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To compare the accuracy of different forecasting approaches an error measure is required. Many error measures
have been proposed in the literature, however in practice there are some situations where different measures
yield different decisions on forecasting approach selection and there is no agreement on which approach should
be used. Generally forecasting measures represent ratios or percentages providing an overall image of how well
fitted the forecasting technique is to the observations. This paper proposes a multiplicative Data Envelopment
Analysis (DEA) model in order to rank several forecasting techniques. We demonstrate the proposed model by
applying it to the set of yearly time series of the M3 competition. The usefulness of the proposed approach has
been tested using theM3-competitionwherefive errormeasures have been applied in and aggregated to a single
DEA score.
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1. Introduction

Measuring forecasting performance is a crucial issue. With many dif-
ferent methods in forecasting, understanding their relative performance
is critical formore accurate prediction of thequantities of interest. Conclu-
sions about the accuracy of various forecasting methods typically require
comparisons using a range of accuracymeasures. This is because different
measures are designed to assess different aspects of themodel. For exam-
ple, Mean Square Error (MSE) puts heavier penalties on higher errors
while Mean Absolute Error (MAE) is designed to lessen the effect of out-
liers. Various accuracymeasures have beenused in the literature and their
properties have been discussed to some extent (Hyndman and Koehler,
2006). Obviously, it is one thing that no accuracy measure dominates
the others and it is another that all reasonable accuracy measures are
equally fine. Forecast accuracy evaluation becomes a more challenging
taskwhen different forecastmethods/forecast scenarios and various fore-
cast accuracy measures are involved. In a given situation, sometimes dif-
ferent accuracymeasureswill lead to different results as towhich forecast
method/scenario is best and they give contradictory results. These contra-
dictory results indicate that they are not measuring the same aspect of
prediction accuracy (Kitchenham et al., 2001). It has been observed
through forecasting competition studies such as the M-competition
(Makridakis et al., 1982) and the M3-competition (Makridakis and
Hibon, 2000) that the performance of different methods changes
n University, Birmingham, UK.
znejad).

Inc. This is an open access article u
considerably depending on the accuracy measure being used. Syntetos
and Boylan (2005) stated that different accuracymeasures can lead to dif-
ferent conclusions especially in the context of intermittent demand,
where demand appears sporadically, with some time periods showing
no demand at all. Chatfield (2013) argued that the best model under
one criterion cannot always be the best under some other criteria. No sin-
glemeasure is universally best for all accuracy assessment objectives, and
different accuracy measures may lead to conflicting interpretations and
conclusions. Considering different forecasting approaches, we may need
to produce forecasting in various forecast horizons and/or use various
performance accuracy measures to assess the accuracy performance.
These issues have been argued in the literature (Athanasopoulos and
Hyndman, 2011; Hyndman and Koehler, 2006; Kitchenham et al., 2001;
Makridakis and Hibon, 2000; Yokuma and Armstrong, 1995). However,
sometimes different accuracy measures will lead to different results in
terms of selecting the most accurate forecasting method. Therefore, re-
sults may be contradicting each other. Although, this problem has been
encountered in the literature of forecast accuracymeasurement, however
no solution is proposed to facilitate the choice of best forecastingmethod
in the condition of contradictory results. This paper is focused only onpro-
posing a decision support system for determining the best forecasting
technique based to the results of given forecastingmethods and accuracy
measures, rather than improving the forecasting accuracy. We are not
concernedwith themethods used to provide forecasts.We are interested
in howapplied forecastingmethods can be rankedwhen various accuracy
measures are used to evaluate the accuracy performance. Moreover, the
proposed approach can also be applied in other situations such as rank
different forecasting scenarios, rank forecasting methods based on the
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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forecast accuracy of various horizons and single error measure. In this
study Data Envelopment Analysis (DEA) methodology is used to rank
the different forecasting approaches based on their values of accuracy
measures. The proposed model is a multiplicative DEA model, which is
mathematically shown as the right one to handle percentages or ratio
data. Each forecasting technique is considered as a Decision Making Unit
(DMU). Forecasting measures of each DMU are assumed to be inputs
and after being log-linearised, the proposed DEA model is solved for
each DMU. The forecasting techniques are ranked based on the scores ob-
tained from DEA model (efficiency). This is an important issue from
practitioner's point of view to decide which forecasting method should
be selected for forecasting purposes amongvarious approaches, especially
when forecasting process is automated and hundred of thousand items
need to be predicted. The results of this paper can be implemented by
forecasting package software manufacturers which can add more value
to their customers. The proposedmultiplicative DEAmodel can objective-
ly provide ranking of forecasting techniques based on efficiency scores. In
the presence of ties from the ranking, three meta-frontier techniques are
presented, namely cross efficiency, super efficiency and lambda frequen-
cy. Section 2 of this paper studies the background of Data Envelopment
Analysis and forecast comparison. Section 3 describes the proposed DEA
model to select the best forecasting approach. In Section 4 an application
of the proposed method on yearly M3-competition time series and fore-
casting methods is demonstrated and the results are discussed. Conclu-
sions are drawn in Section 5.

