient clinicians would be able to exclude the
possibility of BD, with a very high level of confidence, after a 10-
min brain scan. This finding requires replication in different
samples and settings and in more diverse clinical populations in
terms of their age and duration of illness. Nevertheless, our results
suggest that this is an avenue of research worth pursuing in de-
monstrating the translational value of neuroimaging.

Our third classifier, based on the 3-back versus 0-back contrast,
differentiated patients with BD from their psychiatrically healthy
relatives with an accuracy of 81.8%. This classifier identified high-
risk individuals unlikely to convert to BD with 90.9% specificity.
However, its sensitivity was 72.7% which suggest that some high-
risk individual likely to convent may be missed. These results are
very encouraging and could potentially inform early intervention
services, where positive family history is a key criterion of risk and
possible service inclusion (Duffy et al., 2015). There are a number
of behavioral indicators of increased likelihood of conversion to
syndromal BD but longitudinal studies suggest that they have low
predictive value as a significant number of high-risk individuals
never convert (Tijssen et al., 2010). Correctly identifying those who
are in need of treatment is of paramount significance both in
terms of cost-effectiveness of early intervention services but also
in terms of preventing unnecessary treatment, concern and self-
stigmatization in those unlikely to convert to BD. Of the clusters
contributing to the correct identification of healthy relative, one
was in the lingual gyrus, an occipital region involved in visual
processing, and another in the cerebellum. Intriguingly, the lingual
gyrus is closely related to cognitive function particularly with in-
creasing age in BD (Fears et al., 2014) and shows dysfunctional
connectivity during a range of tasks in patients but not their un-
affected relatives (Dima et al., 2013). The volume of the cerebellum
has been shown to be increased in healthy relatives of patients
(Kempton et al., 2009a, 2009b) compared to controls while in BD
patients it is known to progressively decrease (Moorhead et al.,
2007). Therefore clusters contributing to the correct categorization
of healthy relatives may point us to regions that are particularly
important for maintaining resilience when preserved or for
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disease expression when abnormal.
Patients with BD differed from the other groups (MDD relatives,

healthy relatives, unrelated healthy individuals) in medication
status. This raises the issue of whether classification might have
been based on medication rather than diagnostic status. We can-
not address this issue directly but we note that correlations be-
tween medication variables and GPC predictive probabilities were
low and not statistically significant. We have previously shown
that medication status did not have a significant influence on
classifier performance when using brain structural data to classify
patients with BD from controls (Rocha-Rego et al., 2014). Patients
with BD were on a variety of psychotropic agents with different
mechanisms of action and it is therefore unlikely that the neural
correlates of medication effects would be consistent across all
participants. This mitigates the possibility that the classifiers could
have identified uniform medication-related classification rules. In
addition, the very low levels of psychopathology in patients sug-
gest that it is unlikely that classification rules were derived from
neural patterns associated with symptomatic expression on the
day of the scan. Further investigations are, however, needed to
confirm the reproducibility of our findings in more diverse and
larger samples.

In summary, this is the first study to our knowledge that has
tested the contribution of neuroimaging to problems that arise in
the clinical care of BD for which adequate non-imaging solutions
have been elusive. Although in need to replication and refinement,
our data provide clear direction for the development of transla-
tional imaging applications in psychiatry.
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