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Abstract. The ontology engineering research community has focused for many
years on supporting the creation, development and evolution of ontologies. On-
tology forecasting, which aims at predicting semantic changes in an ontology,
represents instead a new challenge. In this paper, we want to give a contribution to
this novel endeavour by focusing on the task of forecasting semantic concepts in
the research domain. Indeed, ontologies representing scientific disciplines contain
only research topics that are already popular enough to be selected by human
experts or automatic algorithms. They are thus unfit to support tasks which require
the ability of describing and exploring the forefront of research, such as trend
detection and horizon scanning. We address this issue by introducing the Semantic
Innovation Forecast (SIF) model, which predicts new concepts of an ontology
at time t+ 1, using only data available at time t. Our approach relies on lexical
innovation and adoption information extracted from historical data. We evaluated
the SIF model on a very large dataset consisting of over one million scientific
papers belonging to the Computer Science domain: the outcomes show that the
proposed approach offers a competitive boost in mean average precision-at-ten
compared to the baselines when forecasting over 5 years.
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1 Introduction

The mass of research data on the web is growing steadily, and its analysis is becom-
ing increasingly important for understanding, supporting and predicting the research
landscape. Today most digital libraries (e.g., ACM Digital Library, PubMed) and many
academic search engines (e.g., Microsoft Academic Search3, Rexplore [21], Saffron
[18]) have adopted taxonomies and ontologies for representing the domain of research
areas. For example, researchers and publishers in the field of Computer Science are now
well familiar with the ACM classification and use it regularly to annotate publications.

However, these semantic classifications are usually hand-crafted and thus are costly
to produce. Furthermore, they grow obsolete very quickly, especially in rapidly changing
fields such as Computer Science. To alleviate this task is possible to use approaches

3 http://academic.research.microsoft.com/



for ontology evolution and ontology learning. The first task aims to extend, refine
and enrich an ontology based on current domain knowledge [26, 23]. For example,
an ontology of research areas should be updated regularly by including topics which
emerged after the last version of the ontology was published. Ontology learning aims
instead to automatically generate ontologies by analysing relevant sources, such as
relevant scientific literature [20]. Nonetheless, these ontologies still reflect the past, and
can only contain concepts that are already popular enough to be selected by human
experts or automatic algorithms. Hence, while they are very useful to produce analytics
and examine historical data, they hardly support tasks which involve the ability to
describe and explore the forefront of research, such as trend detection and horizon
scanning. It is thus crucial to develop new methods to allow also the identification of
emerging topics in these semantic classifications.

Nonetheless, predicting the emergence of semantic concepts, is still a challenge. To
the best of our knowledge, predicting the future iteration of a ontology and the relevant
concepts that will extend it, which we refer to as ontology forecasting, is a novel open
question.

For the particular case of scholarly data, being able to predict new research areas
can be beneficial for researchers, who are often interested in emerging research areas;
for academic publishers, which need to offer the most up-to-date contents; and for
institutional funding bodies and companies, which have to make early decisions about
critical investments.

In this paper, we address this challenge by presenting a novel framework for the
prediction of new semantic concepts in the research domain, which relies on the incorpo-
ration of lexical innovation and adoption priors derived from historical data. The main
contributions of this work can be summarised as follows:

1. We approach the novel task of ontology forecasting by predicting semantic concepts
in the research domain;

2. We introduce two metrics to analyse the linguistic and semantic progressiveness in
scholarly data;

3. We propose a novel weakly-supervised approach for the forecasting of innovative
semantic concepts in scientific literature;

4. We evaluate our approach in a dataset of over one million documents belonging to
the Computer Science domain;

5. Our findings demonstrate that the proposed framework offers competitive boosts in
mean average precision at ten for forecasts over 5 years.