2. Background and related works

2.1. Introduction to Data Envelopment Analysis

Data Envelopment Analysis (DEA), is a method for assessing the
comparative performance of units (DMUs) converting a set of inputs
to a bundle of outputs, based on certain assumptions. The first models
of DEA technique have been proposed by Charnes et al. (1978) and
Banker et al. (1984). Thereafter, the area of DEA has been largely ex-
pandedwith extensions to the aforementionedworks. Themain charac-
teristic of the DEA technique is its ability to provide a unified efficiency
score of an assumed production process where inputs are consumed in
order to produce outputs, which inmost cases are desirable, though un-
desirable outputsmay occur aswell (Seiford and Zhu, 2002). For further
details about DEA and its application see Emrouznejad and De Witte
(2010) and Cook and Seiford (2009). In cases where the weights of
the model provide zero values, then a different multiplicative DEA
model must be used.

2.2. Comparison of forecasting techniques

Forecasting is designed to help decision making and planning in the
present by predicting possible future alternatives. In the taxonomy of
forecasting methods (Yokuma and Armstrong, 1995), judgmental and
statistical forecasting are the two main categories (Hyndman and
Athanasopoulos, 2014). The assessment of forecasting techniques is an
interesting subject that has been addressed throughout the years (De
Gooijer and Hyndman, 2006). Some studies compared accuracy mea-
sured with other criteria such as ease of use, ease of interpretation,
cost saving, etc. on forecast evaluation. They concluded that accuracy
was the most important criterion for evaluating forecasting techniques
(Collopy and Armstrong, 1992; Witt and Witt, 1992). In most of the
cases, forecasting techniques are compared against the values of accura-
cy measures or are examined by situation or data used. The accuracy
measures that are often used in order to evaluate the quality of a fore-
casting technique are Mean Square Error (MSE), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE) andMean Absolute Percent-
age Error (MAPE). Based on the study of Collopy and Armstrong (1992)
that has been conducted with a panel of 49 experts in the field of
forecasting, 85% of the respondents consider accuracy measures from
important (56%) to extremely important (29%). Based on the aforemen-
tioned study, several works have been published assessing quantitative
and qualitative criteria of forecasting techniques (Yokuma and
Armstrong, 1995). In that multi-aspect study, an agreement analysis
has been performed using a questionnaire survey measuring the opin-
ions of 322 experts divided into 4 categories, namely Decision Maker
(DM), Practitioner, Educator and Researcher. Among the questions
asked, the largest average agreement score was that of “Accuracy”
whereas “Timeliness” in providing forecasts' gathered the second largest
score. Comparison of forecasting techniques can also be conducted by
testing the techniques, applying to real life data sets representing sales
(Abdel-Khalik and El-Sheshai, 1983; Geurts and Patrick Kelly, 1986). It
is important to note that due to the advantages and disadvantages of
each accuracy measure, no single error measure can capture all aspects
of accuracy. Many forecast accuracy measures have been proposed in
the literature and the recommendations for selecting the appropriate
errormeasurements are discussed. Authors argued that generally utiliza-
tion of various accuracymeasures should bemore efficient, as each accu-
racy measure may look at a different aspect of accuracy (Kitchenham
et al., 2001). A summary of some of the issues is given by (Davydenko
and Fildes, 2013; De Gooijer and Hyndman, 2006; Fildes et al., 2011;
Hyndman and Koehler, 2006) and (Yokuma and Armstrong, 1995). De
Gooijer and Hyndman (2006) reviewed a variety of accuracy measures
used in the literature to evaluate theperformance of forecastingmethods
up to 2005. Hyndman and Koehler (2006) provided a critical survey on
various accuracy measures. Fildes et al. (2011) argued that no single
error measure captures the distributional features of the errors when
summarized across data series and discussed four error measures that
should capture the essential characteristics of the forecast results.
Davydenko and Fildes (2013) discussed many error measures by focus-
ing on the performance measurement of judgemental forecasting.

