Public Support for Business Innovation in Mexico: A Cross-Sectional Analysis

Dr. Juan L Martinez-Covarrubias
Department of Economics, Kemmy Business School, University of Limerick, Limerick, Ireland; e-mail: Juan.M.Covarrubias@ul.ie; telephone number: + 353 (0) 61 20 2079

Prof. Helena Lenihan
Department of Economics, Kemmy Business School, University of Limerick, Limerick, Ireland; e-mail: helena.lenihan@ul.ie; telephone number: + 353 (0) 61 20 2079

Prof. Mark Hart (Corresponding author)
Economics, Finance and Entrepreneurship Group, Aston Business School, Aston University, Birmingham, UK; e-mail: mark.hart@aston.ac.uk; telephone number: + 44 (0) 121 204 3048

Abstract.

This paper explores the impact of government support in Mexico on the likelihood of firms achieving functional and/or inter-sectoral upgrading in global value chains (GVC). Employing a unique dataset, regression analysis was undertaken to estimate the predicted probabilities of firms upgrading in GVCs considering their regional location. The results suggest that firms located in Mexico City are more likely to achieve functional upgrading vis-à-vis northern firms. Additionally, the presence of an R&D laboratory is crucial if firms are to engage in upgrading. There was no evidence that government support affects the likelihood of firms achieving functional and/or inter-sectoral upgrading.

Keywords:
Business innovation policy; developing countries; upgrading in global value chains; dual control group analysis; regional heterogeneity.

JEL classification:
L53 Enterprise Policy
O31 Innovation and Invention: Processes and Incentives
R12 Size and Spatial Distributions of Regional Economic Activity
R58 Regional Development Planning and Policy
1. INTRODUCTION

The United Nations Conference on Trade and Development (UNCTAD, 2011) and the Organisation for Economic Cooperation and Development (OECD, GURRÍA, 2012) are increasingly debating the topics of innovation and ways to upgrade Global Value Chains (GVCs) in the context of developing countries. However, these institutions have not developed methods that accurately evaluate the impact of government innovation interventions (policy instruments) with particular focus on their effectiveness in helping firms to upgrade in GVCs. This may reflect the fact that the literature on innovation policy evaluation (TODD and WOLPIN, 2010) has fallen short in considering the impact of government innovation interventions on the likelihood of firms achieving functional or inter-sectoral upgrading, and the extent to which this varies by region. Assessing the performance and impact of these policy instruments is important for maintaining accountability (LENIHAN, 2011) and to enable policymakers to ensure that future interventions are appropriate, effective, and efficient (NIOSI, 2010).

This paper suggests that the optimum policy design needs to take the regional context into account. Yet the concept of a region is ambiguous. Given the globalisation process, the concept of a region relates to a vague notion in which a region is a fraction of the whole (MORENO-PEREZ, 2008). The objective of this paper is to empirically investigate the factors that impact upon the likelihood of firms achieving functional and/or inter-sectoral upgrading, explicitly incorporating government support for business innovation1 and testing for regional differences when firms upgrade in GVCs.
The results suggest that regional context significantly affects the likelihood of firms to upgrade in GVCs, with firms located in Mexico City more likely to upgrade vis-à-vis firms located in the north of the country. Another significant factor to upgrade is the presence of an R&D laboratory. Surprisingly, there is no evidence that government support makes a difference when upgrading in GVCs. This paper makes both theoretical and policy based contributions. Thorough research indicates this is the first time that: 1) the likelihood to upgrade in GVCs is estimated by means of econometric analysis, providing insights to the policy making community to better design future instruments; and 2) regional heterogeneity to upgrade in GVCs in Mexico has been tested, proving that region matters.

The paper is structured as follows: Section 2 presents a review of the literature on GVCs with a particular focus on the importance of firms upgrading in developing countries, the impact of regional location, and government intervention. Additionally, this section sets out the hypotheses to be tested. Section 3 presents methods and data issues. Section 4 includes the estimation results from the econometric analysis with a view to identifying causal relationships posed in the hypotheses. Findings, policy implications, and study limitations are presented in section 5. The results provide evidence supporting the development of theory in the areas of GVCs, innovation, and regional studies. Policy design should consider that a range of factors may affect the scale of innovation activities in different regions. Conclusions and avenues for future research are presented in section 6.
2. UPGRADING IN GLOBAL VALUE CHAINS, REGIONAL LOCATION AND GOVERNMENT INTERVENTION

The literatures on GVCs, the role of regions in terms of economic performance, and on the rationale for government intervention are invoked.

Global Value Chains

According to PIETROBELLI and RABELLOTTI (2006), a firm’s environment is shaped by first, the collective efficiency of the cluster in which the firm operates, second, the pattern of governance of the value chain, and third, the sectoral dimension related to peculiar joint features that characterise learning and upgrading patterns. Building on HUMPHREY and SCHMITZ’s (2000) contribution, PIETROBELLI and RABELLOTTI (2006) recognised four types of upgrading for firms: process, product, functional, and inter-sectoral. The third and fourth types of upgrading, have particular importance in terms of improving a firm’s position within GVCs. Functional upgrading is the acquisition of new, superior functions in the value chain (such as design or marketing) or the abandonment of lower-value-added functions so that the firm can focus on higher-value-added activities. Inter-sectoral upgrading, on the other hand, involves the application of competence acquired in a particular function to move into a new sector, often in superior products or services.

Regional Location

There is an increasing literature that tests regional differences when analysing
upgrading in GVCs (e.g. PAVLÍNEK and ŽENKA, 2010), however to date such studies have not concerned themselves with the Mexican case. Given the ‘maquila’ phenomenon, it is important to bear in mind that firms located in the north of the country are more likely to be embedded in GVCs with a hierarchical and quasi-hierarchical governance pattern *vis-à-vis* firms located in the centre and south, where GVCs are more likely to exhibit a network or market governance pattern. If this is the case, then it would be reasonable to expect that businesses located in the northern region are less likely to achieve functional and/or inter-sectoral upgrading *vis-à-vis* central and southern firms, as predicted by HUMPHREY and SCHMITZ (2002). These central and southern firms would be more likely to achieve these type of upgrading given their ease of access to alternative markets (outside of the US and Canada), such as the national market and the rest of Latin America. Having said this, it is reasonable to expect that some variables affecting the likelihood of firms upgrading in GVCs (which will be explained in subsequent sections) may have different effects in different regions of the country.

This study incorporates a spatial dimension regarding the study of GVCs as suggested by FOLD (2014). In this vein, Mexico has very high inter-regional disparities in income levels and productivity. For instance, CHÁVEZ and FONSECA (2012) found differences in the level of technological development, measured in terms of structural efficiency, between the northern and central regions as compared to the south that partially explains the labour productivity gap among regions. This can be explained by means of the effects of trade liberalisation that Mexico engaged in over the last three decades. Major trade
reforms introduced in 1985 and 1994 have had a profound effect on the difference of performance in relative employment growth and relative efficiency among Mexican regions. CHIQUIAR (2005) provided evidence that Mexico’s trade reforms, effected through NAFTA with the US and Canada led to a divergent pattern in internal regional economic performance. Measured in terms of per capita output levels, northern firms in Mexico outperformed central and southern firms. Trade liberalisation has increased ties between northern Mexico and the United States, at the same time the ties between northern and southern Mexico have weakened. This can be explained by the role of distance from the border with the US being an important factor (HANSON, 1998).