2 Related Work

The state of the art presents several approaches for identifying topics in a collection
of documents and determining their evolution in time. The most adopted technique for
extracting topics from a corpus is Latent Dirichlet Allocation (LDA) [4], which is is a
generative statistical model that models topics as a multinomial distribution over words.
LDA has been extended in a variety of ways for incorporating research entities. For
example, the Author-Topic model (ATM) [24] included authorship information in the
generative model. Bolelli et al. [6] extended it even further by introducing the Segmented
Author-Topic model, which also takes in consideration the temporal ordering of docu-
ments to address the problem of topic evolution. In scenarios where it already exists a



taxonomy of research areas [21], it is also possible to use entity linking techniques [7]
for mapping documents to related concepts. For example, the Smart Topic Miner [22],
an application used by Springer Nature for annotating proceedings books, maps key-
words extracted from papers to the automatically generated Klink-2 Computer Science
Ontology [20] with the aim of selecting a comprehensive set of structured keywords.

The approaches for topic evolution can be distinguished in discriminative and gen-
erative [13]. The first ones consider topics as a distribution over words or a mixture
over documents and analyse how these change in time using a variety of indexes and
techniques [25]. For example, Morinaga and Yamanishi [19] employed a Finite Mix-
ture Model to represent the structure of topics and analyse diachronically the extracted
component and Mei and Zhai [16] correlated term clusters via a temporal graph model.
However, these methods do not take advantage of the identification of lexical innovations
and their adoption across years, but rather focus only on tracking changes in distributions
of words.

The second class of approaches for topic evolution employ instead generative topic
models [5] on document streams. For example, Gohr et al [11] used Probabilistic Latent
Semantic Analysis and proposed a folding-in techniques for a topic adaptation under
an evolving vocabulary. He et al [13] characterised the analysis of the evolution of
topics into the independent topic evolution (ITE) and accumulative topic evolution (ATE)
approaches. However, these models do not cater for the identification of novel topics,
but rather caters for tracking change of existing ones.

In addition, some approaches aim at supporting ontology evolution by predicting
extensions of an ontology. For example, Pesquita and Couto [23] introduced a method
for suggesting areas of biomedical ontologies that will likely be extended in the future.
Similarly Wang et al [26] proposed an approach for forecasting patterns in ontology
development, with the aim of suggesting which part of an ontology will be next edited
by users. Another relevant approach is iDTM (infinite dynamic topic model) [1], which
studies the birth, death and evolution of topics in a text stream. iDTM can identify
the birth of topics appearing on a given epoch, such topics are considered new when
compared to previous epochs. In contrast to their work, our proposed model addresses the
prediction of new topics in future epochs based on past data rather than identifying topics
on the current epoch. In addition, our work is different from all previous approaches
because we aim at predicting new classes (concepts) that will appear in the future
representations of an ontology.

3 Language and Semantic Progressiveness in Scientific Literature

Previous work has studied the role of language evolution and adoption in online commu-
nities showing that users’ conformity to innovation can impact the churn or grow of a
community [9]. Inspired by this fact, we follow the intuition that language innovation
and adoption could impact the generation and expiration of semantic concepts modelling
a shared conceptualisation of a domain.

This section presents a motivation for predicting semantic concepts in scientific
literature based on the study of the use of language in scholarly data. The following
subsection 3.1 introduces the dataset used in this paper and presents an analysis of the
evolution of language in the field of Computer Science during the course of 14 years in
subsections 3.2 and 3.3.



3.1 Dataset Description

Our dataset comprises of a collection of research articles relevant to the Computer
Science field extracted from Scopus4, one of the largest databases of peer-reviewed
literature. The full 14 years collection ranges from 1995-2008 with a total of 1,074,820
papers. Each year consists of a set of papers categorised within a semantic representation
of the Computer Science domain. Such ontological representation is generated per two
year-corpus starting from 1998 using the Klink-2 algorithm [20].

The Klink-2 algorithm combines semantic technologies, machine learning and knowl-
edge from external sources (e.g., the LOD cloud, web pages, calls for papers) to auto-
matically generate large-scale ontologies of research areas. It was built to support the
Rexplore system [21] a system that integrates statistical analysis, semantic technologies
and visual analytics to provide support for exploring and making sense of scholarly data.
In particular, the ontology generated by Klink-2 enhances semantically a variety of data
mining and information extraction techniques, and improves search and visual analytics.