2.3. DEA score as a means for selecting best forecasting techniques

To rank forecasting techniques several approaches have been intro-
duced in the literature usingMachine Learning, DataMining techniques
and forecasting with Neural Networks based on their measures. For ex-
ample, using Machine Learning techniques several indices have been
developed such as Adjusted Ratio of Ratios (ARR) which is a multi-
criteria evaluation index and resembles to the efficiency measure as it
provides the relative efficiency of each technique (Brazdil et al., 2003).
However, the performance is relative and concerns only the comparison
of two algorithms given a compromise (trade-off) between two criteria.
Another shortfall of the proposed approach is that in order to extend the
comparisons to more than two algorithms, certain aggregations of the
criteria must be made. On the contrary, the efficiency score from DEA
technique is objectively extracted. The efficiency of the calculation pro-
cess using Data Mining techniques is similar to Machine learning. Effi-
ciency is formed as a fraction of the weighted outputs to inputs for of
each technique (Nakhaeizadeh and Schnabl, 1997; Nakhaeizadeh and
Schnabl, 1998). In a different context, technological forecasting has
been examined by Lim et al. (2014). Based on this method, the techno-
logical capabilities of different technologies are assessed based on DEA.
Technological Forecasting using Data Envelopment Analysis (TFDEA)
has also been applied on fighter jet and commercial technology by
Inman et al. (2006). However, the proposed DEA method, assesses dif-
ferent versions of DMUs based on inputs and outputs and does not pro-
vide a decision support system for determining the best forecasting
technique. Later studies prove that classical DEA models are not appro-
priate to handle percentage or ratio data (Emrouznejad et al., 2010).
Duong (1988) mentioned that it is not uncommon in practice to have
a set of forecasts which yield different rankings of the underlying tech-
niques for different performance criteria. A hierarchical approach to
rank the forecasting techniques has been suggested using the Analytic
Hierarchy Process (AHP) as a general framework for obtaining the
weights for forecasts combination. Pairwise comparisons of forecast



Fig. 1. An output productivity possibility set.
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measures have been determined from a panel of experts provided
weights leading to the ranking of each technique. The ranking result is
purely based on subjective comparisons of the groups of experts, thus
different group of experts could provide different comparisons and con-
sequently, different forecasting methods ranking. Therefore, the rank-
ing result is not robust because of the discussed shortfall of AHP.
Standard DEA has also been applied for the evaluation of forecasting
of Neural Networks (Pendharkar and Rodger, 2003). Similar to the eval-
uation of the aforementioned Data Mining and Machine Learning tech-
niques presented above, efficiency is derived as weighted fraction of
outputs to inputs. Let's assume that there are n DMUs.

Model 1: VRS input orientated standard DEA.

min θ jo

s:t:

∑
n

j¼1
λ j � xi; j ≤θ jo � xi; jo ; i ¼ 1;2;…;m

∑
n

j¼1
λ j � yr; j≥yr; jo ; r ¼ 1;2;…; s

∑
n

j¼1
λ j ¼ 1

λ j≥0; j ¼ 1;…;n
θ free

Model 2: VRS output orientated standard DEA

maxϕ jo
s:t:

∑
n

j¼1
λ j � xi; j≤xi; jo ; i ¼ 1;2;…;m

∑
n

j¼1
λ j � yr; j≥ϕ jo � yr; jo ; r ¼ 1;2;…; s

∑
n

j¼1
λ j ¼ 1

λ j ≥0; j ¼ 1; ::;n
ϕ free

(DMUj; j=1,2, . . . ,n), consumingm inputs (xi ,j;i=1,2, . . . ,m), and
producing s outputs (yr , j ;r=1, . . . ,s). Two main efficiency models in
DEA are input-oriented and out-put oriented, as formulated in Model
1 and Model 2.

In this model, λj provides information for the reference set
(peers) in the case where DMU under investigation (jo) is not effi-
cient (θjo≠1or ϕjo≠1). Models 1 and 2 are the first DEA models intro-
duced by Charnes et al. (1978). DEA has been used to evaluate
forecasting techniques including Autoregressive Integrated Moving
Average (ARIMA), Random Walk (RW), Vector Error Correction
(VEC), Regression and Error Correction models (Xu and Ouenniche,
2011). Furthermore, basic DEA Models 1 and 2 along with Super-
Efficiency models have been applied to the ranking of 14 chosen
competing volatility forecasting approaches, applying crude oil
price data (Xu and Ouenniche, 2011). However, as we will show ap-
plying standard DEAmodels to forecast accuracymeasuresmay yield
incorrect results. Accuracy measures represent ratios thus standard
DEA models provide false results due to loss of information while
the returns to scale orientation (RTS) is by default Constant Returns
to Scale (CRS) (Hollingsworth and Smith, 2003). Emrouznejad et al.
(2010) have shown that in the case of ratios in inputs and outputs,
multiplicative DEA formulations are more appropriate as the concept
of the geometric mean with non-dimensional (unit invariance)
properties is used. Furthermore, it is shown in the literature that in
the case where data are ratios, classical DEA models provides
wrong results as the Production Possibility Set (PPS) is not additive,
but multiplicative. Denoting PPS as P={(x,y) :x↦y)}, assuming that
inputs x can produce outputs y (whereas x and y represent vectors of
inputs and outputs, respectively), then DEA provides an estimation
of the PPS. Based on the convexity axiom of DEA (Banker et al.,
1984), a convex combination of any two points on the:

