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ABSTRACT

In this paper, we develop a new family of graph kernels where the graph structure is probed by means
of a discrete-time quantum walk. Given a pair of graphs, we let a quantum walk evolve on each graph
and compute a density matrix with each walk. With the density matrices for the pair of graphs to hand,
the kernel between the graphs is defined as the negative exponential of the quantum Jensen-Shannon
divergence between their density matrices. In order to cope with large graph structures, we propose
to construct a sparser version of the original graphs using the simplification method introduced in Qiu
and Hancock (2007). To this end, we compute the minimum spanning tree over the commute time
matrix of a graph. This spanning tree representation minimizes the number of edges of the original
graph while preserving most of its structural information. The kernel between two graphs is then
computed on their respective minimum spanning trees. We evaluate the performance of the pro-
posed kernels on several standard graph datasets and we demonstrate their effectiveness and efficiency.

Keywords: Graph Kernels, Discrete-time Quantum Walks, Quantum Jensen-Shannon Diver-
gence

1. Introduction

Graph structures are important tools for representing struc-
tural data, since they can naturally reflect the structural and
relational arrangements of objects Vento (2015); Foggia et al.
(2014). One challenge arising in classifying graph-based da-
ta is that of converting discrete graph structures into numeric
features. One way is to use graph kernels.

1.1. Graph Kernels
Graph kernels have been proven powerful for structural

analysis in pattern recognition and machine learning Gärtner
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(2003). Typical applications include a) computer vision data
classification Harchaoui and Bach (2007); Barra and Biasot-
ti (2014), b) handwriting recognition Gärtner et al. (2003), c)
bioinformatics data classification Bai et al. (2015b); Borgwardt
et al. (2005); Emmert-Streib and Dehmer (2011), d) protein
recognition Borgwardt et al. (2005), and e) 3D shape classifi-
cation Bai et al. (2015c). The main advantages of using graph
kernels are twofold. First, graph kernels can characterize graph
features in a high dimensional space and thus have the capabil-
ity of preserving the original structural information Brun et al.
(2010). Second, graph kernels provide a way of making the
rapidly developing kernel machinery for vectorial data applica-
ble to graphs.

Generally speaking, a graph kernel is a similarity measure
between a pair of graphs Schölkopf and Smola (2002); Vish-
wanathan et al. (2010). To extend the large spectrum of ker-
nel methods from the general machine learning domain to the
graph domain, Haussler Haussler (1999) has proposed a prin-
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cipled way, namely the R-convolution, to define a graph ker-
nel. For a pair of graphs, an R-convolution kernel is computed
by decomposing each graph into smaller subgraphs and count-
ing the number of isomorphic subgraph pairs between the t-
wo original graphs. Thus, a new type of decomposition of
a graph usually results in a new graph kernel. Kashima et
al. Kashima et al. (2003) have introduced the random walk k-
ernel, which is based on the enumeration of common random
walks between two graphs. Borgwardt et al. Borgwardt and
Kriegel (2005), on the other hand, have proposed a shortest
path kernel by counting the numbers of matching shortest path-
s over the graphs. Aziz et al. Aziz et al. (2013) have devel-
oped a backtrackless kernel using the cycles identified by the
Ihara zeta function Ren et al. (2011b) in a pair of graphs. Sher-
vashidze et al. Shervashidze et al. (2010) have developed a fast
subtree kernel by comparing pairs of subtrees identified by the
Weisfeiler-Lehman (WL) algorithm. Gaidon et al. Gaidon et al.
(2011) have developed a subtree kernel for comparing videos.
For each video, the method considers complex actions as de-
composed spatio-temporal parts and builds corresponding bi-
nary trees. The resulting kernel is computed by counting the
number of isomorphic subtree patterns. Wang and Sahbi Wang
and Sahbi (2013) have defined a graph kernel for action recog-
nition. They first describe actions in the videos using direct-
ed acyclic graphs (DAGs). The resulting kernel is defined as
an extension of the random walk kernel by counting the num-
ber of isomorphic walks of DAGs. Some other alternative R-
convolution kernels include a) the segmentation graph kernel
developed by Harchaoui and Bach Harchaoui and Bach (2007),
b) the point cloud kernel developed by Bach Bach (2008), c)
the (hyper)graph kernel based on directed subtree isomorphism
tests Bai et al. (2014a), and d) the depth-subgraph kernels Bai
and Hancock (2016).

Recently, a number of alternative graph kernel measures have
been introduced in the literature. These are based on the com-
putation of the mutual information between two graphs in terms
of the classical Jensen-Shannon divergence. In information the-
ory, the classical Jensen-Shannon divergence is a dissimilarity
measure between probability distributions. In Bai and Hancock
(2013), Bai et al. have used the classical Jensen-Shannon di-
vergence to define a Jensen-Shannon graph kernel. Unlike the
R-convolution kernels that count the number of isomorphic sub-
structure pairs, the Jensen-Shannon graph kernel is defined in
terms of the entropy difference between a pair of graphs and
their composite graph, e.g., the disjoint union graph or the prod-
uct graph formed by the pair of graphs. Here, the entropy of a
graph can be either the von Neumann entropy (associated with
the graph spectrum information) or the Shannon entropy (as-
sociated with the steady state random walk or the information
functional). Both the von Neumann entropy and the Shannon
entropy of a graph can be directly computed without the need to
decompose the graph into substructures. As a result, the Jensen-
Shannon graph kernel avoids the computational burden of com-
paring all pairs of substructures for a pair of graphs. To develop
this work further, in Bai et al. (2015a); Rossi et al. (2013b) Bai
et al. have introduced a new quantum Jensen-Shannon graph
kernel using the quantum Jensen-Shannon divergence Lamberti