The classical way to address the problem of classifying research topics has been to
adopt human-crafted taxonomies, such as the ACM Computing Classification System and
the Springer Nature Classification. However, the ontology created by Klink-2 presents
two main advantages over these solutions. Firstly, human-crafted classifications tend to
grow obsolete in few years, especially in fields such as Computer Science, where the most
interesting topics are the emerging ones. Conversely, Kink-2 can quickly create a new
ontology by running on recent data. Secondly, Klink-2 is able to create huge ontologies
which includes very large number of concepts which do not appear in current manually
created classifications. For example, the current version of the full Klink-2 Computer
Science ontology includes 17 000 concepts and about 70 000 semantic relationships.

The data model of the Klink-2 ontology is an extension of the BIBO ontology which
in turn builds on SKOS. It includes three semantic relations: skos:broaderGeneric, which
indicates that a topic is a sub-area of another one (e.g., Linked Data is considered a
sub-area of Semantic Web); relatedEquivalent, which indicates that two topics can be
treated as equivalent for the purpose of exploring research data (e.g., Ontology Matching,
Ontology Mapping); and contributesTo, which indicates that the research outputs of
one topic significantly contribute to research into another (e.g., Ontology Engineering
contributes to Semantic Web, but arguably it is not its sub-area).

The ontologies associated to different years were computed by feeding to Klink-2 all
publications up to that year, to simulate the normal situation in which Klink-2 regularly
updates the Computer Science ontology according to most recent data. Figure 1 presents
general statistics of the dataset including number of articles, size of the vocabularies and
number of semantic concepts per year ontology. Each paper is represented by its title and
abstract. Vocabulary sizes where computed after removing punctuation, stopwords and
computing Porter stemming [27]. The data presented in Figure 1 indicates that as years
go by the production of scholarly articles for the Computer Science increases. Moreover,
it shows that as more articles are introduced each year, novel words – not mentioned in
previous years– are also appearing. When analysing the number of semantic concept
over time we see that every year there is also an augmentation of the ontological concepts
describing the Computer Science field. The following subsections analyse language and
ontology evolution on this dataset.

4 Scopus, https://www.elsevier.com/solutions/scopus
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Fig. 1: From left to right, a) number of articles per year, b) vocabulary size per year, c) number of
classes per year.

3.2 Linguistic Progressiveness

Language innovation in a corpus refers to the introduction of novel patterns of language
which do not conform to previously existing patterns [9]. Changes in time on the use of
lexical features within a corpus characterise the language evolution of such corpus. To
characterise such changes, here we first generate a language model – probability distribu-
tion over sequences of words [15]– per year. For this analysis we use the Katz back-off
smoothing language model [14]. This model estimates the conditional probability of a
word given the number of times such word has been seen in the past.

To analyse differences in language models between consecutive years we use the
perplexity metric. Perplexity is commonly used in Natural Language Processing to
evaluate how well a language model predicts an unseen test set [8]. To analyse changes
in language patterns for consecutive years we : 1) obtained the language model for year
t (lmt) then; 2) we computed perplexity comparing lmt to the unseen corpus at t+ 1 .

Perplexity predicts word-error rate well when only in-domain training data is used,
but poorly when out-of-domain text is added [8]. Figure 2, left, shows that for the
Computer Science domain perplexity increases as time goes by. Therefore, language
models representing language patterns trained in previous years provide poor predictions
when tested on future datasets, indicating that language models can become outdated.

To analyse the impact of lexical innovation in language model changes, we perform
a progressive analysis based on lexical innovation and lexical adoption. Let Dt be the
collection of papers from corpus at year t. Let Vt be the vocabulary of Dt; we define
a lexical innovation in Dt, LIt, as the set of terms appearing in Vt, which were not
mentioned in Vt−1 5. We also define a lexical adoption in Dt, LAt, as the set of terms
appearing in LIt which also appear in Vt+1. Figure 2, right, shows that while the number
of novel words in Computer Science is high in consecutive years, only few of these
words are adopted.