Model 3: A multiplicative input-oriented DEA model

min θ jo

s:t:

∏
n

j¼1
xi; jλ j ≤θ jo � xi; jo ; i ¼ 1;2;…;m

∑
n

j¼1
λ j ¼ 1

λ j≥0; j ¼ 1; ::;n
θ free

PPS also belongs to PPS. In the case a single input, two outputs,
representing ratios, the PPS is graphically represented in Fig. 1. If
PA, PB are two points of PPS such that PA(xA,yA) and PB(xB,yB),
then assuming that point P′ is a convex combination of PA and PB, then
P=λ ⋅PA+(1−λ) ⋅PB. Taking values for λ, the new point resulting
from the convex combination of PA and PB, does not belong to the PPS.
A relevant example and proof of the aforementioned procedure is dem-
onstrated in Emrouznejad and Amin (2009). Hence, the model that can
be applied in this case is a multiplicative DEA model as developed by
Emrouznejad et al. (2010).

3. Proposed approach

3.1. Multiplicative DEA model

Following the discussion in Section 2.3, the multiplicative DEA
model that is used to rank the forecasting techniques applied to yearly
time series M3-competition data (Makridakis and Hibon, 2000), is the
following (Banker and Maindiratta, 1986):

As described in theModel 3, the proposedmultiplicative DEAmodel
is input oriented (Charnes et al., 1982), considering geometric convexity
as any point of the new PPS can be calculated based on the relation P″=
(PA)λ ⋅(PB)1−λ. In Model 3, xi ,j denotes i input of DMU j whereas λj de-
notes the coefficient to peers of each DMU j; θjo is the efficiency score
for each DMU under investigation o. The above Model 3 is non-linear
due to existence of exponential terms (αx). In order to get an optimal so-
lution, an equivalent model is proposed based on log-linearization of
Model 3. For log-linearization, the following log10 function is used:

log10 ∏
n

j¼1
xi; j
� �λ j

 !
≤ log10 xi; jo

� �
⇔

Xn
j¼1

log10 xi; j
� � � λ j

0
@

1
A≤ log10ðxi; jo þ log10 θi; jo

� �
; i ¼ 1;2;…;m; j ¼ 1;…;n



Table 1
Data for illustrative example.

Forecasting technique M1 M2 M3

FOR01 62.24 37.618 0.0377
FOR02 168.937 127.708 42.479
FOR03 250.522 74.292 22.614
FOR04 415.936 96.076 7.063
FOR05 362.426 34.747 4.741
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Model 4: Log linearisation of multiplicative input-oriented DEA
model

min ~θ jo

s:t:Xn
j¼1

λ j � ~xi; j ≤ ~xi; jo þ ~θi; jo ; i ¼ 1;2;…;m

Xn
j¼1

λ j ¼ 1

λ j ≥ 0; j ¼ 1; ::;n
~θ free

Taking the logarithm on both sides of the first constraint of Model 4
is derived.

In Linear Programming (LP) Model 4, ~xi; j denotes the log10(xi ,j). Ob-
jective function seeks the minimization of log-efficiency of each DMU o

ð~θ jo Þ and efficiency scores are obtained by calculating 10
~θ
�
jo for each

DMU, where ~θ
�
jo
is the optimal solution from Model 4.

It must be noted that asModel 4may handle accuracy data per DMU
less than one, then logarithm yields a negative value. This is resolved
with normalisation procedure, as stated in 2. Given the initial data
(input i for each DMU j), if all the data for inputs of all DMUs are
above 1, then the new logarithmic input vectors are computed. Howev-
er, for an input less than 1, then the corresponding column is divided by
the minimum number normalizing data to avoiding negative values
after logarithm calculation.

Model 5: Super efficiency DEA model

min ~θ jo

s:t:Xn
j ¼ 1
j≠ jo

λ j�~xi; j≤~xi; jo þ ~θi; jo i ¼ 1;2;…;m

Xn
j ¼ 1
j≠ jo

λ j ¼ 1

λ j≥0; j ¼ 1; ::;n
~θ free

3.2. Finding the best forecasting technique in case of ties

When using DEA to rank forecasting techniques, it is quite common
to get ties of ranking due to the fact that two or more forecasting tech-
niques become efficient. In order to dealwith those caseswhere there is
a tie in the ranking of forecasting techniques, cross efficiency, super ef-
ficiency and lambda frequency can be used.