et al. (2008); Majtey et al. (2005) and continuous-time quan-
tum walks Farhi and Gutmann (1998). Here the basic idea is to
associate with each graph a mixed quantum state representing
the time evolution of a quantum walk. The kernel between a
pair of graphs is then defined as the quantum Jensen-Shannon
divergence between their corresponding density matrices Bai
et al. (2015a). Rossi et al. Rossi et al. (2013b,a, 2015) have also
proposed to use continuous-time quantum walks to measure the
similarity between a pair of graphs. However, their approach is
fundamentally different from that of Bai et al. as it requires
merging the input graphs in a superstructure over which the
quantum walks take place. The resulting graph kernel is also
based on the quantum Jensen-Shannon divergence, but so far it
has not been proved to be positive definite.

1.2. Contribution

The aim of this paper is to develop the kernels of Bai et al. Bai
et al. (2015a); Rossi et al. (2013b) one step further. In particu-
lar, in this paper we propose to probe the graph structure using
discrete-time quantum walks. The discrete-time quantum walk
is the quantum analogue of the discrete-time classical random
walk Farhi and Gutmann (1998). Remarkably, the discrete-time
quantum walk possesses a number of interesting properties that
are not exhibited by its classical counterpart. In fact, the be-
haviour of the discrete-time quantum walk is governed by a u-
nitary matrix rather than a stochastic matrix, as in the case of
the classical random walk. As a consequence, its evolution is
reversible and non-ergodic. However, unlike the continuous-
time quantum walk, where the state space is the graph vertex
set, the state space of the discrete-time quantum walk is the set
of arcs residing on the graph edges. More specifically, given
an undirected graph G(V, E), each edge {u, v} ∈ E is replaced
by a pair of directed arcs (u, v) and (v, u), and the set of arcs
is denoted by Ed. Then, the state space for the discrete-time
quantum walk is the set of arcs Ed. Since the number of di-
rected arcs is much larger than, or at least equal to, that of the
vertices, the discrete-time quantum walk can capture the struc-
tural characteristics of the graph better than the continuous-time
quantum walk. However, this clearly comes at the cost of high-
er computational complexity. In this paper, we are interested in
developing a new family of kernels where the graph structure is
probed by means of discrete-time quantum walks.

To this end, we simulate the evolution of a discrete-time
quantum walk on each graph and we compute an associated
density matrix. Given a pair of graphs and their density matri-
ces, the kernel between them is defined as the negative exponen-
tial of the quantum Jensen-Shannon divergence between their
respective density matrices. Unfortunately, we show that this
kernel does not scale to large graphs. Therefore, we propose to
compute a sparser version of the original graphs in order to re-
duce the computational complexity of the kernel. More specifi-
cally, we use the graph simplification method introduced in Qiu
and Hancock (2007). Given an undirected graph, we compute
the minimum spanning tree over its commute time matrix rep-
resentation. This is shown to minimize the number of edges of
the original graph while preserving most of its structural infor-
mation Qiu and Hancock (2007). In particular, the commute
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(a) Original graph. (b) Symmetric digraph. (c) Directed line graph.

Fig. 1. Directed line graph construction.

time is robust with respect to the structural noise, and therefore
it represents an ideal candidate to sparsify the structure of the
original graph Qiu and Hancock (2007). Such a method allows
the kernel between two graphs to be computed on their respec-
tive minimum spanning trees. We show that this strategy sig-
nificantly reduces the computational complexity of the original
kernel making it feasible to larger graphs.

We evaluate the performance of both kernels on several s-
tandard graph datasets from both bioinformatics and computer
vision. The experimental results demonstrate the effectiveness
of the proposed quantum Jensen-Shannon graph kernels. Both
kernels are shown to be competitive with respect to state-of-the-
art graph kernels.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the necessary quantum mechanical back-
ground, while Section 3 reviews the graph simplification tech-
niques used in this paper. In Section 4 we define the proposed
graph kernels. Section 5 provides experimental evaluations and
Section 6 concludes the paper.

2. Quantum Mechanical Background

In this section, we introduce the quantum mechanical formal-
ism that will be used in this work. We begin by reviewing the
concept of discrete-time quantum walk on a graph. We show
how to associate with each graph a density matrix describing
the quantum walk evolution, and how to compute the quantum
Jensen-Shannon divergence between a pair of density matri-
ces. Finally, we discuss the relationship between the Perron-
Frobenius operator Ren et al. (2011a) and the transition matrix
of the discrete-time quantum walk, and thus we explain the ad-
vantage of discrete-time quantum walks over their continuous-
time version.

2.1. Discrete-time Quantum Walks

The discrete-time quantum walk represents the quantum
counterpart of the discrete-time classical random walk Emms
et al. (2009). Quantum processes are reversible, so in quantum
walks the states needs to specify both the current and the previ-
ous location of the walk. Let us replace each edge e(u, v) ∈ E
with a pair of directed arcs ed(u, v) and ed(v, u). We denote the
new set of arcs as Ed. Then, the state space for the discrete-time
quantum walk is Ed and we denote the state corresponding to
the walker being on the arc ed(u, v) as |uv⟩. That is, |uv⟩ denotes

the state in which the walk is at vertex v having previously been
at vertex u. A general state of the walk is

|ψ⟩ =
∑

ed(u,v)∈Ed

αuv|uv⟩, (1)

where the quantum amplitudes αuv are complex, i.e., αuv ∈ C.
The probability that the walk is in the state |uv⟩ is given by
Pr(|uv⟩) = αuvα∗uv, where α∗uv is the complex conjugate of αuv.