Role of Government

Given that the national innovation systems of developing countries are underdeveloped, lacking in terms of absorptive capacity, technological capabilities, fertile ecology and robust innovation systems vis-à-vis developed countries (DUTRÉNIT et al., 2010), policies to support these factors are justified. Several evaluations of innovation policies in the Latin American region have taken place, such as those of HALL and MAFFIOLI (2008), yielding interesting insights regarding impacts of government support for business innovation on the standard types of innovation output (i.e. product, process, marketing and organisational), in line with the Oslo Manual (OECD, 2005). However, they fall short in measuring the type of innovation suggested by PIETROBELLI and RABELLOTTI (2006) that are crucial for developing countries. This paper aims to fill this gap.
If prospects for development are a priority in the design of business innovation policies, then policy makers in developing countries should be concerned with the likelihood that functional and/or inter-sectoral upgrading will occur. International organisations, such as the UNCTAD and the OECD, are increasingly exploring innovation and upgrading in GVCs in the context of developing countries. Assuming that policy makers in developing countries follow the lead of these international organisations, it becomes important to consider the context-specific factors in developing country regions. In Latin America, such factors include the low propensity to undertake R&D activities in-house (ARCHIBUGI and PIETROBELLI, 2003), the absence of linkages between firms and universities and weak local knowledge dissemination networks (CIMOLI and KATZ, 2002), and the withdrawal from engineering-intensive industries that results from specialisation in resource-based sectors (HUANG and MIOZZO, 2004).

The central theoretical arguments which shape this research are: first, functional and inter-sectoral upgrading in GVCs are the type of innovation required by developing countries, as they offer opportunities for firms to compete successfully in the global economy. Therefore, it is necessary to explore the factors affecting the likelihood of firms upgrading in GVCs. Second, differences in regional characteristics and economic performance are important when designing policy interventions. Regional features should inform policies, such as the availability of a specialised labour market, local inputs, and ease of access to markets and market information. Third, given the role of government...
in promoting innovation, it is paramount to determine the impact of government policy in terms of firms upgrading in GVCs. These three central arguments of the theoretical underpinnings previously discussed shape the research question and the following hypotheses.

Hypothesis 1. The likelihood that a firm will functionally and/or inter-sectorally upgrade in GVCs depends on four dimensions:

1a: Cluster collective efficiency, defined as the competitive advantage derived from local external economies and joint action.

1b: Governance pattern of GVCs, which is the type of coordination required to decide what, how, and how much is to be produced in the value chain.

1c: The sector in which the firm operates, which relates to the distinctive patterns of learning and innovation by economic sectors.

1d: The regional location. Firms located in the north region are less likely to functionally and/or inter-sectorally upgrade in GVCs as compared to firms in the centre and south of Mexico.

The main expectation is that these variables are statistically significant. (The sign expectation for each variable is presented later in Table 1, section 3).

Hypothesis 2. Government support for business innovation in Mexico in the period 2006-09 increases the likelihood that firms will functionally and/or inter-sectorally upgrade in GVCs.
3. METHODOLOGY

This paper adopts a quantitative (regression analysis) approach to investigate causal relationships related to the likelihood of firms upgrading in GVCs. The evaluative framework developed represents current ‘best’ practice, as advocated by FRITSCH and STOREY (2014). It is important to bear in mind that the qualitative approach carried out by PIETROBELLI and RABELLOTTI (2006) was able to show how a firm or group of firms produced perceived upgrading within its GVC. Indeed, the comprehensive analysis conducted by these authors enabled the operationalisation of the variables for upgrading and clustering by formulating questions and scenarios based on the definitions identified by them.

The evaluation framework adopted here comprises a cross-sectional analysis for the period 2006-09 and employs a 2-step HECKMAN (1979) selection model.

(a) Modelling upgrading in GVCs

Given the nature of the data collection, an issue looked at in more detail later, sampling bias may arise due to self-selection of our ‘treated’ respondents. To account for this potential problem, the following 2-step Heckman selection model (HECKMAN, 1979) is adopted, as proposed by HART et al. (2008) and GREENE (2014).

A biprobit Heckman approach (GREENE, 2014) is used, where a recursive model is simultaneously estimated for two equations: selection and structural...
(SAVIGNAC, 2008) to measure the likelihood of firms achieving functional and/or inter-sectoral upgrading in GVCs.

In the first stage, the so-called selection equation (equation 1), a probit model is estimated that calculates the probability that a firm will receive government support for business innovation (a dummy that takes a value of 1 if the firm has received public support in the period 2006-09 and 0 otherwise). In this analysis the same regressors of the structural equation are included, plus the dummy political affinity to address the identification problem, which is explained below.

The selection equation:

\[
\Pr(F_i|z_i) = \Phi(\eta_i^*)
\]

\[
\eta_i^* = z_i \Theta + M_{si}
\]

The second stage - the estimate of the structural equation (equation 2) – focuses on firms that have achieved functional and/or Inter-sectoral upgrading in GVCs but controls for possible sample selection bias by incorporating an additional explanatory variable, the so-called Inverse Mill’s Ratio (IMR).

The structural equation:

\[
\Pr([F_i; I_i]|x_i) = \Phi(\eta_i)
\]

\[
\eta_i = x_i \Lambda + M_{oi}
\]

The dependent variables in the structural equation (equation 2) are dichotomous: the value 1 is taken if either functional and/or inter-sectoral upgrading is achieved; otherwise 0 (see Table 1). The measurement of these dependent variables is based on the self-assessment responses from
interviewed managing directors of firms that responded to the survey. The
independent variable, denoted as \(x_i \) in equation 2, represents the vector of 15
explanatory variables (see Table 1).

Relevant variables for evaluating public support for business innovation impact
in developing countries can be identified using the prevailing evaluation
literature (O'REGAN et al., 2006). The contributions of GEREFFI (2014) also
enable a better identification of the relevant variables in the model, reducing the
number of control variables (Table 1) to determine the likelihood of upgrading
in GVCs in the Mexican context over the period 2006-09.

These variables are the age of the firm; ownership (indigenous versus foreign-
owned firm); absorptive capacities (R&D employment, relative measure in
terms of total employment, thus, specifying it as a continuous variable);
technological capabilities (R&D laboratory and formal R&D department); firm
size; firm structure; whether or not the firm exports; sector; governance pattern
in GVCs; external economies of clustering\(^7\); R&D linkages\(^8\); level of annual
R&D investment\(^9\) (relative measure in terms of total turnover), and region where
the firm is located. In equation 2, vector \(x_i \) includes a binary variable
representing government support for business innovation – it takes the value 1
if a firm received support and 0 otherwise.

