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ABSTRACT 

This paper presents a highly sensitive ambient refractive index (RI) sensor based on 81° tilted fiber grating (81°-TFG) 
structure UV-inscribed in standard telecom fiber (62.5µm cladding radius) with carbon nanotube (CNT) overlay 
deposition. The sensing mechanism is based on the ability of CNT to induce change in transmitted optical power and the 
high sensitivity of 81°-TFG to ambient refractive index. The thin CNT film with high refractive index enhances the 
cladding modes of the TFG, resulting in the significant interaction between the propagating light and the surrounding 
medium. Consequently, the surrounding RI change will induce not only the resonant wavelength shift but also the power 
intensity change of the attenuation band in the transmission spectrum.  Result shows that the change in transmitted 
optical power produces a corresponding linear reduction in intensity with increment in RI values. The sample shows high 
sensitivities of ~207.38nm/RIU, ~241.79nm/RIU at RI range 1.344–1.374 and ~113.09nm/RIU, ~144.40nm/RIU at RI 
range 1.374–1.392 (for X-pol and Y-pol respectively). It also shows power intensity sensitivity of ~ 65.728dBm/RIU and 
~ 45.898 (for X-pol and Y-pol respectively). The low thermal sensitivity property of the 81°-TFG offers reduction in 
thermal cross-sensitivity and enhances specificity of the sensor.  
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I. INTRODUCTION 

Optical fibre gratings have been relentlessly used for sensing applications over the last few decades as a result of their 
real time monitoring capability 1-4, high sensitivity and selectivity to external perturbation such as temperature, pressure, 
bending, humidity, strain and refractive index variations 5-10.    Refractive index (RI) sensors are based on the principle 
that variations in RI of ambient medium affect the resonant peaks of mode coupling induced by the optical fibre grating. 
This is only achievable by optical gratings that enable coupling between the core and the cladding modes with 
evanescence field diffusing into the surrounding medium 11,12. Detection of variation in RI is important in application 
such as water treatment plants for purity level indication.  Research findings reported highly sensitive RI sensors 
combining LPGs and tapered fibres 13, microfiber-based Mach-Zehnder interferometer 14, multimode interference 3, SPR-
based optical fibre sensors using gold-silver alloy particles 1, optical microfiber and fibre tapering 15-18; while these RI 
sensors have achieved high sensitivity they are mainly based on wavelength demodulation.   

Large angle tilted fibre grating (also often termed excessively tilted fibre grating (Ex-TFG)) is one of the optical gratings 
that couple the fundamental core mode to the forward propagating cladding modes; the other being Long period grating 
(LPG). Theoretical modelling and analysis reveals higher sensitivity (~1000 times) exhibited by forward-propagating 
cladding modes in comparison with the backward-propagating ones 19. Ex-TFGs, first reported by 20, due to the 
asymmetric structure induced by their excessively tilted fringes have dual-peak resonances in their transmission 
spectrum corresponding to two sets of orthogonal polarisation dependent modes 20,21. They demonstrate much higher 
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sensitivity in lower RI region compared to normal LPG since they are capable of coupling light to much higher order 
cladding modes.  

In this paper, we propose a novel high sensitive RI sensor based on 81°- tilted fibre grating UV-inscribed in standard 
communication fibre (SMF-28) with carbon nanotube (CNT) overlay deposition on the grating area.  Besides having 
high RI and high absorption of light 22, CNT are highly compatible to silica surface forming thin film overlay 23,24.  As 
obtainable in previous RI sensors where sensing principles are based only on wavelength sensitivity, this sensor 
combines the demodulation of both wavelength and intensity variations of the resonant dip.  

 

II. FABRICATION 

The fabrication process of this sensor includes two steps: (1) Large-angle TFG fabrication, and (2) CNT deposition on 
grating area of fibre. Firstly, the Ex-TFG was fabricated by a 244nm UV source from frequency doubled Argon laser 
(Coherent Sabre Fred) using a custom-designed amplitude mask of period 6.6µm. The period of the amplitude mask was 
specially designed to ensure generated grating response from higher order cladding modes are centred in the C-L band of 
the frequency windows. Standard communication fibre (SMF-28) hydrogen loaded under high temperature (80°C) and 
high pressure (150 bars) for 48 hours to enhance UV- photosensitivity was employed for the fabrication. During the 
inscription process the amplitude mask was tilted at ~ 77° external angle in other to achieve excessively tilted fringes at ~ 
81° in the fibre core. The relationship between the external tilted, internal tilted angle and the grating period is expressed 
as 25: 
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Where GΛ  and AMΛ are the normal grating period inside the fibre and the amplitude mask respectively, intθ  is the 

internal angle inside the fibre, texθ  is the external tilted angle of the mask and UVn  is the refractive index of the fibre at 
UV-source wavelength (244nm).   