3.2.1. Cross efficiency
The idea of cross efficiency (Cook and Zhu, 2013) is to support the

weak discrimination of basic DEA models. In order to compute the
cross efficiency the following steps are followed. Firstly, optimal solu-
tions for weights variable (in the dual of Model 4) are derived. Then,
the cross efficiency of each DMU under investigation is calculated
based on the weights of other DMUs. For full description of cross effi-
ciency see (Cook and Zhu, 2013).

3.2.2. Super efficiency
Super efficiency (Chen, 2005; Cook et al., 2009) has been widely

used in order to assess the efficiency of DMUs and to provide more dis-
crimination power to basic DEAmodels. The concept of super efficiency
is based on assessing the efficiency of all the DMUs while excluding the
DMU under investigation from the left hand side of Model 4, this is
presented inModel 5. The proposedmodelwith the concept of super ef-
ficiency is presented in Model 8.

3.2.3. Lambda frequency
When solving a DEA problem, besides the results that concern effi-

ciency, lambda values (peers) are also calculated. These values are
interpreted as the resemblance of the DMU under investigation with
the units that belong to its reference set. Non-efficient units have as
peers (positive lambda values) only efficient DMsUs. Thus, in order to
discriminate the ranking in case of a tie between two or more DMUs
then counting only the instances where an efficient DMU is a peer in
the reference set of a non-efficient DMU, can be used as a discriminating
measure.

3.3. An illustrative example

In order to provide better understanding of the proposed approach
and to make it reproducible, an illustrative example is presented with
5 forecasting techniques. For each forecasting technique, 3 error mea-
sures have been calculated to evaluate its accuracy. From this figure,
we cannot clearly answer this question, “which forecasting technique
is the best?”. The optimal point would be the one that would minimize
all accuracymeasures simultaneously. Let us look at FOR02 and FOR05 in
Fig. 3; it can be seen that FOR02 performs better inmeasure 1 comparing
to measures 2 and 3. On the contrary, FOR05 performs better in mea-
sures 2, 3 and worst in measure 3. The data for each forecasting tech-
nique are presented in Table 1.

As indicated in Table 1, the values ofmeasureM1 for each forecasting
technique are greater than 1 and the log10 can be calculated straightfor-
ward. The same stands for measure M2 but as can be seen in the last
measure (M3), the value of forecasting technique 1 (FOR01) is less
than 1. Thus, calculating the log10 value would provide negative results,
thus based on log-normalisation procedure (Fig. 2), all the elements of
the column M3 are divided by a small positive infinitesimal number
(ε=10−5). After that normalisation, the log10 value of the last column
is calculated as well. The results are presented in Table 2.

Based on Model 4, the following LP models are solved for each DMU
(FOR01,… ,FOR05).

By solving the LPmodels as presented in Table 3, the optimal values

regarding ~θ
�
, θ� ¼ 10

~θ
�
and λ⁎ variables are derived.

• FOR01: ~θ
� ¼ 0; θ� ¼ 1 ð100%Þ; ðλ�

1 ¼ 1Þ
• FOR02: ~θ

� ¼ −0:434; θ� ¼ 0:368 ð36:8%Þ ðλ�
1 ¼ 1Þ

• FOR03:~θ
� ¼ −0:309; θ� ¼ 0:491 ð49:1%Þ; ðλ�

1 ¼ 0:613;λ�
5 ¼ 0:387Þ

• FOR04: ~θ
� ¼ −0:425; θ� ¼ 0:375 ð37:5%Þ ðλ�

1 ¼ 0:478;λ�
5 ¼ 0:522Þ

• FOR05: ~θ
� ¼ 0; θ� ¼ 1 ð100%Þ; ðλ�

5 ¼ 1Þ

Forecasting techniques are ranked based on the efficiency score.
FOR01 and FOR05 are ranked first, FOR03 is ranked second, FOR04 is
ranked third and FOR02 is ranked fourth. As it can be seen, there is a
tie in the ranking between FOR01 and FOR05. Based on lambda frequen-
cy, presented in Section 3.2, the count of positive λ⁎ values that are re-
ferred to FOR01 are 3 while the corresponding number for FOR05 are
2. Accordingly, we can conclude that the rankings are as follows:
FOR01 ≻ FOR05 ≻ FOR03 ≻ FOR04 ≻ FOR02.



Fig. 2. Normalisation process for process for input data.

Fig. 3. Comparison of 5 forecasting techniq

Table 2
Log values of data of illustrative example.

Forecasting technique log10(M1) log10(M2) log10ðM3
ϵ Þ

FOR01 1.794 1.575 3.576
FOR02 2.228 2.106 6.628
FOR03 2.399 1.871 6.354
FOR04 2.619 1.983 5.849
FOR05 2.559 1.541 5.676
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4. A real application to M3-competition data

We demonstrate use of the proposed approach by applying it in the
yearly M3-competition data (Makridakis and Hibon, 2000). We consid-
er 22 forecasting methods discussed in the M3-competition. Our aim is
to observe the data at each forecast period and calculate the forecast ac-
curacy assuming thatwe have different forecast approaches and various
forecast performance measures. Please refer to Makridakis and Hibon
(2000) for details of forecasting methods used in this study. In Table 4
the forecasting techniques used in this instance are demonstrated and
are presented as DMUs of the proposed DEA model.