The vector \(z_i \) in equation 1 includes same variables, except government support
for business innovation, which is considered the dependent variable. The
identification problem is addressed by including ‘political affinity’ as an
instrumental variable (NIETO, 2011). This is a binary variable taking the value of 1 if the political party in power of local government (where the firm operates) is the same political party in power of the federal government (who actually allocates the government support for business innovation). It takes the value of 0 otherwise. This variable is used as proxy for ‘political clientelism’, which is defined as “the distribution of resources by politicians in exchange for support” (MONTERO, 2010, p.116). This variable is expected to affect the probability of receiving government support for business innovation and not necessarily affect innovative output.

[Table 1 here]

(b) Data and characteristics of the sample

A unique data set comprising business performance and innovation measures during the period 2006 to 2009 for 477 firms in Mexico was collected. Although the aim was to achieve a randomly defined sample, programme-selection bias was latent; however, the 2-step Heckman selection model detailed in section 4 is designed to address this problem. The sample was extracted from the Mexican National Register of Scientific and Technological Institutes and Enterprises, known as RENIECYT (CONACYT, 2011), and the Mexican Entrepreneurial Information System (SIEM, 2015). RENIECYT (SIICYT, 2011) comprises all firms and entities that have applied on at least one occasion for public financial support for business innovation. It includes recipients (successful applicants) of government support as well as non-recipients (unsuccessful applicants) with similar characteristics. From the sample, 164
firms are recipients (successful applicants during 2006-09). To achieve the most accurate insights regarding the effect of government support, two control groups (non-recipients) were constructed: the first comprised 157 unsuccessful applicants for support during 2006-09; the second comprised 156 non-applicants identified from the official record for businesses in Mexico (SIEM), which comprises all firms operating in Mexico. Random sampling selection was performed to gather data on R&D and innovation activities and impacts of interest through the survey. The second control group (non-applicants) was carefully built to match the characteristics of recipients in terms of location, sector, and firm size.

A telephone survey was performed, with an overall response rate of 20 per cent: from the 2,385 firms contacted, 477 agreed to be interviewed. During data collection, more than 80 per cent of respondents could not provide details on the specific type of government support for business innovation they had received. As a result, a general/aggregate measure for business innovation policy instruments (i.e., government support) was used, and therefore the various instrument types could not be distinguished, which is a limitation of the current study.

4. ESTIMATION RESULTS

The dual control group approach addresses the difference in effects between innovation willing firms (recipients-control group 1) vs. innovation non-willing firms (recipients vs. control group 2), and it is in line with SAVIGNAC’s (2008)
approach to address potential problems of endogeneity of obstacles and propensity to innovate.

(a) Dual control group analysis

Table 2 presents descriptive statistics of recipients and non-recipients by functional upgrading, inter-sectoral upgrading, and the critical variables used in the regressions presented in tables 4 and 5. Although there are no statistical differences between the two types of upgrading, it is noteworthy that recipients show an average functional upgrading of 68 per cent in the period 2006-09, while the mean for unsuccessful applicants (control group 1) is 64 per cent in the same period. Nevertheless, non-applicants (control group 2) show an average (66%) higher than that of unsuccessful applicants. Interestingly, in terms of inter-sectoral upgrading, the results are mixed. When comparing recipients and control group 1 (unsuccessful applicants), more recipients (42%) seem to achieve this type of upgrading than do unsuccessful applicants (35%). However, when comparing recipients and the second control group (non-applicants), it seems that more non-applicants (48%) achieve inter-sectoral upgrading than do recipients (42%). There is no statistical difference among the three groups with regards to the two types of upgrading. The only statistical difference can be observed between the two control groups in terms of inter-sectoral upgrading. It is interesting to observe that for all groups, functional upgrading is more frequent (64–68%) than inter-sectoral upgrading (35–48%).

[Table 2 here]
As evidenced in Table 2, statistical differences between recipients and both control groups can be observed in terms of 9 variables. These variables are R&D employment, R&D laboratory, R&D department, size, structure, exporter, external economies of clustering regarding ease of information and markets, R&D linkages, and R&D investment. Of particular interest vis-à-vis hypothesis 1 is the fact that control group 1 is statistically different from control group 2 in terms of inter-sectoral upgrading and R&D department. Specifically, 40 per cent of unsuccessful applicants have an R&D department, while only 28 per cent of non-applicants have this kind of facility. Table 3 exhibits the regional differences identified from the survey data. When conducting significance tests, these regional differences are noticeable in terms of functional upgrading, inter-sectoral upgrading, R&D laboratory, R&D department, exporter, governance pattern in GVC, external economies of clustering with specialised labour market availability and ease of information and markets; and R&D linkages. The results suggest that firms located in Mexico City differ to firms located in the north with respect of functional upgrading, inter-sectoral upgrading, R&D laboratory or R&D department. It seems that firms located in the north tend to operate in GVCs with hierarchical and/or quasi-hierarchical governance patterns vis-à-vis firms located in the rest of the country. The latter appear to operate mainly in GVCs with market or networking governance patterns. In general terms, firms located in the south exhibit weak performance in terms of having R&D laboratories or R&D departments; exporting; external economies of clustering in terms of specialised labour market availability, and ease of information and markets; and, R&D linkages vis-à-vis firms located elsewhere in the country.
Clear regional differences arise with the south region lagging in terms of economic and innovation activities.

[Table 3 here]

To address the potential problem of selection bias, the 2-step Heckman model identified in equations 1 and 2 was performed (on two occasions). The first estimation applies to recipients (successful applicants) and control group 1 (unsuccessful applicants). The second estimation applies to recipients and control group 2 (non-applicants). Considering each control group separately, Table 4 presents the results of the biprobit model. Heteroskedasticity and collinearity have been tested. The results suggest that multicollinearity is not an issue in this model. However, heteroskedasticity is present, so robust standard error estimation is employed.

[Table 4 here]

The estimation results of the selection equation, in the various specifications (columns 3, 7, 11, and 15 of Table 4) found eight statistically significant variables. These are ownership, R&D employment, R&D department, size, exporter, R&D linkages, R&D investment, and the control variable political affinity. In line with the results presented in Table 4, the average marginal effects of the biprobit models, with sample selection, are estimated, explaining the factors correlated to the propensity to achieve functional upgrading and inter-sectoral upgrading (see Table 5).
Table 5 presents the average marginal effects regarding the probability of a recipient achieving functional and/or inter-sectoral upgrading compared to each control group of non-recipients. The results suggest that region (Mexico city vs. North, column 1, 3 and 5), and its combined effect with the presence of a R&D laboratory (column 1 and 5) and clustering (column 5) affect the likelihood to upgrade in GVCs. In this regard, hypothesis 1d cannot be rejected. In terms of government support, the results suggest that it does not affect the likelihood of firms upgrading functionally or inter-sectorally in GVCs. Despite being included in the structural model, the selection term does not affect the outcome. This result disproves the second hypothesis.

