Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs

Joshi, Sameer, Hussain, Maryam T., Roces, Carla B., Anderluzzi, Giulia, Kastner, Elisabeth, Salmaso, Stefano, Kirby, Daniel J. and Perrie, Yvonne (2016). Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs. International Journal of Pharmaceutics, 514 (1), pp. 160-168.

Abstract

Despite the substantial body of research investigating the use of liposomes, niosomes and other bilayer vesicles for drug delivery, the translation of these systems into licensed products remains limited. Indeed, recent shortages in the supply of liposomal products demonstrate the need for new scalable production methods for liposomes. Therefore, the aim of our research has been to consider the application of microfluidics in the manufacture of liposomes containing either or both a water soluble and a lipid soluble drug to promote co-delivery of drugs. For the first time, we demonstrate the entrapment of a hydrophilic and a lipophilic drug (metformin and glipizide respectively) both individually, and in combination, using a scalable microfluidics manufacturing system. In terms of the operating parameters, the choice of solvents, lipid concentration and aqueous:solvent ratio all impact on liposome size with vesicle diameter ranging from ∼90 to 300 nm. In terms of drug loading, microfluidics production promoted high loading within ∼100 nm vesicles for both the water soluble drug (20–25% of initial amount added) and the bilayer embedded drug (40–42% of initial amount added) with co-loading of the drugs making no impact on entrapment efficacy. However, co-loading of glipizide and metformin within the same liposome formulation did impact on the drug release profiles; in both instances the presence of both drugs in the one formulation promoted faster (up to 2 fold) release compared to liposomes containing a single drug alone. Overall, these results demonstrate the application of microfluidics to prepare liposomal systems incorporating either or both an aqueous soluble drug and a bilayer loaded drug.

Publication DOI: https://doi.org/10.1016/j.ijpharm.2016.09.027
Divisions: Life & Health Sciences > Pharmacy
Life & Health Sciences
Life & Health Sciences > Applied Health Research Group
Additional Information: © 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Funding: EPSRC (EP/L015218/1 and EP/I033270/1) and EU H2020 (643381). Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ijpharm.2016.09.027.
Uncontrolled Keywords: liposomes,microfluidics,water soluble drugs,poorly soluble drugs,bilayer loading,manufacturing,Pharmaceutical Science
Full Text Link:
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
Published Date: 2016-11-30
Authors: Joshi, Sameer
Hussain, Maryam T.
Roces, Carla B.
Anderluzzi, Giulia
Kastner, Elisabeth
Salmaso, Stefano
Kirby, Daniel J. ( 0000-0002-0878-2620)
Perrie, Yvonne

Export / Share Citation


Statistics

Additional statistics for this record