4.1. Forecasting performance evaluation

The measures used for comparing the forecasting accuracy are the
RootMean Square Error (RMSE),MeanAbsolute Error (MAE),MeanAb-
solute Percentage Error (MAPE), Symmetric Mean Absolute Percentage
Error (sMAPE) and Mean Absolute Scaled Error (MASE) which are de-
fined as follows (Hyndman and Koehler, 2006):

1. Root Mean Square Error (RMSE)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
i¼1e

2
t

q
2. Mean Absolute Error (MAE)¼ 1

n∑
n
i¼1jet j
ues based on their accuracy measures.



Table 3
LP formulations for each forecasting technique of the illustrative example.

DMU LP formulation

FOR01

min ~θ
s:t:
1:794λ1 þ 2:228λ2 þ 2:399λ3 þ 2:619λ4 þ 2:559λ5−~θ≤1:794
1:575λ1 þ 2:106λ2 þ 1:871λ3 þ 1:983λ4 þ 1:541λ5−~θ≤1:575
3:576λ1 þ 6:628λ2 þ 6:354λ3 þ 5:849λ4 þ 5:676λ5−~θ≤3:576
λ1 þ λ2 þ λ3 þ λ4 þ λ5 ¼ 1
λ1; λ2; λ3; λ4; λ5 ≥0; ~θ free

FOR02

min ~θ
s:t:
1:794λ1 þ 2:228λ2 þ 2:399λ3 þ 2:619λ4 þ 2:559λ5−~θ ≤ 2:228
1:575λ1 þ 2:106λ2 þ 1:871λ3 þ 1:983λ4 þ 1:541λ5−~θ ≤ 2:106
3:576λ1 þ 6:628λ2 þ 6:354λ3 þ 5:849λ4 þ 5:676λ5−~θ ≤ 6:628
λ1 þ λ2 þ λ3 þ λ4 þ λ5 ¼ 1
λ1 ;λ2 ;λ3 ;λ4 ;λ5 ≥ 0; ~θ free

FOR03

min ~θ
s:t:
1:794λ1 þ 2:228λ2 þ 2:399λ3 þ 2:619λ4 þ 2:559λ5−~θ≤2:399
1:575λ1 þ 2:106λ2 þ 1:871λ3 þ 1:983λ4 þ 1:541λ5−~θ≤1:871

3:576λ1 þ 6:628λ2 þ 6:354λ3 þ 5:849λ4 þ 5:676λ5−~θ≤6:354
λ1þλ2þλ3þλ4þλ5¼1
λ1 ; λ2 ; λ3; λ4; λ5 ≥0; ~θ free

FOR04

min ~θ
s:t:
1:794λ1 þ 2:228λ2 þ 2:399λ3 þ 2:619λ4 þ 2:559λ5−~θ≤2:619
1:575λ1 þ 2:106λ2 þ 1:871λ3 þ 1:983λ4 þ 1:541λ5−~θ≤1:983
3:576λ1 þ 6:628λ2 þ 6:354λ3 þ 5:849λ4 þ 5:676λ5−~θ≤5:849
λ1þλ2þλ3þλ4þλ5¼1
λ1; λ2; λ3; λ4; λ5 ≥0; ~θ free

FOR05

min ~θ
s:t:
1:794λ1 þ 2:228λ2 þ 2:399λ3 þ 2:619λ4 þ 2:559λ5−~θ≤2:559
1:575λ1 þ 2:106λ2 þ 1:871λ3 þ 1:983λ4 þ 1:541λ5−~θ≤1:541
3:576λ1 þ 6:628λ2 þ 6:354λ3 þ 5:849λ4 þ 5:676λ5−~θ≤5:676
λ1þλ2þλ3þλ4þλ5¼1
λ1; λ2; λ3; λ4; λ5 ≥0; ~θ free
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3. Mean Absolute Percentage Error (MAPE)¼ 1
n∑

n
i¼1j100 � et

yt
j

4. Symmetric Mean Absolute Percentage Error (sMAPE) ¼
1
n∑

n
i¼1

100 � jet j
Yt þ F

5. Mean Absolute Scaled Error (MASE) 1
n∑

n
i¼1

 
et

1
n−1 �∑

n
1¼2jYi−Yi−1j

!

Table 4
Forecasting techniques used in M3-competition time series data and in DEA analysis.