The estimation of the structural model with recipients and the first control group (unsuccessful applicants) reports five statistically significant variables affecting the likelihood of achieving functional upgrading: R&D laboratory, structure, sector, governance pattern in GVCs, and region. The average marginal effects reported in Table 5 allow for the discussion of the magnitude of the relationship identified above. The variable with the highest average impact is region, followed by governance pattern in GVCs and R&D laboratory. The combined effects (interactive term 1) of region and having or not an R&D laboratory are more interesting. They show that if the firm with the R&D department is located in Mexico City, its probability to achieve functional upgrading will increase even further. In terms of firm structure, a venture business is less likely to functionally
upgrade than an independent firm without subsidiaries. A firm operating in the specialised services sector is less likely to functionally upgrade than a firm operating in traditional manufacturing. A firm operating in a GVC with a market governance pattern is more likely to functionally upgrade than a firm in a hierarchical GVC.

The results support the argument of HUMPHREY and SCHMITZ (2000) that a hierarchical or quasi-hierarchical GVC makes it difficult to progress into the design and marketing functions of the chain. In terms of inter-sectoral upgrading, the estimation results identify three statistically significant variables with the highest average effect: R&D laboratory, R&D investment and region. The results suggest that firms located in Mexico City are more likely to achieve functional upgrading and/or inter-sectoral upgrading, respectively, vis-à-vis unsuccessful applicants located in the north. However, if firms are located in other parts of the country, there seems to be no significant effect on the likelihood of firms to achieve these types of upgrading.

With respect to recipients and the second control group (non-applicants), the second estimation reports six statistically significant explanatory variables affecting functional upgrading. These are governance pattern in GVCs –with the highest average effect- followed by ownership, R&D laboratory, region, sector, and external economies of clustering. The effect of region (i.e., recipients located in Mexico City vis-à-vis North) increases when considering combined effects (interactive term 1 and 2) with having an R&D department or with the presence external economies of clustering. With respect to the
estimation of inter-sectoral upgrading including recipients and control group 2 (non-applicants), six variables were found to be statistically significant: business age, R&D employment, R&D department, structure, exporter, and external economies of clustering.

In general, the average effect of R&D laboratories is one of the highest factors in achieving functional upgrading. This effect increases when combined with the effect of region. This supports the argument of RUSH et al. (2014) that technological capabilities are key to adapting, improving, and generating new technology endogenously. These capabilities increase innovation capacities and are essential to economic development. The accumulation of technological capacity is at least as important to economic development as capital accumulation. Another noteworthy result is that governance pattern in GVCs, clustering (external economies) and sector affect the likelihood of firms functionally upgrading in GVCs. These results suggest that hypotheses 1a, 1b and 1c cannot be rejected. This is linked with Hypothesis 1d: regions are heterogeneous when achieving functional and/or inter-sectoral upgrading in GVCs.

5. DISCUSSION OF RESULTS

Following prevailing ‘best’ practice in innovation policy evaluation techniques, the use of a biprobit Heckman model as applied in this paper is an appropriate, systematic, and rigorous method of estimating the impact of government support for business innovation on the likelihood of firms upgrading in GVCs in the case of a developing country such as Mexico. The use of two control groups
to analyse the impact of such support in Mexico is an innovative feature of this paper.

Studies by GIULIANI et al. (2005) and PIETROBELLI and RABELLOTTI (2006) relied on Likert scales when undertaking quantitative analysis with respect to 40 original case studies in Latin America; this was identified by the researchers themselves as a limitation of their own work. Responding to these studies, the testing of hypotheses 1a, 1b and 1c is the first attempt to directly identify causal relationships with respect to the likelihood of functional and/or inter-sectoral upgrading in GVCs. To extend the approach of these researchers, the 2-step Heckman model with logistic regression analysis was used to identify the factors that affect the likelihood of firms upgrading functionally and/or inter-sectorally. The results corroborate the suggestion of PIETROBELLI and RABELLOTTI (2006) that the likelihood of firms functionally upgrading is simultaneously affected by the governance pattern in value chains and the collective efficiency of clusters. In addition, it is shown that inter-sectoral upgrading is more difficult to achieve than functional upgrading. The implication is that different types of upgrading probability should be prioritised when designing policy programs and interventions. In line with the prevailing literature on business innovation in developing countries, this paper finds that technological capabilities – measured by having an R&D laboratory – are key drivers in terms of achieving enduring and solid competitiveness in developing countries.
By testing the effect of region, the results further corroborate the findings of CHAVEZ and FONSECA (2012), who claim that Mexico has strong inter-regional disparities in income and productivity. Moreover, the results of this model suggest that the effect of some variables (i.e. R&D laboratory and external economies of clustering) have more or less influence in different regions. This can be explained by the differences in regional development pathways and territorial embeddedness (FOLD, 2014) between these Mexican regions. This study provides evidence by adding another inter-regional disparity: the likelihood of firms to achieve functional upgrading in GVCs.

However, even when controlling for selection bias, no evidence was found to support hypothesis 2: that government support for business innovation affects the likelihood of firms achieving functional and/or inter-sectoral upgrading. In this particular context (Mexico) and period (2006-09), the results suggest that government support did not make any difference in terms of influencing firms to achieve the type of upgrading required by developing countries; this is at odds with the expectations from studies by PIETROBELLI and RABELLOTTI (2006). Given Mexico’s stage of economic development, this paper’s findings are surprising; further exploration of these issues in the context of Mexico and other developing countries could prove to be insightful. Possible reasons for this result may include institutional factors such as lack of a specific policy objective to support firms upgrading in GVCs or poor policy implementation. For instance, during this research, no specific policy instrument was found to be directly concerned with either functional or inter-sectoral upgrading in GVCs; therefore, although there are different instruments, they did not target the
characteristics of these types of innovations. In terms of poor policy implementation, evidence is provided by ITAM (2008) who evaluated the administration of two policy instruments (i.e. R&D subsidies, R&D tax breaks) in Mexico over a period of two years. The main findings of the ITAM study referred to a lack of financial control in the disbursement of support, coupled with a long time lag between the allocation of grants and disbursement (on average taking more than 15 months). This created delays to recipient firms in starting their innovation projects. In 30 per cent of the cases analysed, recipients just dropped out of the program and the innovation projects never took place. Although, this is only a small sample of all the instruments of government support for business innovation in Mexico, their results suggest the existence of some government failure (HAAPANEN et al. 2014).