Based on these two metrics we introduce the linguistic progressiveness metric, LPt

as the ratio of lexical adoption and lexical innovation, i.e., LPt =
|LAt|
|LIt| . The higher the

adoption of innovative terms the more progressive the language used in a domain. In
Figure 3, left, the data indicates that the Computer Science domain has had a tendency
towards being linguistically progressive. The following subsection studies the impact of
innovation and adoption on semantic concepts in temporally consecutive ontologies of a
domain.

5 Notice that we are following a one step memory approach, further historical data could be used
in future research
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Fig. 2: From left to right, a) Language Models’s perplexity per year; b) Number of new words per
year (•), number of adopted words per year(�)

3.3 Semantic Progressiveness

Ontology evolution refers to the maintenance of an ontological structure by adapting
such structure with new data from a domain [28]. Such adaptation can result in both the
generation or expiration of an ontology’s concepts and properties. Hence the introduction
of new classes that better describe the conceptualisation of a domain can be considered to
be a semantic innovation. In this subsection we analyse the introduction of new concepts
to an ontological per consecutive year.

Let (Dt, Ot) represent a tuple where Dt is a collection of articles belonging to year
t and Ot is the corresponding ontology representation computed with Klink-2 over the
Dt collection. Let CIt be the conceptual innovation in Dt, which we define as the set
of concepts appearing in Ot, which were not mentioned in Ot−1. Also let CAt be the
conceptual adoption in Dt, which consists on the set of concepts in CIt that also appear
in Ot+1. Based on these definitions we introduce the semantic progressiveness metric,
CPt, as the ratio of conceptual adoption and conceptual innovation, i.e., CPt =

|CAt|
|CIt| .

Figure 3, right, shows that the ontologies extracted for the Computer Science domain
indicate a tendency to be less semantically progressive. A tendency towards a lower
semantic progressiveness can be understood as a tendency towards having a more stable
representation of the domain. Notice that the semantic progressiveness metric do not
account for churn of semantic concepts but focuses only of innovation and adoption.

Both linguistic and semantic progressiveness characterise the rate of change on the
language and semantic conceptualisations used in a research field over the years. This
constant evolution of a scientific area motivates us to study the prediction of semantic
concepts that will likely enhance the current semantic representation of a research
domain. The following section introduces our proposed model for forecasting concepts
appearing on an ontology based on historical data.

4 Framework for Forecasting Semantic Concepts based on
Innovation-Adoption Priors

The proposed framework relies on the representation of an ontology’s class as a topic
word distribution. Learning topic models from text-rich structured data has been success-
fully used in the past [3, 10, 2]. Our proposed framework focuses on the task defined as
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Fig. 3: From left to right, a) Linguistic progressiveness per year, b) Semantic progressiveness per
year.

follows: Given a set of documents at year t and a set of historical priors, forecast topic
word distributions representing new concepts in the ontology Ot+1.

The proposed framework breaks down into the following phases: 1) Predicting new
semantic concepts with the Semantic Innovation Forecast (SIF) model; 2) Incorporating
innovation priors; 3) Inferring topics with SIF; 4) Matching predicted topics to the
forecast year’s semantic concepts’ gold standard

The overall pipeline is depicted in Figure 4.

Fig. 4: Pipeline of the proposed framework for predicting semantic concepts using innova-
tion/adoption priors.

4.1 Semantic Innovation Forecast (SIF) model

We propose a weakly-supervised approach for forecasting innovative concepts based on
lexical innovation-adoption priors. We introduce the Semantic Innovation Forecast (SIF)
model which forecasts future semantic concepts in the form of topic-word distributions.
The proposed SIF model favours the generation of innovative topics by considering
distributions that enclose innovative and adopted lexicons based on word priors computed
from historical data.

Assume a corpora consisting of a collection of documents grouped by consecutive
years. Let a corpus of documents written at year t be denoted as Dt = {d1, d2, ..dDd

}.