At each time step, the evolution of the walk is governed by
the transition matrix U. The entries of U determine the transi-
tion probabilities between states, i.e., |ψt+1⟩ = U|ψt⟩. Since the
evolution of the walk is linear and conserves probability, the
matrix U must be unitary, i.e., U−1 = U†, where U† denotes the
Hermitian transpose of U.

It is usual to adopt the Grover diffusion matrix L (1996) as
the transition matrix. Using the Grover diffusion matrix, the
transition matrix U has entries

U(u,v),(w,x) =

{ 2
dx
− δux, v = w;

0, otherwise,
(2)

where dx is the vertex degree for vertex x, U(u,v),(w,x) gives the
quantum amplitude for the transition ed(u, v) → ed(w, x) and
δux is the Kronecker delta, i.e., δux = 1 if u = x and 0 other-
wise. Given a state |u1v⟩, the Grover matrix assigns the same
amplitude to all transitions |u1v⟩ → |vui⟩, and a different ampli-
tude to the transition |u1v⟩ → |vu1⟩, where ui is a neighbour of
v. Finally, note that although the entries of U are real, they can
be negative as well as positive. It is important to stress that, as
a consequence of this, negative quantum amplitudes can arise
during the evolution of the walk. In other words, the definition
in Eq.(2) allows destructive interference to take place.

2.2. Relation to the Perron-Frobenius Operator
In Ren et al. (2011a), Ren et al. have demonstrated that the

Perron-Frobenius operator can be represented in terms of the
transition matrix of discrete-time quantum walks. To show this
connection, we first introduce the definitions of directed line
graph and positive support of a matrix.

Definition 1 For a graph G(V, E), the directed line graph
OLG(VL, EdL) is a dual representation of G(V, E). To obtain
OLG(VL, EdL), we first construct the associated symmetric di-
graph S DG(V, Ed), where we replace every edge e(u,w) ∈ E(G)
by a pair of arcs, i.e., directed edges ed(u,w) ∈ Ed(G) and
ed(w, u) ∈ Ed(G) for u,w ∈ V . The directed line graph
OLG(VL, EdL) is the directed graph with vertex set VL and edge
set EdL defined as follows

VL = Ed(S DG),
EdL = {(ed(u, v), ed(v,w)) ∈ Ed(S DG) × Ed(S DG)
| u, v,w ∈ V, u ! w}.

The Perron-Frobenius operator T = [Ti, j]|VL |×|VL | of G(V, E)
is the adjacency matrix of the associated directed line graph
OLG(VL, EdL). !

An example of transforming an original graph into a directed
line graph is shown in Figure 1. Figure 1(a) shows the original
graph and Figure 1(b) shows the associated symmetric digraph.
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Definition 2 The positive support S+(M) = [si, j]m×n of the ma-
trix M = [Mi, j]m×n is defined to be a matrix with entries

si, j =

{
1, Mi, j > 0,
0, otherwise, (3)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n. !
Based on the definition in Ren et al. (2011a), we can redefine

the Perron-Frobenius operator in terms of the unitary matrix of
the discrete-time quantum walk. Let G(V, E) be a sample graph
and U be the unitary matrix associated with the discrete-time
quantum walk on G(V, E). The Perron-Frobenius operator U of
G(V, E) is

T = S+(U⊤). (4)

Def. 1, Def. 2 and Eq.(4) show that the the discrete-time quan-
tum walk and the Perron-Frobenius operator (i.e., the direct-
ed line graph) are correlated. For a graph G(V, E) and its di-
rected line graph OLG(VL, EdL), VL is just the state space of
the discrete-time quantum walk on G(V, E), i.e., each vertex in
OLG(VL, EdL) corresponds to a unique directed arc residing on
the corresponding edge in G(V, E). Moreover, if there is a di-
rected edge from a vertex vL ∈ VL to a vertex uL ∈ VL, the
transition of the quantum walk on G(V, E) is allowed from the
arc corresponding to vL to the arc corresponding to uL, and vice
versa. As a result, the discrete-time quantum walk on a graph
can also be seen as a walk performed on its directed line graph.
The state space of the walk is the vertex set of the line graph,
and the transitions are constrained by the connections between
pairs of vertices in the line graph.

Furthermore, in Bai et al. (2014a); Ren et al. (2011a), Bai et
al. observed that the directed line graph possesses some inter-
esting properties that are not available in the original graph. For
instance, compared to the original graph the line graph spans a
higher dimensional feature space and thus exposes richer graph
characteristics. This is because the cardinality of the vertex set
for the line graph is greater than, or at least equal to, that of
the original graph. This property suggests that the discrete-time
quantum walk may reflect richer graph characteristics than the
continuous-time quantum walk on the original graph.

Finally, note that since the discrete-time quantum walk can
be seen as a walk on the line graph and the state space of the
walk is the vertex set of the line graph, we propose to use the
rooting of the degree distribution of the line graph as the initial
state of the discrete-time quantum walk.