6. CONCLUSIONS AND POLICY IMPLICATIONS

This paper contributes to the theories of the impact of innovation policies in developing countries and GVCs and provides new evidence. An adequate and appropriate evaluation framework was developed that allowed the testing of the impact of region and government support for business innovation on the likelihood of firms’ upgrading in GVCs, in Mexico. This framework makes the measurement of the likelihood of firms upgrading in GVCs possible. Moreover, this study constructed a unique dataset and employed econometric analysis to test the effectiveness of business innovation policies, and stylised facts available in previous qualitative empirical analyses. The paper highlights and models key factors of particular relevance in evaluating support for business innovation in developing countries with particular reference to Mexico. Such
factors include technological capabilities and absorptive capacities in the form of R&D laboratories and formal R&D departments.

The construction of the database used in this study represents an original contribution to knowledge given the nature of the firm-level data obtained. Methodologically, this paper makes a novel contribution to the innovation policy evaluation literature by using a dual control group analysis to gain a precise picture of the extent of the impact of government support for business innovation.

From a policy perspective, the results suggest that government support for business innovation in this particular context (Mexico) and period (2006-09) did not affect the likelihood of firms upgrading in GVCs. The variables identified as affecting functional and/or inter-sectoral upgrading can, however, serve as a guide to policy makers as they design future innovation policy interventions and instruments in the context of developing countries. The results also suggest that some variables have different effects in different regions. This indicates regional heterogeneity which should be borne in mind when designing a policy intervention, as proposed by FRITSCH and STOREY (2014).

Additional and currently unexplored questions arise from the findings of the paper and merit future investigation. For example, how do the effects of government support for business innovation evolve over time? What is the effect of government support for business innovation on other issues, such as behavioural additionalities? How might functional and inter-sectoral upgrading
affect the performance of firms? What are the effects of product and process upgrading on the performance of firms? How do different government innovation policy instruments specifically affect the promotion of business innovation in developing countries such as Mexico? Related to this issue, are some instruments more ‘optimal’ than others, and in what contexts? In line with the work of DOLAN and HUMPHREY (2004), it would be interesting to investigate the restructuring of GVCs between Mexico and its trade partners as a consequence of the global economic crisis, and the effects of changes in governance patterns on the likelihood of firms to upgrade. The ideas presented in this paper are merely the first step in this type of analysis. However, in spite of the nuances highlighted throughout this paper, there is no denying that the non-significance of public policy intervention for business innovation is a very important result of the current research. It points towards a Mexico specific context that justifies more investigation with deeper analysis and is certainly a field ripe for future research.

FOLD N. (2014) Value Chain Dynamics, Settlement Trajectories and Regional

NIOSI J. (2010) Rethinking science, technology and innovation (STI) institutions in

SIICYT (2011) Integrated System for Scientific and Technological Information (Sistema Integrado de Informacion Cientifica y Tecnologica) CONACYT.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Expected sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of upgrading in global value chains</td>
<td>1=functional upgrading; 0=otherwise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1=inter-sectoral upgrading; 0=otherwise</td>
<td></td>
</tr>
<tr>
<td>Explanatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business age</td>
<td>1=5-9yrs; 0=otherwise</td>
<td>(-)</td>
</tr>
<tr>
<td></td>
<td>1=>10yrs; 0=otherwise</td>
<td>(-)</td>
</tr>
<tr>
<td>Ownership</td>
<td>1=indigenous; 0=foreign owned</td>
<td>(+)</td>
</tr>
<tr>
<td>R&D employment(^a)</td>
<td>R&D employees/Total number of employees in 2009</td>
<td>(+)</td>
</tr>
<tr>
<td>R&D laboratory</td>
<td>1=have R&D laboratory; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td>R&D department</td>
<td>1=formal R&D department; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td>Size</td>
<td>Total number of employees in 2009 in logs</td>
<td>(+)</td>
</tr>
<tr>
<td>Structure (reference category: independent firm)</td>
<td>1=firm with subsidiaries; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td></td>
<td>1=subsidiary of another firm; 0=otherwise</td>
<td>(-)</td>
</tr>
<tr>
<td></td>
<td>1=venture business; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td>Exporter</td>
<td>1=yes; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td>Sector (Reference category: Traditional Manufacturing)</td>
<td>1=natural resource based; 0=otherwise</td>
<td>(-)</td>
</tr>
<tr>
<td></td>
<td>1=complex products; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td></td>
<td>1=specialised suppliers; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td>Governance pattern in GVC (reference category: hierarchical)</td>
<td>1=networking; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td></td>
<td>1=quasi-hierarchical; 0=otherwise</td>
<td>(-)</td>
</tr>
<tr>
<td></td>
<td>1=market; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td>External economies clustering (reference category: no availability)</td>
<td>1=specialised labour market availability; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td></td>
<td>1=local inputs available; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td></td>
<td>1=ease of information and markets; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td>R&D linkages</td>
<td>1=yes; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td>R&D investment(^b)</td>
<td>R&D investment / Total turnover in 2009</td>
<td>(+)</td>
</tr>
<tr>
<td>Government support</td>
<td>1=recipient; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td>Region (reference category: north)</td>
<td>1= Centre (except Mexico city); 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td></td>
<td>1= Mexico city; 0=otherwise</td>
<td>(+)</td>
</tr>
<tr>
<td></td>
<td>1= South; 0=otherwise</td>
<td>(+)</td>
</tr>
</tbody>
</table>

\(^a\) This variable has been constructed as a relative measure to enable it to be continuous. In an initial stage when collecting data, we faced a trade-off between accuracy of responses and response rate. After administering the survey, the only data available for this variable was in ordinal form, with three bins: i) 1-4 employees in R&D; ii) 5-9; and, iii) more than 10 employees dedicated to R&D. However, in order to allow it to be continuous it has been constructed as relative measure in terms of total employees of the firm.

The same applies for \(^b\): R&D investment, which has been constructed as relative measure in terms of total turnover of the firm.