Let each document be represented as a sequence ofNd words denoted by (w1, w2, ..., wNd
);

where each word in a document is an element from a vocabulary index of Vt.

z

w

x

Nd Dt
φ

𝛌

θ𝞪 ⍵

ε

φ0 β0

T
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T

Fig. 5: Semantic Innovation Forecasting Model

We assume that when an author writes an article, she first decides whether the
paper will be innovative or will conform to existing work. In the proposed generative
model we consider that if a paper is innovative then a topic is drawn from an innovation
specific topic distribution θ. In such case each word in the article is generated from
either the background word distribution φ0 or the multinomial word distribution for the
innovation-related topics φz .

The generative process for SIF is as follows:

– Draw ω ∼ Beta(ε), ϕ0 ∼ Dirichlet(β0), ϕ ∼ Dirichlet(β).
– For each topic z draw φz ∼ Dirichlet(λ× βT

z ).
– For each document m ∈ {1..D},
• Choose θm ∼ Dirichlet(α)
• For each word n ∈ {1..Nd} in document m,
∗ draw xm,n ∼ Bernoulli(ω);
∗ if xm,n = 0,
· draw a word wm,n ∼ Multinomial(ϕ0);

∗ if xm,n = 1,
· draw a topic zm,n ∼ Multinomial(θ),
· draw a word wm,n ∼ Multinomial(ϕzm,n).

The SIF model can be considered as an adaptation of a smoothed LDA [4], where
we have added a per token latent random variable x which acts as a switch. If x = 0,
words are generated from a background distribution, which accumulates words common
to conformer articles. While if x = 1, words are sampled from the topic-specific
multinomial φz . Moreover, SIF encodes word priors generated from historical data, such
priors encapsulate innovation and adoption polarity in the matrix λ and are explained in
more detail in the following Subsection.

4.2 Incorporating Innovation-Adoption Priors

Word priors enable us to have a preliminary or prior model of the language related to a
topic of interest in the absence of any other information about this topic. A word prior



is a probability distribution that expresses one’s belief about a word’s relevance to, in
this case, being characteristic of innovative topics, when no other information about it is
provided. Since the aim is to discover new semantic concepts, we propose to use lexical
innovation and lexical adoption as indicators of lexicons characterising innovative word
distributions.

The procedure to generate such innovation-adoption priors is as follows; to compute
priors for a SIF model at time t we make use of two vocabularies, the one at year t− 1
and t − 2. From these vocabularies we identify innovative (at t − 2) and adopted (at
t− 1) lexicons as described in Subsection 3.2. The union of these lexicons constitute
a vocabulary of size K. Then for each term w ∈ {1, ..K} in this vocabulary we assign
it a weight. We experimented with different weights and we found an optimum when
assigning 0.7 if w ∈ LIt−2 and 0.9 if w ∈ LAt−1. This setting favours adoption over
innovation since innovative words may not necessarily be embraced by the Computer
Science community in the future. This weighted vocabulary constitutes the innovation
priors λ.

Compared to the original LDA model [4] in SIF we have added a dependency link of
φ on the vector λ of size K. Therefore we use innovation priors as supervised information
and modify the topic-word Dirichlet priors for innovation classification.

4.3 SIF Inference

We use Collapsed Gibbs Sampling [12] to infer the model parameters and topic assign-
ments for a corpus at year t + 1 given observed documents at year t. Such sampling
estimates empirically the target distribution. Let the index t = (m,n) denote the nth
word in document m and let the subscript −t denote a quantity which excludes data
from the nth word position in document m, the conditional posterior of xt is:

P (xt = 0|x−t, z,w, β0, ε) ∝
{N0

m}−t + ε

{Nm}−t + 2ε
×

{N0
wt
}−t + β0∑

w′{Nw′}−t + V β0
, (1)

where N0
m denotes the number of words in document m assigned to the background

component, Nm is the total number of words in document m, N0
wt

is the number of
times word wt is sampled from the background distribution.

P (xt = 1|x−t, z,w, β, ε) ∝
{Ns

m}−t + ε

{Nm}−t + 2ε
×

{Ns
wt
}−t + β∑

w′{Nw′}−t + V β
, (2)

where Ns
m denotes the number of words in document m sampled from the topic

distribution, Ns
wt

is the number of times word wt is sampled from the topic specific
distributions.