2.3. From Quantum Walks to Density Matrices

In quantum mechanics, a pure state can be described as a
single ket vector. A quantum system, however, can also be in a
mixed state, i.e., a statistical ensemble of pure quantum states
|ψi⟩, each with probability pi. The density matrix of such a
system is defined as

ρ =
∑

i

pi |ψi⟩ ⟨ψi| (5)

Let |ψt⟩ denote the state corresponding to a discrete-time quan-
tum walk that has evolved from time t = 0 to time t = T . We

define the time-averaged density matrix ρT
G for G(V, E) as

ρT
G =

1
T + 1

T∑

t=0

|ψt⟩ ⟨ψt | . (6)

Since |ψt⟩ = Ut |ψ0⟩, where U is the transition matrix of the
discrete-time quantum walk, Eq.(6) can be re-written in terms
of the initial state |ψ0⟩ as

ρT
G =

1
T + 1

T∑

t=0

(U)t |ψ0⟩ ⟨ψ0| (U⊤)t. (7)

The density matrix ρT
G describes a quantum system that has an

equal probability of being in each of the pure states defined by
the evolution of the discrete-time quantum walk from step t = 0
to step t = T .

2.4. The Quantum Jensen-Shannon Divergence
In quantum mechanics, the von Neumann entropy Nielsen

and Chuang (2010) HN of a density matrix ρ is defined as
HN = −tr(ρ log ρ) = −∑i ξi ln ξi, where ξ1, . . . , ξn denote the
eigenvalues of ρ. Note that if the quantum system is in a pure s-
tate |ψi⟩with probability pi = 1, then the Von Neumann entropy
HN(ρ) = −tr(ρ log ρ) is zero. On the other hand, a mixed state
generally has a non-zero Von Neumann entropy associated with
its density matrix. Here we propose to compute the von Neu-
mann entropy for each graph using the density matrix defined
in Eq.(7). Consider a graph G(V, E), the von Neumann entropy
of G(V, E) is defined as

HN(ρT
G) = −tr(ρT

G log ρT
G) = −

|V |∑

j

λG
j log λG

j , (8)

where λG
1 , . . . , λ

G
j , . . . , λ

G
|V | are the eigenvalues of ρT

G.
With the Von Neumann entropy to hand, we can compute

the quantum Jensen-Shannon divergence between two density
operators ρ and σ Lamberti et al. (2008). The quantum Jensen-
Shannon divergence has recently been developed as a general-
ization of the classical Jensen-Shannon divergence to quantum
states Lamberti et al. (2008). Given two density operators ρ
and σ, the quantum Jensen-Shannon divergence between them
is defined as

DQJS (ρ,σ) = HN
(ρ + σ

2

)
− 1

2
HN(ρ) − 1

2
HN(σ). (9)

DQJS is always well defined, symmetric, negative definite and
bounded, i.e., 0 ≤ DQJS ≤ 1 Lamberti et al. (2008).

3. Graph Simplification Based on Commute Time

Let A denote the adjacency matrix of a graph G(V, E). This
is the matrix with A(u, v) = 1 if (u, v) ∈ E, and zero otherwise.
The degree matrix D is the diagonal matrix with diagonal en-
tries D(u, u) =

∑
v A(u, v). Then, the graph Laplacian is given

by L = D − A. The spectral decomposition of the Laplacian is
L = ΦΛΦT , where Φ is the n × n matrix Φ = (φ1|φ2|...|φn) with
the ordered eigenvectors as columns andΛ = diag(λ1, λ2, ..., λn)
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is the n × n diagonal matrix with the ordered eigenvalues as el-
ements, such that 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

The heat equation defines the dynamics of a diffusion process
over a graph. This is a partial differential equation associated
with the graph Laplacian, i.e.,

∂Ht

∂t
= −LHt, (10)

where Ht is the heat kernel at time t. The solution of the heat
equation is

Ht = exp(−Lt) = Φ exp(−Λt)ΦT , (11)

The evolution of a classical continuous-time random walk on
the graph is also governed by the heat equation. Let pt be the
probability state vector of the walk, i.e., the vector whose com-
ponents are the probabilities of the walk visiting the nodes of
the graph at time t. Given an initial distribution p0, the state
vector of the walk at time t is

pt = Ht p0. (12)

The hitting time O(u, v) of a random walk is defined as the
expected number of steps to go from node u to node v. The
commute time is similarly defined as the expected number steps
to go from u to v, and then return to u. For an undirected graph,
this is simply twice the hitting time. It can be shown that the
hitting time can be written in terms of the eigendecomposition
of the normalized Laplacian Qiu and Hancock (2007)

O(u, v) =
1
4

n∑

j=2

1
λ j

(φ j(u) − φ j(v))2, (13)

where n is the number of nodes in the graph.
Qiu et al. show that it is possible to simplify the structure

of a graph by computing the minimum spanning tree over the
commute time matrix Qiu and Hancock (2007). This reduces
the number of edges of the graph to n − 1, while retaining the
characteristic structural information of the original graph. In
fact, it can be shown that the simplified graph is robust with
respect to small structural variations of the original graph Qiu
and Hancock (2007).

Given a graph G(V, E) we begin by computing the associat-
ed commute time matrix CT with entries CT (u, v) = 2O(u, v).
With the commute time matrix to hand, we construct a com-
plete weighted graph G(V,E) over the same vertex set of G,
i.e., V = V . The weight of the edge between a pair of vertices
in G is the commute time between the vertices of the original
graph. Using Prim’s method Prim (1957), we can compute the
minimum spanning tree G(V,E) over G, where the root node is
the node v with minimum weight

W(u) =
∑

u∈V
CT (u, v). (14)

In other words, the root vertex of the spanning tree is usually
the most frequently visited node, since it has the lowest average
commute time to the other nodes. From a structural point of
view, this can be interpreted as the vertex being located near
the centre of the original graph Qiu and Hancock (2007).