Secondly, the CNT deposition was overlaid by a relatively simple and effective method on the grating area of the 81° -
TFG for easy repeatability of the sensor. The CNT solution was prepared by dispersing 0.5 mg of CNT powder in 10 ml 
of N-methyl-2-pyrrolidone (NMP) solution and sonicated in water bath (20 kHz, 200 W, 1 h, Nanoruptor, Diagenode 
SA, Liege, Belgium). NMP was used because of its efficiency in in the direct dispersion of hydrophobic materials (CNT) 
at lower concentrations (< 0.02 mg/ ml) 26. Polyvinyl pyrrolidone (PVP) polymer (1 mg/ ml) was added as dispersion 
agent in order to enhance the concentration of CNTs within the resulting dispersion 27. Thereafter, the CNT-PVP-NMP 
solution was centrifuged for 30 minutes at 10 000 RMP with MLS-50 rotor (Optima MaxXP Benchtop Ultracentrifuge, 
Beckman Coulter, Brea, California, USA) with a view to removing residual CNT bundles and achieving a highly 
uniform dispersion.  The well-dispersed CNT solution was deposited on the 81° -TFG by placing the TFG in a micro-
capillary tube filled with the CNT dispersion for a couple of minutes and repeated several times.  The entire surface of 
the grating region (of grating length 24mm) was totally submerged in the CNT solution and allowed to dry in air at 
atmospheric pressure for 24 hours. This method is found to be cost effective as it only entails the mechanical transfer of 
cold nanomaterials with no heating required 23. CNTs being cylindrical carbon molecules structured with diameter of few 
nanometres and high surface area for absorption of water molecules and aqueous solutions, have been reported to have 
their refractive index (the effective dielectric property of CNT) vary with changes in RI of ambient medium 28.       
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III. WORKING PRINCIPLE 

The working principle includes two aspects: wavelength shift and intensity variation. The large-angle TFG induces two 
different sets of birefringence cladding modes (TM/TE resonance peaks) coupling and the resulting strongest coupling 
between the fundamental core mode and the co-propagating cladding modes is expressed by the phase matching 
condition 21: 
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where ,m resλ  is the resonance wavelength due to coupling between fundamental core mode and the thm  cladding mode, 
eff
con is the effective index of the fundamental core mode, ,

,
i eff
cl mn is the effective index of thm  cladding mode at the 

resonance wavelength, SRIn is the refractive index of ambient medium, 1 2,n n are the RI of the core and cladding 
respectively. 

For intensity variation based sensing, the principle is as follows: when the surrounding RI changes, it leads to a variation 
in the amount of attenuation of the cladding modes which would result in change in the attenuation depth of the 
attenuation band. Therefore, the sensing of the RI of the external surrounding medium can be obtained by monitoring the 
amount of attenuation in the attenuation bands of the TFG. And for wavelength shift based sensing; as the RI of 
surrounding medium varies there exists a corresponding variation in the effective index of the cladding modes, and then 
the resonant wavelength will shift according to equation (3). Especially when the RI of the ambient medium is less than 
that of the cladding, then with every increase in RI of the ambient medium the effective RI of the cladding also increases 
while that of the fundamental core remains constant resulting in red shift of the resonance wavelength.   

Meanwhile, with additional thin film (CNT layer) on the cladding of the 81° -TFG, the sensor is now treated as an Ex-
TFG surrounded by a medium of infinite thickness. It can be modified to incorporate additional dielectric layer between 
cladding of finite thickness and the surrounding medium of infinite thickness. The schematic diagram in fig. 1 shows the 
sensor as a model of four-layer cylindrical waveguide. The TFG, now surrounded by medium of higher RI, will have a 
portion of the power of cladding mode reflected by the CNT layer while the remaining are transmitted 29. Quantification 
of the amount of reflectance of the cladding mode at the fibre cladding/ CNT layer interface can be obtained as follows 
30: 
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where 4a kπ λ=  is the absorption coefficient of the thin CNT layer, cladn  and SRn  are the RIs of the cladding and 

the surrounding medium respectively, cntn n ik= −% , ,i jr  in equations (6) and (7) is the reflection coefficient of the 
interface between each two layers.  Figure 1 shows each distinct layer as components of the sensor and from equations 
(5), (6), (7) and (8) the reflectance, R would vary with SRn  which consequently leads to variation in the amount of 
attenuation of the cladding modes resulting in change in attenuation depth of the attenuation band.  

 

 

Figure 1: Schematic of the CNT-coated 81° -TFG RI sensor 

Precisely, this sensor is based on the principle that both the intensity and the wavelength of the CNT-coated 81° -TFG 
changes with changes in the RI of ambient medium. The CNT overlay deposition is responsible for the power 
modulation of the sensor while the 81° -TFG, being highly sensitive to ambient RI variations, induces the wavelength 
shift as each solution is administered.  

 

IV. EXPERIMENTAL SETUP  

The experimental setup of the CNT coated TFG based RI sensor, as shown in figure 2, includes a broadband light source 
(Fianium ultrafast fibre laser- super continuum- range 850nm to far infrared), an optical spectrum analyser (OSA), 
micrometre stage, an in-fibre polarizer and a polarization controller. Light from the super-continuum laser was passed 
through a polarizer (broadband internal polarizer for polarimeter PAT 9000B) and a polarisation controller (manual fibre 
paddle polarization controller) and transmitted through the sample (CNT coated TFG) with the transmission spectrum 
displayed on the optical spectrum analyser (Model 86140 Agilent) with resolution of 1.0 nm and average power of -33.2 
dBm. The polarization controller makes switching form the TE to TM modes of the cladding modes possible and each 
mode is subjected to variation in the surrounding RI. We evaluated the transmission spectra of 81° -TFG ranging from 
1250 to 1650 nm. As peculiar with Ex-TFGs, the peaks split into two which is as a result of the coupling of the two sets 
of cladding modes of orthogonal polarization when measured using unpolarised light and polarized light with orthogonal 
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