The conditional posterior for zt is:

P (zt = j|z−t,w, α, β) ∝
N−td,j + αj

N−td +
∑

j αj

·
N−tj,wt

+ β

N−tj + V β
, (3)

where Nd is the total number of words in document d, Nd,j is the number of times a
word from document d has been associated with topic j, Nj,wt is the number of times
word wt appeared in topic j, and Nj is the number of words assigned to topic j.

When the assignments have been computed for all latent variables, then we can
estimate the model parameters {θ,ϕ,ϕ0,ω}. For our experiments we set the symmetric
prior ε = 0.5, β0 = β = 0.01. We learn the asymmetric prior α directly from the data
using maximum-likelihood estimation [17] and updating this value every 40 iterations
during the Gibbs sampling. In our experiments we run the sampler for 1000 iterations,
stopping once the log-likelihood of the learning data has converged under the learning
model.

5 Experimental Setup

Here we present the experimental set up used to assess the SIF framework. We evaluate
the accuracy of SIF in a semantic-concept forecasting task.

We perform this task by applying our framework on the dataset described in Section
3.1. Each collection of documents per year is randomly partitioned into three independent
subsets contains respectively 20%, 40% and 40% of the documents. For a given document
collection at year t, the 20% partition represents a held-out dataset used to derive
innovation priors (Dpt) ; while the other two partitions represent the training (Dtraint)
and testing sets(Dtestt).

5.1 Forecasting with SIF

To forecast semantic concepts for a corpus at year t+1, we assume no information from
t+ 1 is known at the time of the forecast. We train a SIF model on year t with Dtraint
using innovative priors computed on the held-out datasets for the two previous years:
Dpt−1 and Dpt−2. Then using the trained model on year t we perform inference over
Dtestt and consider this output to be the forecast for concepts aiming to match those in
CIt+1 (concept innovation at t+ 1, see Subsection 3.3). The output of this last step is
a set of topics that are effectively sets of word distributions, which we use to compare
against our gold standard.

5.2 Gold Standard

We build our gold standard by generating a one-topic model per semantic-concept
appearing in CIt+1. This is performed by applying the standard LDA model [4] over the
test dataset for documents belonging to each concept at year t+ 1.

Table 1 shows some examples of the gold standard computed for each innovative
semantic concept of each year. The one-topic model representation of a semantic-concept
provides a word distribution, which can be compared against the ones generated with
SIF.



Year Semantic Concept Top 10 LDA words
2000 anthropomorph robot robot, control, humanoid, human,anthropomorph,mechan, system ,design,skill,method
2002 context-free-grammar languag,grammar, model, context-fre, system,algorithm,gener,method,show,paper
2004 video-stream video, stream, network,rate,system,applic,adapt,bandwidth,packet,internet
2006 3d-reconstruct reconstruct,imag,model,algorithm,structur,camera,point,surfac,data,base
2008 open-access access,open,research,journal,repositori,publish,articl,develop,data,institut

Table 1: Examples of semantic concepts’ gold-standard. For a given year, we present a semantic
concept and an extract of the word distribution representing such concept. Each distribution is
derived from a one-topic standard LDA model computed from documents belonging to such
concept. Words are presented stemmed, weights assigned to each word are omitted in this example.

5.3 Baselines

We compare SIF against four baselines. For a year t forecasting for year t+ 1:

1. LDA Topics (LDA); referring to word distributions weighted by latent topics ex-
tracted from the training Dtraint. This setting makes no assumption over innova-
tive/adopted lexicons. It outputs a collection of n topics per training set, which are
compared against the gold standard.

2. LDA Innovative Topics (LDA-I); computes topics based on documents containing
at least one word appearing in LIt.

3. LDA Adopted Topics (LDA-A); computes topics based only on documents contain-
ing at least one word appearing in LAt.

4. LDA Innovation/Adoption Topics (LDA-IA): this baseline filters documents based
on words appearing λt.

Baselines 2-4 represent three strong baselines, which consider innovative and adopted
lexicons.