4. Graph Kernels from Discrete-time Quantum Walks

We now propose a graph kenel based on the quantum Jensen-
Shannon divergence between discrete-time quantum walks. In
order to reduced the computational complexity of the kernel,
we also propose an alternative version of the kernel where the
original graphs are first simplified as explained in Section 3.
Definition 3 (Kernel on Original Graphs): Given a set of
graphs {G1, . . . ,Ga, . . . ,Gb, . . . ,GN}, we simulate a discrete-
time quantum walk on each Ga(Va, Ea) and Gb(Vb, Eb) for
t = 0, 1, . . . ,T . Then, the density matrices ρS

G;a and σT
G;b asso-

ciated with Ga(Va, Ea) and Gb(Vb, Eb) can be computed using
Eq.(7). With the density matrices to hand, the quantum Jensen-
Shannon divergence DQJS (ρG;a,σG;b) is computed as in Eq.(9).
Finally, the quantum Jensen-Shannon kernel kQJS (Ga,Gb) be-
tween Ga(Va, Ea) and Gb(Vb, Eb) is defined as

kQJS (Ga,Gb) = exp(−αDQJS (ρT
G;a,σ

T
G;b))

= exp{−αHN
(ρT

G;a + σ
T
G;b

2

)
+ α

1
2

HN(ρT
G;a) + α

1
2

HN(σT
G;b)}.

(15)

where α is a decay factor satisfying 0 ≤ α ≤ 1, and HN(·) is the
von Neumann entropy defined in Eq.(8). For simplification, in
this work we set α as 1. Note that if the graphs have different
sizes, we add a number of disconnected nodes to the smaller
graphs until their size is the same. !
Lemma The quantum Jensen-Shannon kernel kQJS is positive
definite pd.
Proof This follows from the definitions in Lamberti et al.
(2008); Majtey et al. (2005). The quantum Jensen-Shannon di-
vergence between a pair of density operators is a symmetric
dissimilarity measure Lamberti et al. (2008). The proposed k-
ernel kQJS is computed as the negative exponential of the quan-
tum Jensen-Shannon divergence, and thus it is pd Majtey et al.
(2005). "

For a pair of graphs with n vertices and m edges, the compu-
tation of the quantum kernel kQJS has time complexity O(m3).
This is because the state space of the discrete-time quantum
walk is the vertex set of its line graph. The number of the ver-
tices of the line graph is twice in the number of the edges of the
original graph. Thus, the size of the density matrix associated
with the quantum walk is 2m× 2m. Since the von Neumann en-
tropy relies on the eigen-decomposition of the density matrix.
The whole time complexity of the kernel kQJS is O(m3). For the
worst case, i.e., a pair of graphs are both complete graphs, the
edge number of each graph is m = n(n−1)

2 . Thus, the sizes of
the quantum walk state space for the graphs are both n(n − 1).
As a result, for the worst case the time complexity of the ker-
nel is O(n6), which implies that we can efficiently compute the
proposed kernel only for relatively small graphs. To overcome
this inefficiency, we propose to simplify each original graph us-
ing the approach of Qiu and Hancock (2007), thus reducing the
complexity to O(n3).
Definition 4 (Kernel on Spanning Trees): For a pair of graph-
s Ga(Va, Ea) and Gb(Vb, Eb), we construct their minimum s-
panning trees Ga(Va,Ea) and Gb(Vb,Eb) from their commute
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Table 1. Summary statistics for the graph datasets.
Datasets MUTAG PPIs PTC COIL5 Shock GatorBait CATH1 NCI1
Max # vertices 28 232 109 241 33 509 568 111
Min # vertices 10 3 2 72 4 260 44 3
Avg # vertices 17.93 109.60 25.60 144.90 13.16 367.36 205.72 29.87
Max # edges 33 1503 108 702 32 1266 2356 119
Min # edges 10 2 1 206 3 576 145 2
Avg # edges 19.79 432.18 25.96 419 12.16 842.79 819.86 32.30
# graphs 188 86 344 360 150 66 719 4110
# classes 2 2 2 5 10 10 2 2
Avg # edges/Avg # vertices 1.10 3.94 1.01 2.89 0.92 2.29 3.99 1.08

time matrices as described in Section 3. The quantum Jensen-
Shannon kernel kQJS T between Ga(Va, Ea) and Gb(Vb, Eb) is
then defined as

kQJS T (Ga,Gb) = kQJS (Ga,Gb), (16)

where kQJS is compute as in Eq.(15).
The commute time captures the structural properties of the

original graphs and it’s robust under perturbation of their struc-
tural. Thus, the minimum spanning tree constructed on the
commute time matrix can reflect the characteristic structural in-
formation of the original graph while yielding a sparser struc-
ture. Note that the computation of the commute time matrix is
based on the eigendecomposition of the normalized Laplacian.
Therefore, the graph simplification step has time complexity
O(n3). As a result, the time complexity of the quantum kernel
kQJS T is O(n3), a considerable improvement from the original
O(n6) complexity of the kernel.

5. Experimental Evaluations

In this section, we evaluate empirically the performance of
the proposed kernels on standard graph datasets. To this end, we
compare our kernels with a number of commonly used graph
kernels.

5.1. Graph Datasets
We explore the proposed kernels on five standard graph

datasets from bioinformatics and computer vision. These
datasets include: MUTAG, PPIs, PTC(MR), COIL5, Shock,
CATH1 and NCI1. Table 1 shows a summary of statistics on
these datasets.
MUTAG: The MUTAG dataset consists of graphs representing
188 chemical compounds labeled according to whether or not
they affect the frequency of genetic mutations in the bacteri-
um Salmonella typhimuriums and aims to predict whether each
compound is associated with mutagenicity.
PPIs: The PPIs dataset consists of protein-protein interaction
networks (PPIs). The graphs describe the interactions between
histidine kinase in different species of bacteria. There are 219
PPIs in this dataset and they are collected from 5 different kinds
of bacteria. Here we restrict out analysis to two kinds of bacte-
ria.
PTC: The PTC (The Predictive Toxicology Challenge) dataset
records the carcinogenicity of several hundred chemical com-
pounds for male rats (MR), female rats (FR), male mice (MM)

and female mice (FM). These graphs are very small, i.e., 20−30
vertices, and sparsem, i.e., 25 − 40 edges. We select the graphs
of male rats (MR) for evaluation. There are 344 test graphs in
the MR class.