North region comprises the states of Baja California Norte, Baja California Sur, Sonora, Chihuahua, Sinaloa, Durango, Coahuila, Nuevo Leon, Zacatecas, San Luis Potosi, Tamaulipas, and Nayarit. Centre (except Mexico city) region comprises of Aguascalientes, Jalisco, Guanajuato, Queretaro, Hidalgo, Colima, Michoacan, Morelos, Tlaxcala, Puebla, and Veracruz. Mexico City comprises Distrito Federal and Estado de Mexico. South region: Guerrero, Oaxaca, Chiapas, Tabasco, Campeche, Yucatan and Quintana Roo.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Recipients: 164</th>
<th>Control Group 1: 157</th>
<th>Control Group 2: 156</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Mean</td>
</tr>
<tr>
<td>Functional Upgrading</td>
<td>0.687</td>
<td>0.465</td>
<td>0.643</td>
</tr>
<tr>
<td>Inter-Sectoral Upgrading</td>
<td>0.423</td>
<td>0.532</td>
<td>0.357</td>
</tr>
<tr>
<td>Business age</td>
<td>2.409</td>
<td>0.828</td>
<td>2.274</td>
</tr>
<tr>
<td>Ownership</td>
<td>1.201</td>
<td>0.510</td>
<td>1.217</td>
</tr>
<tr>
<td>R&D employment</td>
<td>0.088</td>
<td>0.505</td>
<td>0.002</td>
</tr>
<tr>
<td>R&D Laboratory</td>
<td>0.552</td>
<td>0.499</td>
<td>0.337</td>
</tr>
<tr>
<td>R&D Department</td>
<td>0.429</td>
<td>0.497</td>
<td>0.408</td>
</tr>
<tr>
<td>Size (Number of employees in 2009 in logs)</td>
<td>4.222</td>
<td>2.093</td>
<td>3.619</td>
</tr>
<tr>
<td>Structure</td>
<td>1.738</td>
<td>1.056</td>
<td>1.490</td>
</tr>
<tr>
<td>Exporter</td>
<td>0.503</td>
<td>0.502</td>
<td>0.400</td>
</tr>
<tr>
<td>Industrial Sector</td>
<td>2.848</td>
<td>1.013</td>
<td>2.955</td>
</tr>
<tr>
<td>Governance Pattern in Global Value Chain</td>
<td>1.772</td>
<td>1.034</td>
<td>1.809</td>
</tr>
<tr>
<td>External Economies Clustering: Specialised labour market availability</td>
<td>0.522</td>
<td>0.501</td>
<td>0.495</td>
</tr>
<tr>
<td>External Economies Clustering: Local inputs available</td>
<td>0.472</td>
<td>0.501</td>
<td>0.543</td>
</tr>
<tr>
<td>External Economies Clustering: Ease of information and markets</td>
<td>0.734</td>
<td>0.443</td>
<td>0.628</td>
</tr>
<tr>
<td>R&D Linkages</td>
<td>0.739</td>
<td>0.440</td>
<td>0.551</td>
</tr>
<tr>
<td>R&D Investment</td>
<td>0.086</td>
<td>0.466</td>
<td>0.003</td>
</tr>
<tr>
<td>Region</td>
<td>2.032</td>
<td>0.816</td>
<td>2.124</td>
</tr>
</tbody>
</table>

Note: Significance levels: *p<0.10; **p<0.05; ***p<0.01. 'a' denotes the group of recipients, 'b' denotes control group 1, and 'c' denotes control group 2. When carrying out significance tests, these groups (a, b, and c) are compared.
Table 3 Summary statistics: Regional differences.

<table>
<thead>
<tr>
<th>Variable</th>
<th>North (a)</th>
<th>Mexico City (b)</th>
<th>Centre (excl. Mexico City) (c)</th>
<th>South (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of firms per region</td>
<td>143</td>
<td>95</td>
<td>119</td>
<td>120</td>
</tr>
<tr>
<td>Functional Upgrading</td>
<td>Mean</td>
<td>0.487</td>
<td>0.743</td>
<td>0.524</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.455</td>
<td>0.524</td>
<td>0.604</td>
</tr>
<tr>
<td>Inter-Sectoral Upgrading</td>
<td>Mean</td>
<td>0.333</td>
<td>0.498</td>
<td>0.596</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.548</td>
<td>0.596</td>
<td>0.604</td>
</tr>
<tr>
<td>Business age</td>
<td>Mean</td>
<td>2.524</td>
<td>2.858</td>
<td>0.854</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.785</td>
<td>0.854</td>
<td>0.365</td>
</tr>
<tr>
<td>Ownership</td>
<td>Mean</td>
<td>1.231</td>
<td>1.224</td>
<td>0.585</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.511</td>
<td>0.585</td>
<td>0.253</td>
</tr>
<tr>
<td>R&D employment</td>
<td>Mean</td>
<td>0.009</td>
<td>0.081</td>
<td>0.581</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.551</td>
<td>0.581</td>
<td>0.505</td>
</tr>
<tr>
<td>R&D Laboratory</td>
<td>Mean</td>
<td>0.325</td>
<td>0.612</td>
<td>0.512</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.504</td>
<td>0.512</td>
<td>0.124**</td>
</tr>
<tr>
<td>R&D Department</td>
<td>Mean</td>
<td>0.404</td>
<td>0.608</td>
<td>0.794</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.602</td>
<td>0.794</td>
<td>0.364*</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>1.385</td>
<td>1.498</td>
<td>0.604</td>
</tr>
<tr>
<td>Structure</td>
<td>Mean</td>
<td>1.521</td>
<td>1.328</td>
<td>0.958</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>1.166</td>
<td>0.958</td>
<td>0.359</td>
</tr>
<tr>
<td>Exporter</td>
<td>Mean</td>
<td>0.631</td>
<td>0.490</td>
<td>0.592</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.428</td>
<td>0.592</td>
<td>0.533</td>
</tr>
<tr>
<td>Industrial Sector</td>
<td>Mean</td>
<td>2.844</td>
<td>2.957</td>
<td>1.091</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>1.012</td>
<td>1.091</td>
<td>0.516</td>
</tr>
<tr>
<td>Governance Pattern in Global Value Chain</td>
<td>Mean</td>
<td>2.902</td>
<td>1.929</td>
<td>0.988</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>1.134</td>
<td>0.988</td>
<td>0.315**</td>
</tr>
<tr>
<td>External Economies Clustering: Specialised labour market availability</td>
<td>Mean</td>
<td>0.494</td>
<td>0.598</td>
<td>0.618</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.668</td>
<td>0.598</td>
<td>0.970**</td>
</tr>
<tr>
<td>External Economies Clustering: Local inputs available</td>
<td>Mean</td>
<td>0.456</td>
<td>0.545</td>
<td>0.602</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.527</td>
<td>0.545</td>
<td>0.445</td>
</tr>
<tr>
<td>External Economies Clustering: Ease of information and markets</td>
<td>Mean</td>
<td>0.734</td>
<td>0.628</td>
<td>0.686</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.734</td>
<td>0.628</td>
<td>0.538</td>
</tr>
<tr>
<td>R&D Linkages</td>
<td>Mean</td>
<td>0.539</td>
<td>0.591</td>
<td>0.603</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.641</td>
<td>0.591</td>
<td>0.475</td>
</tr>
<tr>
<td>R&D Investment</td>
<td>Mean</td>
<td>0.030</td>
<td>0.025</td>
<td>0.698</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.666</td>
<td>0.698</td>
<td>0.542</td>
</tr>
<tr>
<td>Government support for Business Innovation</td>
<td>Mean</td>
<td>0.502</td>
<td>0.495</td>
<td>0.617</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.612</td>
<td>0.495</td>
<td>0.415</td>
</tr>
</tbody>
</table>

Note: Significance levels: *p<0.10, **p<0.05, ***p<0.01. 'a' denotes the group of firms located in the North; 'b' denotes the group of firms located in Mexico City; 'c' denotes the group of firms located in the centre, except Mexico City; and 'd' denotes the group of firms located in the South. When carrying out significance tests, these groups (a, b, c and d) are compared.
Table 4: Biprob model, with sample selection, explaining the factors correlated to the propensity to achieve Functional Upgrading (FU) or Intersectoral Upgrading (ISU) considering interaction