5.4 Estimating the Effectiveness of SIF

To estimate the effectiveness of SIF we consider how similar the predicted semantic
concepts for t+1 are from the reference gold standard concepts for that year. To this end
we based the similarity scores using the cosine similarity metric [15]. This metric ranges
from 0 (no similarity exists between compared vectors) to 1 (the compared vectors are
identical), therefore scoring a similarity higher than 0.5 indicates that the compared
vectors are similar.

To compute this similarity metric we used the word vector representation of a
predicted topic and of the topics generated for that year’s gold standard. Therefore when
forecasting for t+ 1 we computed the cosine similarity between the predicted candidate
topic x and each of the topic y in CIt+1, keeping as matches the similar ones.

We evaluated the semantic concept forecast task as a ranked retrieval task, where
the appropriate set of forecast concepts are given by the top retrieved topic distributions.
To measure the effectiveness on this task we used the Mean Average Precision (MAP)
metric [15], a standard metric for evaluating rank retrieval results. For our experiments
we computed MAP@10 to measure the mean of precision scores obtained from the
top 10 predicted topics ranked based on topic-word distributions. The higher the word
weights assigned on a topic the higher in the rank the topic is within the set of predicted
topics.



6 Experimental Results and Evaluation

In this section we report the experimental results obtained for the semantic concept
forecasting task. SIF and LDA require defining the number of topics to extract before
applying on the data 6. For our experiments we considered a fixed number of 100 topics,
making no assumption on the expected number of new concepts appearing on the forecast
year. These 100 topics are ranked based on topic-word distributions. The evaluation is
done over the top 10 forecast topics using MAP@10.

Results in all experiments are computed using 2-fold cross validation over 5 runs of
different random splits of the data to evaluate results’ significance. Statistical significance
is done using the T-test. The evaluation consists in assessing the following:

1) Measure and compare SIF against the proposed baselines introduced in subsection
5.3.

2) Investigate whether the proposed SIF approach effectively forecasts future semantic
concepts.

6.1 Semantic Concept Forecast Results

Table 2 presents MAP results for SIF and the four baselines. The first three columns of
Table 2 shows: i) the year in which the model was trained; ii) the year from where the
innovative priors were derived for that setting; iii) the year for which semantic concepts
are forecast .

All baselines except LDA offer competitive results. LDA achieves a poor average
result of 16% over the 5 forecast years. For the predictions of 2002 and 2004, LDA
fails to generate concepts matching those from the gold standard. This is expected
since LDA alone do not make assumptions over linguistic innovation and adoption,
therefore it’s unlikely that the LDA-based generated topic based on past data will predict
future concepts. However, pre-filtering documents containing either innovative lexicons,
adopted lexicons or both appear instead to have a positive effect in the forecasting task.

YEAR FORECAST YEAR TRAINED YEAR PRIOR SIF LDA LDA-A LDA-I LDA-IA
2000 1999 1997-1999 0.7031 0.125 0.4761 0 0.408
2002 2001 1999-2001 0.8750 0 0.8227 0.6428 0.7486
2004 2003 2001-2003 0.9060 0 0.5822 0.5726 0.6347
2006 2005 2003-2005 0.8755 0.3069 0.7853 0.8385 0.6893
2008 2007 2005-2006 0.988 0.398 0.681 0.5661 0.7035

AVG 0.8695? 0.1659 0.6694 0.524 0.6368

Table 2: MAP@10 for SIF and baselines. The number of topics is set to 100 for all five models. The
value highlighted in bold corresponds to the best results obtained in MAP@10. A ? denotes that the
MAP@10 of SIF significantly outperforms the baselines. Significance levels: p− value < 0.01.