COIL5: We create a dataset referred to as COIL5 from the
COIL image database. The COIL database consists of images
of 100 3D objects. In our experiments, we use the images for
the first five objects. For each of these objects we employ 72
images captured from different viewpoints. For each image we
first extract corner points using the Harris detector, and then es-
tablish Delaunay graphs based on the corner points as vertices.
Each vertex is used as the seed of a Voronoi region, which ex-
pands radially with a constant speed. The linear collision fronts
of the regions delineate the image plane into polygons, and the
Delaunay graph is the region adjacency graph for the Voronoi
polygons.

Shock: The Shock dataset consists of graphs from the Shock
2D shape database. Each graph is a skeletal-based representa-
tion of the differential structure of the boundary of a 2D shape.
There are 150 graphs divided into 10 classes.

GatorBait: the original GatorBait dataset contains 100 shapes
representing fishes from 30 different classes Biasotti et al.
(2003). In the original dataset, 10 of these classes contain a sin-
gle element, and only 10 classes contain at least four shapes. In
these experiments, we restrict our attention to the 66 graphs be-
londing to the 10 classes that contain at least 4 shape instances.
For each of these 66 shapes, we extract the Delaunay graph-
s from their shape quantization (Canny algorithm followed by
contour decimation). Since the classes are associated to fish
genus and not to species, we find high intraclass variability in
many cases. Therefore, the database, though having only 66
samples, plays a challenging role in testing graph classifica-
tion. The number of maximum, minimum and average vertices
for the dataset are 509, 260 and 367.36.

CATH1: The CATH1 dataset consists of proteins in the same
class (i.e Mixed Alpha-Beta), but the proteins have different
architectures (i.e. Alpha-Beta Barrel vs. 2-layer Sandwich).
There are 712 test graphs in the CATH1 dataset.

NCI1: The NCI1 dataset consists of graphs representing two
balanced subsets of datasets of chemical compounds screened
for activity against non-small cell lung cancer and ovarian can-
cer cell lines respectively. There are 4110 graph based struc-
tures in NCI1.
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Table 2. Classification accuracy (in % ± standar error) on the graph datasets.
Datasets MUTAG PPIs PTC(MR) COIL5 Shock GatorBait CATH1 NCI1
QJSK 83.83 ± 0.49 70.57 ± 1.20 58.23 ± 0.80 69.78 ± 0.37 44.86 ± 0.64 14.33 ± 0.90 −− 67.40 ± 0.20
QJSKT 81.55 ± 0.53 68.12 ± 0.84 57.44 ± 0.36 70.15 ± 0.63 44.00 ± 1.20 20.00 ± 1.19 98.53 ± 0.18 67.00 ± 0.15
QJSU 82.72 ± 0.44 69.50 ± 1.20 56.70 ± 0.49 70.11 ± 0.61 40.60 ± 0.92 7.77 ± 0.41 98.12 ± 0.19 69.09 ± 0.20
WL 82.05 ± 0.57 78.50 ± 1.40 56.05 ± 0.51 33.16 ± 1.01 36.40 ± 1.00 17.00 ± 1.01 94.36 ± 0.14 80.68 ± 0.27
SPGK 83.38 ± 0.81 61.12 ± 1.09 56.55 ± 0.53 69.66 ± 0.52 37.88 ± 0.93 18.83 ± 0.96 98.32 ± 0.17 74.21 ± 0.30
JSGK 83.11 ± 0.80 57.87 ± 1.36 57.29 ± 0.41 69.13 ± 0.79 21.73 ± 0.76 13.16 ± 0.97 98.02 ± 0.11 62.50 ± 0.33
BRWK 77.50 ± 0.75 53.50 ± 1.47 53.97 ± 0.31 14.63 ± 0.21 0.33 ± 0.37 −− −− 60.34 ± 0.17
RWGK 80.77 ± 0.72 55.00 ± 0.88 55.91 ± 0.37 20.80 ± 0.47 2.26 ± 1.01 −− −− −−

Table 3. CPU time usage for the kernel matrices computation in seconds.
Datasets MUTAG PPIs PTC(MR) COIL5 Shock GatorBait CATH1 NCI1
QJSK 1.2 · 101 1.4 · 104 1.1 · 102 6.0 · 104 0.5 · 101 4.8 · 103 > 1day 1.6 · 104