<table>
<thead>
<tr>
<th>Structural Eq</th>
<th>Selection Eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ownership</td>
<td>0.128</td>
<td>0.382</td>
<td>0.577*</td>
<td>0.318</td>
<td>0.233</td>
<td>0.425</td>
<td>0.507*</td>
<td>0.427</td>
<td>0.465*</td>
</tr>
<tr>
<td>R&D employment</td>
<td>0.317</td>
<td>0.257</td>
<td>0.513*</td>
<td>0.282</td>
<td>0.304</td>
<td>0.492</td>
<td>0.493*</td>
<td>0.394</td>
<td>0.267</td>
</tr>
<tr>
<td>R&D Laboratory</td>
<td>1.721**</td>
<td>0.702</td>
<td>0.588**</td>
<td>0.201</td>
<td>1.651*</td>
<td>0.602</td>
<td>0.429**</td>
<td>0.345</td>
<td>1.928***</td>
</tr>
<tr>
<td>R&D Department</td>
<td>0.753*</td>
<td>0.657</td>
<td>0.389</td>
<td>0.492</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (Number of employees in 2009 in loga)</td>
<td>0.322</td>
<td>0.472</td>
<td>0.127*</td>
<td>0.075</td>
<td>0.632</td>
<td>0.782</td>
<td>0.271*</td>
<td>0.111</td>
<td>0.283</td>
</tr>
<tr>
<td>Structure (1: Subsidiary of other firm; 0:Independent firm)</td>
<td>0.432*</td>
<td>0.121</td>
<td>-0.256</td>
<td>0.473</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure (1: Venture business; 0:Independent firm)</td>
<td>0.432*</td>
<td>0.121</td>
<td>-0.256</td>
<td>0.473</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exporter (1=yes; 0=otherwise)</td>
<td>0.538</td>
<td>0.622</td>
<td>-0.278*</td>
<td>-0.226</td>
<td>0.432</td>
<td>0.558</td>
<td>-0.125*</td>
<td>-0.432</td>
<td>0.328</td>
</tr>
<tr>
<td>Sector (1: Specialised suppliers; 0: Traditional Manufacturing)</td>
<td>0.811*</td>
<td>0.634</td>
<td>0.288</td>
<td>0.467</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sector (1: Complex Products; 0: Traditional Manufacturing)</td>
<td>0.504**</td>
<td>-0.153</td>
<td>0.543</td>
<td>0.672</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Governance Pattern in Global Value Chain (1: Market; 0: Hierarchical)</td>
<td>1.473**</td>
<td>1.931</td>
<td>0.282</td>
<td>0.538</td>
<td>1.683**</td>
<td>1.305</td>
<td>0.891</td>
<td>0.598</td>
<td></td>
</tr>
<tr>
<td>Clustering: Specialised labour market availability</td>
<td>0.640**</td>
<td>0.782</td>
<td>0.934</td>
<td>0.926</td>
<td>0.612*</td>
<td>0.478</td>
<td>0.118</td>
<td>0.381</td>
<td></td>
</tr>
<tr>
<td>Clustering: Local inputs available</td>
<td>0.215</td>
<td>0.367</td>
<td>0.411*</td>
<td>0.216</td>
<td>0.239</td>
<td>0.341</td>
<td>0.382*</td>
<td>0.314</td>
<td></td>
</tr>
<tr>
<td>R&D Linkages</td>
<td>0.189</td>
<td>0.378</td>
<td>0.423*</td>
<td>0.22</td>
<td>0.721**</td>
<td>0.603</td>
<td>0.399*</td>
<td>0.298</td>
<td>0.513</td>
</tr>
<tr>
<td>Government support for Business Innovation</td>
<td>0.345</td>
<td>0.984</td>
<td>---</td>
<td>---</td>
<td>0.276</td>
<td>1.237</td>
<td>---</td>
<td>---</td>
<td>0.654</td>
</tr>
<tr>
<td>Region (1: Centre except Mexico city; 0: North)</td>
<td>0.789</td>
<td>0.835</td>
<td>0.432</td>
<td>0.563</td>
<td>0.623</td>
<td>0.892</td>
<td>0.485</td>
<td>0.523</td>
<td>0.558</td>
</tr>
<tr>
<td>Region (1: Mexico City; 0: North)</td>
<td>0.732*</td>
<td>1.764</td>
<td>0.392</td>
<td>0.461</td>
<td>0.230*</td>
<td>0.584</td>
<td>0.384</td>
<td>0.481</td>
<td>0.932*</td>
</tr>
<tr>
<td>Region (1: South; 0: North)</td>
<td>0.429</td>
<td>0.877</td>
<td>0.418</td>
<td>0.486</td>
<td>0.374</td>
<td>0.683</td>
<td>0.398</td>
<td>0.538</td>
<td>0.419</td>
</tr>
<tr>
<td>Region (Mexico city) x R&D Laboratory</td>
<td>0.598*</td>
<td>0.321</td>
<td>0.323</td>
<td>0.436</td>
<td>0.325</td>
<td>0.493</td>
<td>0.482</td>
<td>0.488</td>
<td>0.523*</td>
</tr>
<tr>
<td>Region (Mexico city) x Clustering (Spec labour mkt availability)</td>
<td>0.375</td>
<td>0.421</td>
<td>0.321</td>
<td>0.418</td>
<td>0.311</td>
<td>0.978</td>
<td>0.277</td>
<td>0.426</td>
<td>0.492*</td>
</tr>
<tr>
<td>Political Affinity</td>
<td>---</td>
<td>---</td>
<td>0.103*</td>
<td>0.101</td>
<td>---</td>
<td>---</td>
<td>0.098*</td>
<td>0.198</td>
<td>---</td>
</tr>
<tr>
<td>N. Obs.</td>
<td>321</td>
<td>321</td>
<td>321</td>
<td>321</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Censored Obs.</td>
<td>113</td>
<td>113</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncensored Obs.</td>
<td>208</td>
<td>208</td>
<td>238</td>
<td>238</td>
<td>238</td>
<td>238</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wald test (p-values)</td>
<td>0.423</td>
<td>0.624</td>
<td>0.327</td>
<td>0.189</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* **Significant at 1%; ***Significant at 5%; +Significant at 10%; standard errors are robust.
Blank fields denote variables that have been dropped when estimating models due to its non-significance in initial estimations.
Table 5: Average marginal effects of biprobit models, with sample selection, explaining the factors correlated to the propensity to achieve Functional Upgrading and Inter-Sectoral Upgrading.