6 The data generated in the evaluation are available on request at
http://technologies.kmi.open.ac.uk/rexplore/ekaw2016/OF/



In particular, the use of LDA-A over LDA-I gives a boost on MAP of 14.54%,
indicating that adopted words features are better predictors of innovative semantic
concepts. LDA-A also improves in average upon the LDA-IA baseline with a boost of
3%. The proposed SIF model however outperforms significantly all four baselines with
an average boost: over LDA of 70%; over LDA-A of 20%; over LDA-I of 34%; over
LDA-IA of 23% (significant at p < 0.01). We could have expected LDA-IA to achieve
closer results to SIF, since it is computed on documents filtered using both innovative
and adopted lexicons. However, LDA-IA do not assign any preference over distributions
of words containing either of such lexicons. In contrast, SIF takes innovation priors as a
weighting strategy to build a prior model of language which is potentially used in future
semantic concepts. The model is learnt over the full training set allowing to make use of
both documents containing innovative and adopted lexicons and otherwise. The above
results show the effectiveness of SIF for semantic concept forecasting over the baselines.

Table 3 presents examples of SIF’s predicted topics that obtained a match in the
forecast year’s gold-standard (GS). While SIF do not forecast a specific name for the
new semantic concept, the information provided by the word distribution gives context
to the predicted concept. Table 3 presents top 10 words for the forecast SIF and GS
representation however similarity computations where made using the whole topic-word
representations. When comparing the SIF prediction vs the GSs we observe very close
matches in 2000-2006 while for 2008 it is interesting to observe the appearance of
words such as islam, victim, terror which don’t match the top 10 of the corresponding
GS (notice however they may appear in the further topic-word representation of the
GS), however the word hate within the GS gives a insight of the use of mechatronics in
violence-related scenarios.

2000 2002 2004 2006 2008

Wireless Network Asynchronous Transfer Mode Image Threedimension Cryptography Mechatronics

SIF GS SIF GS SIF GS SIF GS SIF GS

control control network network activ model method model robot robot
system system service servic function algorithm structur method model model
propos propos system applic show function data algorithm base propos
network applic mobil system result data protocol system perform simul
servic network protocol mobil image result secur data simul process
data servic wireless protocol respons image inform process islam mechan
time commun rout base effect measure signatur scheme time control
perform compu perform perform patient cell authenti user control applic
distribut manag packet algorithm clinic structure detec protocol applic dynam
traffic schem control packet visual patient attack secur victim hate
protocol mobil scheme control brain surfac sequenc inform terror best

Table 3: Examples of semantic concepts forecast with SIF for each year. The second row describes the semantic concept
matching the predicted topic obtained with SIF. SIF columns presents top 10 words extracted from the word distribution of
the SIF topic prediction. GS columns present top 10 words extracted from the one-topic LDA distribution.

7 Conclusions and Future Work

This work focused on the task of semantic concept forecasting, which aims at predicting
classes which will be added to an ontology at time t+1 when only information up to time



t is available. To approach this task we proposed the concepts of linguistic and semantic
progressiveness, and introduced a strategy to encode lexical innovation and adoption
as innovation priors. Based on these concepts we introduced the Semantic Innovation
Forecast Model (SIF), which is a generative approach relying on historical innovation
priors for the prediction of word distributions characterising a semantic concept.

In SIF each semantic concept is represented as a distribution of words obtained from
the one-topic model of the collection of documents belonging to such concept. To this
end we applied the proposed approach on a very large dataset belonging to the Computer
Science domain, consisting of over one million papers on the course of 14 years. Our
data analysis included the introduction of two novel metrics namely the linguistic and
semantic progressiveness; which gave insights on the semantic trends in the Computer
Science domain. Our experiments indicate that adopted lexicon are better predictors
for semantic classes. Our experimental results also proof that the proposed approach is
useful for the innovative semantic concept forecasting task. The SIF model outperforms
the best baseline LDA-A showing an average significant boost of 23%.

To the best of our knowledge this is the first approach to address the ontology
forecasting task in general and in particular the first one in addressing the prediction of
new semantic concepts. We believe that research on the prediction of semantic concepts
in particular and in general the forecast of changes in an ontology can be beneficial to
different areas of research not limited to the study of scholarly data. For the future, we
plan to keep working on the integration between explicit and latent semantics, improve
further the performance of our approach and introduce graph-structure information into
the model. We also intend to use this approach for detecting innovative authors and
forecast topic trends.
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