QJSKT 2.9 · 101 1.5 · 102 1.7 · 102 1.9 · 103 1.2 · 101 4.8 · 102 3.9 · 104 1.4 · 104

QJSU 2.0 · 101 5.9 · 101 1.1 · 102 1.1 · 103 1.4 · 101 2.7 · 103 3.7 · 104 1.1 · 104

WL 0.4 · 101 1.3 · 101 1.1 · 101 6.5 · 101 0.3 · 101 3.5 · 101 1.6 · 102 1.5 · 102

SPGK 0.1 · 101 0.7 · 101 0.1 · 101 3.1 · 101 0.1 · 101 0.3 · 101 1.3 · 101 8.3 · 101

JSGK 0.1 · 101 0.1 · 101 0.1 · 101 0.1 · 101 0.1 · 101 0.1 · 101 0.1 · 101 0.1 · 101

BRWK 0.1 · 101 8.6 · 102 0.3 · 101 1.1 · 103 0.8 · 101 > 1day > 1day 4.1 · 102

RWGK 4.6 · 101 6.7 · 101 1.5 · 102 1.2 · 103 2.3 · 101 > 1day > 1day > 1day

5.2. Experiments on Standard Graph Datasets

Experimental Setup: We compare the performance of the pro-
posed kernel (QJSK) as well as the one on minimum spanning
trees (QJSKT) with that of several alternative state-of-the-art
graph kernels. These kernels include 1) the unaligned quantum
Jensen-Shannon kernel (UQJS) associated with the continuous-
time quantum walk Bai et al. (2015a), 2) the Weisfeiler-Lehman
subtree kernel (WL) Shervashidze et al. (2010), 3) the short-
est path graph kernel (SPGK) Borgwardt and Kriegel (2005),
4) the Jensen-Shannon graph kernel associated with the steady
state random walk (JSGK) Bai and Hancock (2013), 5) the
backtrackless random walk kernel using the Ihara zeta function
based cycles (BRWK) Aziz et al. (2013), and 6) the random-
walk graph kernel Kashima et al. (2003). For the proposed k-
ernels, we let T = 30. In fact, as we let T # 30 we observe
that the von Neumann entropy of the density matrices reaches
an asymptote. While the optimal procedure would be that of
selecting the value of T through cross-validation, the compu-
tational complexity of the kernel makes it unfeasible to do so.
Moreover, previous work has shown that letting T → ∞ allows
us to achieve a good trade-off in terms of accuracy and com-
putational effort Rossi et al. (2013b, 2015). For the Weisfeiler-
Lehman subtree kernel, we set the dimension of the number
of iterations for the Weisfeiler-Lehman isomorphism test to 10.
Based on the definition in Shervashidze et al. (2010), this means
that we compute 10 different Weisfeiler-Lehman subtree kernel
matrices, i.e., k(1), k(2), . . . , k(10), corresponding to different
subtree heights h(h = 1, 2, . . . , 10). Note that the WL kernel is
able to accommodate attributed graphs. In our experiments, we
use the vertex degree as a vertex label for the WL kernel.

Given these datasets and kernels, we perform a 10-fold cross-
validation using a C-Support Vector Machine (C-SVM) to eval-
uate the classification accuracies of the different kernels. More
specifically, we use the C-SVM implementation of LIBSVM.
For each class, we use 90% of the samples for training and the
remaining 10% for testing. The parameters of the C-SVMs are

optimized separately on the training set for each dataset. We
report the average classification accuracies (± standard error)
of each kernel in Table 2 and the time usage of computing the
kernel matrices for each kernel in Table 3. The time usage is
measured under Matlab R2011a running on a 2.5GHz Intel 2-
Core processor, i.e., i5-3210m.

Results: Overall, in terms of classification accuracy the QJSK
and QJSKT kernels outperform or are competitive with the
state-of-the-art kernels. In particular, the classification accura-
cy of our quantum kernels is significantly better than that of the
graph kernels based on classical random walks and backtrack-
less random walks, over all the datasets. This suggests that the
proposed kernels can better capture the structural characteristic-
s of the graphs. With respect to the quantum Jensen-Shannon
kernel based on continuous-time quantum walks, we observe a
significant improvement on the PTC, PPIs, GatorBait, CATH1
and Shock datasets. This is because a discrete-time quantum
walk can be seen as a walk on the line graph, and therefore it
can reflect richer graph characteristics than its continuous-time
version. Furthermore, we observe that the performance of the
QJSK kernel is marginally better than that of the QJSKT kernel.
This is because the QJSKT kernel is computed on the minimum
spanning trees, which inevitably lead to a partial loss of struc-
tural information. On the other hand, the performance of the
QJSKT kernel is still competitive with respect to the QJSK k-
ernel. This is because the spanning trees are constructed from
the commute time matrix on the original graphs. As we ob-
served in the previous sections, the commute time embedding
is robust with respect to structural noise and it is well suited to
capture the fundamental structural characteristics of the origi-
nal graphs. As a result, the QJSKT kernel is still able to capture
the dominant structural similarity between the original graphs
while considerably reducing the computational complexity. In-
terestingly, we observe that on the GatorBait dataset the QJSKT
kernel performs significantly better than the QJSK kernel. We
argue that this is due to the fact that the graph simplification step
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Table 4. Win/Loss/Tie matrix for the kernels used in the experiments.
Kernels QJSK QJSKT QJSU WL SPGK JSGK BRWK RWGK Total
QJSK 3/0/2 2/0/3 4/1/0 3/0/2 3/0/2 5/0/0 5/0/0 25/1/09
QJSKT 0/2/3 2/2/1 3/1/1 3/0/2 3/1/1 5/0/0 5/0/0 21/6/8
QJSU 0/3/2 1/2/2 3/1/1 2/0/3 3/0/2 5/0/0 4/0/1 18/6/11
WL 1/4/0 1/3/1 1/3/1 1/3/1 2/3/0 5/0/0 4/0/1 15/16/4
SPGK 0/3/2 0/3/2 0/2/3 3/1/1 3/1/1 5/0/0 5/0/0 16/10/9
JSGK 0/3/2 1/3/1 0/3/2 3/2/0 1/3/1 5/0/0 5/0/0 15/14/6
BRWK 0/5/0 0/5/0 0/5/0 0/5/0 0/5/0 0/5/0 0/5/0 0/35/0
RWGK 0/5/0 0/5/0 0/4/1 0/4/1 0/4/1 0/5/0 5/0/0 0/32/3

in some cases may be able to separate the noise from the core
structure of a graph, thus improving the classification accuracy.