Forecasting technique DMU Forecasting Technique DMU

ROBUST FOR01 PP Autocast FOR12
AutoBox2 FOR02 ForecastPro FOR13
ForcX FOR03 Flors.Pearsc1 FOR14
RBF FOR04 SMARTF FOR15
SINGLE FOR05 B.J.aut FOR16
THETAsm FOR06 AutoBox3 FOR17
NAIVE2 FOR07 DAMPEN FOR18
THETA FOR08 ARARMA FOR19
Auto.ANN FOR09 WINTER FOR20
Flors.Pearc2 FOR10 HOLT FOR21
COMB.S.H.D FOR11 AutoBox1 FOR22
4.2. Case study

The case study that is selected to demonstrate the applicability of the
presented approach, uses times series data retrieved from M3-
competition, where the evaluation of efficiency has been performed
based on five measures, namely RMSE, MAE, MAPE, sMAPE and MASE,
derived from 22 forecasting techniques. In this section, the application
of the proposed DEA approach to yearly M3-competition data set is
demonstrated. As shown in Fig. 4, 22 forecasting techniques are applied
providing values for five measures (RMSE, MAE, MAPE, sMAPE and
MASE). As it can be seen,more or less all forecasting techniques provide
a uniform image with slight modifications per measure. The following
DEA model is applied to extract the efficiency and rank DMUs based

on the given measures. In Model 6 ~ð�Þ express the log10(⋅) and a VRS
technology is assumed as well.

Fig. 4 shows the original error measures of forecasting techniques
while Fig. 5 presents thesemeasures after a logarithmic transformation.
Due to the fact that logarithmic function is monotonically increasing
function, the trend is the same between actual data and this representa-
tion. The last graph of Fig. 5 yields the efficiency of each forecasting

technique in the range of [0, 1] after applying the transformation 10
~θ .

The results are also presented in Table 5. Solving the dual of Model 4,
the weights reported are not zero.
Model 6: Linearization of multiplicative input-oriented DEA model

min ~θ jo

s:t:X22
j¼1

λ j � RMSẼi; j ≤ RMSẼi; jo þ ~θ jo

X22
j¼1

λ j �MAẼi; j ≤ MAẼi; jo þ ~θ jo

X22
j¼1

λ j �MAPẼi; j ≤ MAPẼi; jo þ ~θ jo

X22
j¼1

λ j � sMAPẼi; j ≤ sMAPẼi; jo þ ~θ jo

X22
j¼1

λ j �MASẼi; j ≤ MASẼi; jo þ ~θ jo

X22
j¼1

λ j ¼ 1

λ j ≥ 0; j ¼ 1;…;22
~θ free

In Table 5 the efficiency score is presented for each forecasting tech-
nique. Based on the data from yearly M3-competition, forecasting tech-
niques FOR01, FOR02, FOR03 and FOR04 have the largest efficiency and
are ranked as 1. The extracted efficiency is used as a unified measure
based on which forecasting techniques are ranked. The importance of
the proposed approach is that the efficiency is extracted after comparing
the values of measures of each DMU against each other and the score is
calculated objectively. This technique is served as amulti-criteria decision
making technique, as each forecasting technique is not performing the
same in all measures. Moreover, as each proposedmeasure is equally im-
portant to evaluation of each forecasting technique, the score provided
can be used for assessing forecasting techniques based on one or more
measures. One of the disadvantages of DEA is that by construction, the
technique is designed to measure efficiency/productivity and not provid-
ing a single winner; in this case ranking of forecasting techniques is per-
formed upon multiplying the values of different criteria.

4.3. Handling ties

Anotherway to determine the true ranking of forecasting techniques
in case of a tie it to measure the lambda frequency. More specifically, by
measuring how many times the non-efficient DMUs refer to them in
their reference set, then the higher the frequency, the better for that
forecasting technique (FOR). Taking as an example the results for lamb-
da values from Table 6, then the frequency of positive lambda values are
shown in the last row which it can be seen that the DMU with the
highest lambda frequency is FOR03, whereas the forecasting technique
with the lowest lambda frequency is FOR04. The ranking obtained
based on Table 6 is FOR03 ≻ FOR01 ≻ FOR02 ≻ FOR04.



Fig. 4. Comparison of the 22 forecasting techniques applied to time series data (M3-competition).

Fig. 5. Logarithmic transformation of accuracy measures and efficiency (sales from M3-competition).
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Table 5
Efficiency and ranking of forecasting techniques based on the proposed DEA model (M3
competition data).