<table>
<thead>
<tr>
<th></th>
<th>Recipients vs. Control Group 1</th>
<th></th>
<th>Recipients vs. Control Group 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dy/dx</td>
<td>t-values</td>
<td>dy/dx</td>
<td>t-values</td>
</tr>
<tr>
<td>Business age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ownership</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&D employment</td>
<td>0.126**</td>
<td>0.702</td>
<td>0.019*</td>
<td>0.692</td>
</tr>
<tr>
<td>R&D Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (Number of employees in 2009 in logs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure (1: Subsidiary of other firm; 0:Independent firm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exporter (1=yes; 0=otherwise)</td>
<td>-0.042*</td>
<td>-0.221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sector (1: Complex Products; 0: Traditional Manufacturing)</td>
<td>0.024</td>
<td>0.732</td>
<td>0.021</td>
<td>0.783</td>
</tr>
<tr>
<td>Sector (1: Specialised suppliers; 0: Traditional Manufacturing)</td>
<td>-0.084**</td>
<td>-0.153</td>
<td>-0.044</td>
<td>-0.423</td>
</tr>
<tr>
<td>Governance Pattern in Global Value Chain (1: Market; 0: Hierarchical)</td>
<td>0.131**</td>
<td>1.931</td>
<td>0.183</td>
<td>2.532</td>
</tr>
<tr>
<td>Clustering: Specialised labour market availability</td>
<td>0.011</td>
<td>0.827</td>
<td>0.009</td>
<td>0.731</td>
</tr>
<tr>
<td>Clustering: Local inputs available</td>
<td>0.002</td>
<td>0.524</td>
<td>0.005</td>
<td>0.473</td>
</tr>
<tr>
<td>R&D Investment (1=yes; 0=otherwise)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government support for Business Innovation (1=yes; 0=otherwise)</td>
<td>0.013</td>
<td>0.984</td>
<td>0.017</td>
<td>1.237</td>
</tr>
<tr>
<td>Region (1: Centre except Mexico city, 0: North)</td>
<td>0.012</td>
<td>0.835</td>
<td>0.006</td>
<td>0.892</td>
</tr>
<tr>
<td>Region (1: Mexico City; 0: North)</td>
<td>0.179*</td>
<td>1.764</td>
<td>0.043*</td>
<td>0.584</td>
</tr>
<tr>
<td>Region (1: South, 0: North)</td>
<td>0.032</td>
<td>0.877</td>
<td>0.027</td>
<td>0.683</td>
</tr>
<tr>
<td>Region (Mx city) x R&D Laboratory</td>
<td>0.015*</td>
<td>0.321</td>
<td>0.014</td>
<td>0.493</td>
</tr>
<tr>
<td>Region (Mx city) x Clustering (Spec labour mkt availability)</td>
<td>0.001</td>
<td>0.421</td>
<td>0.002</td>
<td>0.978</td>
</tr>
</tbody>
</table>

***Significant at 1%; **Significant at 5%; *Significant at 10%; standard errors are robust.
Blank fields denote variables that have been dropped when estimating models due to its non-significance in initial estimations.
Endnotes

1 Government support for business innovation is defined in this paper as any type of policy instrument used by policymakers to increase business innovation activity in Mexico during 2006-09. During the period under investigation (i.e., 2006-09), the Mexican government granted supports for innovation to firms using a variety of instruments. R&D tax breaks and subsidies were the main instruments; while other instruments included strategic alliances, innovation networks for competitiveness, operation of technology transfer offices, as well as acquisition of intellectual property rights (CONACYT, 2011).

2 Defined as factories or assembly plants operated and usually located in the north of Mexico under preferential tariff programmes.

3 North region comprises the states of Baja California Norte, Baja California Sur, Sonora, Chihuahua, Sinaloa, Durango, Coahuila, Nuevo Leon, Zacatecas, San Luis Potosi, Tamaulipas, and Nayarit. Centre region (except Mexico City) comprises of Aguascalientes, Jalisco, Guanajuato, Querétaro, Hidalgo, Colima, Michoacán, Morelos, Tlaxcala, Puebla, and Veracruz. Mexico City region comprises Distrito Federal and Estado de Mexico. South region: Guerrero, Oaxaca, Chiapas, Tabasco, Campeche, Yucatan and Quintana Roo.

4 There is a potential problem in the estimation of the timing of innovation output vis-à-vis the timing of business innovation policy implementation. Firms were asked if they received government support for business innovation during the period 2006-2009, without specifying precisely when they received it; then they were asked if they achieved upgrading in GVC during the period. This analysis was taken within the constraints of an evaluation using cross-sectional survey data; a number of specific issues arise. First, the nature of the government support for business innovation allows firms to draw down the monies offered over a 3-year period, which means that a business receiving an offer at the end of 2009 will perhaps not have fully realised the benefits of assistance; therefore, the model may underestimate the effects of assistance. Second, assistance received at the start of the period (i.e., 2006) may already have had its effect on the firm or plant; to model firm performance in a period far removed from the point of assistance may be problematic and lead to an over-estimate of the effects of assistance. Third, there is an assumption that the actual realisation of the effects of government support received by firms in 2006-09 will be fully captured by the model. This may not be the case and again
may under-estimate the effects of government support for business innovation. However, whilst bearing in mind these limitations and caveats, it is important to highlight the indicative nature of the results and findings which yield insights from an academic and policy making perspective.

5 A relatively large sample is used and a bespoke survey designed, which provides a rich and distinct variable set for both the selection and upgrading (performance) models.

6 The authors are grateful for two anonymous reviewers’ comments which allowed them to improve the model with a more concise specification, by means of identifying relevant variables and using a more appropriate functional form of the model, that is, a bi-probit. This resulted in a more robust estimation.

7 Whether or not the firm is located in a cluster with an available specialised labour market, available local inputs, and/or ease of access to information and markets.

8 Formal linkages made by the firm in order to collaborate with partners (e.g. universities) in R&D activities. Although NADVI (1999) identified three different types of joint action (vertical, bilateral horizontal, and multilateral horizontal), respondents to the survey were unable to recognise the type of joint action. Therefore, this study measures this variable by whether or not the firm has formal collaboration through R&D linkages.

9 This is a relative measure in terms of total turnover in 2009 in order to construct it as a continuous variable. Originally, this measure was binary taking the value 1 if more than MXN$1 million annually, 0 if less. MXN$: Mexican pesos (cut-offs adopted from the Ibero-American Network for Science and Technology Indicators, RICYT 1999).

10 Until 2009, RENIECYT comprised 3,827 firms. According to SIICYT (2011), this database is representative in terms of firm size, sector, and location of a total population of approximately four million firms operating in Mexico.

11 Up until 2009, the Mexican government granted more than 2,000 supports to innovation in the form of R&D subsidies, R&D tax breaks, and R&D network alliances (CONACYT, 2011).

12 The sample comprises applicants for government support for business innovation during 2006-09 and represents 12.46% of the RENIECYT population.

13 Constructing the latter group had two aims: first, to compare the group of recipients with firms that decided to apply for government support for business innovation but were unsuccessful; and second, to reflect the wider business population operating in Mexico that had not applied for government support for business innovation.
Interaction effects regarding size were considered in the original models, and they turn out to be statistically non-significant. Therefore, these interaction effects are not included in the final models.