In terms of time usage, the QJSK and QJSKT kernels are not
the fastest kernels. This is because the time complexity of the
proposed QJSK and QJSKT kernels is cubic in the number of
edges of the graph. In contrast, the time complexity of other al-
ternative kernels is cubic or quadratic in the number of vertices.
Recall that for a connected graph with n vertices, the number of
edges is between n(n − 1)/2 and n − 1. As a result, the compu-
tation of the QJSK and QJSKT kernels is more expensive than
most alternative kernels. However, we observe that both ker-
nels are computed in polynomial time. At the same time, the
state space of the QJSK and QJSKT kernels is the set of arcs
rather than the set of vertices, which allows to represent graphs
into a higher dimensional space than alternative kernels. Thus,
for most datasets, the classification accuracy of the proposed
kernels is better or at least competitive to that of alternative k-
ernels. Finally, note that as the size of the input graphs and the
edge numbers grow, the time usage associated with the QJSKT
kernel is significantly less than that associated with the QJSK
kernel. This indicates that the QJSKT kernel represents a good
trade-off between classification performance and computation-
al efficiency, compared to the QJSK kernel. In particular, when
the graphs are very dense, as in the PPI and CATH1 datasets,
the QJSK kernel is orders of magnitude slower than the QJSKT
as well as the QJSU kernel.

5.3. Statistical Analysis of Proposed and Alternative Kernels
Table 2 indicates that the proposed QJSK and QJSKT ker-

nels significantly outperform the BRWK and RWGK kernels.
However, for some datasets, the WL, SPGK and QJSU kernels
are competitive with respect to the proposed kernels. In other
words, there is no kernel that performs best on any dataset. To
evaluate the best kernel over all datasets, we count the number
of datasets on which each kernel performs better, worse, or e-
qually to other kernels. Note that some kernels cannot complete
the kernel matrix computation on some datasets. Therefore, we
restrict our analysis on those datasets where all the kernels com-
plete the computation.

Table 4 shows the Win/Loss/Tie matrix for the kernels used
in the experiments. The (i, j)th element of the matrix shows
the number of datasets where the kernel corresponding to the
ith row has won/lost/tied against the kernel corresponding to
the jth column. A tie is defined as a dataset on which the d-
ifference in classification accuracy between two kernels is not
statistically significant. The last column of Table 4 shows the
total number of wins/losses/ties for a given kernel, and the best

and second best performing kernels are highlighted in bold and
italic, respectively.

The experimental results show that the QJSK and QJSKT k-
ernels clearly outperform the alternative kernels, with the QJSK
kernel performing worse than the alternative kernels in only one
case. However, recall from Table 3 that the QJSK kernel is
considerably slower than the alternative kernels. In other word-
s, the QJSK kernel is a better choice for small datasets where
the graphs are relatively sparse. In particular, note that for the
Shock dataset, where the graphs are trees, the QJSK and QJSKT
kernels coincide, while the runtime of the latter is higher due to
the commute time distance computation. On the other hand, the
QJSKT kernel is less computationally demanding, thus mak-
ing it more applicable to larger and denser graph datasets. At
the same time, Table 4 shows that the QJSKT kernel performs
favourably when compared with the alternative kernels, under-
lying once more the optimal trade-off between time usage and
classification accuracy.

We also observe that the proposed kernels outperform the al-
ternative kernels on all the computer vision datasets considered
in this study (COIL5, Shock, and GatorBait), whereas the per-
formance of the WL kernel seems to be consistently high on
the bioinformatics datasets. Finally we should stress that the
proposed kernels do not take potential node or edge attributes
into account, while some of the alternative kernels do. Hence,
the QJSK and QJST kernels are better suited for the analysis of
unattributed graphs.

6. Conclusion and Future Work

In this paper, we have developed a new family of quantum
Jensen-Shannon kernels for graphs using the quantum Jensen-
Shannon divergence and discrete-time quantum walks. The ker-
nels can reflect richer graph characteristics than kernels based
on continuous-time quantum walks. The experimental result-
s demonstrate the effectiveness and efficiency of the proposed
kernels.

It is clear from their definition that both the proposed graph
kernels are not permutation invariant. This is because the quan-
tum Jensen-Shannon divergence requires mixing the quantum
states corresponding to the walks on the input graphs. When
constructing this mixed state, however, we do not take into ac-
count the correspondences between the vertices of two graphs.
This in turn influences the estimation of the mixed state entropy
and thus the precise kernel measure between the graphs. Future
work will be aimed at developing our kernels one step further
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by introducing an alignment step that captures the correspon-
dence information between the vertices of the graphs.

Furthermore, unlike the quantum Jensen-Shannon kernel-
s associated with continuous-time quantum walks Bai et al.
(2015a); Rossi et al. (2015), for which a closed form solution
of the density matrix is available, the proposed kernels need
to explicitly simulate the evolution of the discrete-time quan-
tum walk step by step. As a result, the proposed kernels may
be computational inefficient when applied on large graphs. To
address this problem, future work will be aimed at developing
a closed form solution of the density matrix associated with
discrete-time quantum walks.

Finally, the proposed kernels cannot accommodate attributed
graphs. In our previous work Bai et al. (2014b), we have devel-
oped an attributed graph kernel associated with continuous-time
quantum walks. Similarly, future work will investigate the pos-
sibility of extending the discrete-time quantum walk kernels to
deal with attributed graphs.
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