DMU DEA score Rank DMU DEA score Rank

FOR01 1 1 FOR14 0.954096 12
FOR02 1 1 FOR15 0.928733 13
FOR03 1 1 FOR10 0.928525 14
FOR04 1 1 FOR09 0.927467 15
FOR08 0.975753823 5 FOR16 0.926114 16
FOR06 0.973362993 6 FOR18 0.894389 17
FOR12 0.963049853 7 FOR19 0.894336 18
FOR11 0.9619215 8 FOR20 0.857651 19
FOR05 0.95990411 9 FOR21 0.857651 20
FOR13 0.957992999 10 FOR17 0.843845 21
FOR07 0.957929481 11 FOR22 0.760537 22
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5. Overview of the proposed approach

In this paper a DEA procedure for ranking forecasting techniques has
been proposed. Based on this procedure, each forecasting technique is
treated as a DMU and forecasting errors of each technique as inputs.
As forecastingmeasures are ratio data, the proposed DEAmodel is mul-
tiplicative. In order to handle the data, a log-normalisation of the data is
performed in advance (Fig. 2). The use of a multiplicative DEA model in
this paper, against classical DEA models, is mathematically justified in
Section 3. Introducing the log-normalised data to Model 4, forecasting
techniques are ranked based on their efficiency. In the presence of
more than one “winner”, cross efficiency, super efficiency or Lambda
frequency approaches can be used as meta-frontier analysis techniques.
The strength of the proposedmodel is its capability to provide an objec-
tive ranking of forecasting techniques, independently of the number of
measures involved. The measures are all taken into consideration and
amultiplicative DEAmodel is used as a benchmarking technique. Rank-
ing derived from the proposed technique is robust as it is based on the
results of efficiency score. Robustness of the ranking proposed based
onmultiplicative DEAmodel is also justified due to the absence of a De-
cision Maker; unlike AHP, Analytic Network Process (ANP) or MCDM
techniques where DMs provide pairwise comparisons (or weights to
criteria) for forecast measures, multiplicative DEA leaves no room for
DM interventions. However, if necessary, extra constraints can be intro-
duced tomodel preference (weights) to each forecastingmeasure com-
pared to others. Another strength of the proposed approach is its
simplicity. The user only provides the data (forecasting measures),
Table 6
Peers and Lambda frequency of each forecasting technique.

DMU λ1 λ2 λ3 λ4

FOR01 1
FOR02 1
FOR03 1
FOR04 1
FOR05 0.15311 0.846889
FOR06 0.12135 0.878642
FOR07 0.026352 0.973648
FOR08 0.19682 0.803818
FOR09 0.153105 0.846895
FOR10 0.173738 0.826262
FOR11 1
FOR12 1
FOR13 1
FOR14 1
FOR15 1
FOR16 1
FOR17 0.54925 0.45075
FOR18 0.328412 0.671588
FOR19 1
FOR20 0.299323 0.700677
FOR21 0.299323 0.700677
FOR22 1
Number of positive λ 11 8 12 1
while the ranking is derived by solving iteratively the multiplicative
DEAmodel for each DMU. Despite its strengths, the proposed approach
has also few weaknesses. As DEA is a benchmarking technique, it is
quite common for two or more DMUs to be efficient, leading to ties in
the corresponding ranking. This shortfall is handled by applying cross
efficiency, super efficiency or lambda frequency techniques to DMUs
that are efficient and have ties in the ranking.
6. Conclusions

The discipline of forecasting is very important as it has grown over
the last years given the number of articles that have been published.
The importance of forecasting is the development of techniques that
predict future values for demand, consumption of energy, energy, oil
prices etc. However, the acceptance of rejection of a technique is
based on how well the model is fitted to the data set, for in-sample ad-
justments and afterwards for out-of-sample forecasting. For that reason,
forecasting or accuracy measures have been proposed to check the per-
formance of a forecasting technique when applied to a time series data
set. Nevertheless, as there is a plethora of accuracy measures, the fore-
casting techniquemay perform better in onemeasure but not in anoth-
er measure comparing to another forecasting technique. In order to
overcome this obstacle, a model that provides an overall score that
takes all the different accuracy measures into account and forecasting
techniques will be ranked upon, is proposed. The proposed multiplica-
tive DEA model is used as the data (accuracy measures) express per-
centages and in this case, additive models that have been used to
provide a unified score of forecasting techniques provide wrong results
and do not satisfy fundamental principles of DEA. The data are log-
normalised and the multiplicative DEA model is solved for each DMU.
In the presence of ties in the ranking of DMUs, threemeta-frontier anal-
yses are proposed; namely cross efficiency, super efficiency and lambda
frequency. The applicability of the model is demonstrated on yearly
M3–competition time series data set. The proposedmodel can be imple-
mented in forecasting software packages to help forecasters make a de-
cision in regards to the best forecasting methods with conflicting
results. One possible direction for future works is to develop an ap-
proach based on DEA to measure forecast accuracy and consequently
select the best forecasting method across a cross-sectional and/or tem-
poral hierarchy.
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