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Abstract
We show that a set of fundamental solutions to the parabolic heat equation, with each element in the set corresponding to a point
source located on a given surface with the number of source points being dense on this surface, constitute a linearly independent
and dense set with respect to the standard inner product of square integrable functions, both on lateral- and time-boundaries. This
result leads naturally to a method of numerically approximating solutions to the parabolic heat equation denoted a method of
fundamental solutions (MFS). A discussion around convergence of such an approximation is included.

c© 2014 Published by Elsevier Ltd.
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1. Introduction

Meshless methods, in particular the method of fundamental solutions, have gained popularity in recent years both
for direct and inverse problems, see the surveys [1] and [2]. It is in particular for stationary problems that research
activity on meshless methods have been prolific. For time-dependent problems, typically some transformation in time
are used to reduce to the stationary case [3, Section 5]. However, reverting such a transformation can cause numerical
problems, see [4, p. 25]. In [5], a method of fundamental solutions for the parabolic heat equation was proposed, and
in this method there was no transformation in time. Instead, following the stationary case, linear combinations of the
fundamental solution of the heat equation were used. This method has then been applied for various other direct and
inverse heat problems, see, for example, [6, 7].

A key fact to motivate the MFS in [5] is the linear independence and denseness of linear combinations of funda-
mental solutions of the heat equation. Proofs thereof in various settings are scattered in those above mentioned works.
Therefore, in the present work, we collect the results and shall prove properties of linear independence and denseness
for linear combinations of the fundamental solution and derivatives. Moreover, convergence of an MFS approximation
will be outlined. This constitute the novelty of the present work together with pinpointing relevant references for the
various results needed in the presented proofs.

In the present section, we formulate the main result. In Section 2, we collect some results needed in the proof.
The proof itself is given in Section 3. In Section 4, we outline a proof of convergence of the MFS approximation. In
the final section, Section 5, some remarks are pointed out.
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We consider the parabolic heat equation


∂tu − ∆u = 0 in Ω × (0,T ),
Bu = ψ on Γ × (0,T ),
u(x, 0) = ϕ(x) for x ∈ Ω.

(1)

Here, Ω is a bounded domain in Rn, n = 2, 3, with boundary surface Γ being simple (no self-intersections) closed
(the surface has no boundary and is connected) and is at least Lipschitz smooth. The domain ΩS (S for source) with
boundary surface ΓS , and such that Ω ⊂ ΩS , has the similar properties. When n = 2, we have two simple closed
curves with one contained within the other. Doubly-connected domains and also one-dimensional spatial domains can
be adjusted for.

The operator Bu denotes either the Dirichlet condition (when B = I) or the Neumann condition Bu = ∂u/∂ν, with
ν being the outward unit normal to the boundary.

We shall then formulate the main result to be proved. Let

F(x, t; y, τ) =
H(t − τ)e−

|x−y|2
4(t−τ)

(4π(t − τ))
n
2

(2)

be the standard fundamental solution to the heat equation (1) representing the temperature at location x and time t
resulting from an instantaneous release of a unit point source of thermal energy at location y and time τ, with H
the Heaviside function. The fundamental solution has the expected physical properties, for example, it is a positive
solution to the heat equation for t > τ, for x , y there holds limt→τ+ F(x, t; y, τ) = 0, the function F(x, t; x, τ) tends to
infinity as t → τ+, and

∫
Rn F(x, t; y, τ) dy = 1 when t > τ; for further properties, see [8] and [9, Chapter 1.4-6].

Let {yk, τ`}k,`=1,2,... be a dense set of points on the outer lateral (cylindrical) surface ΓS × (0,T ); notation means that
{yk}k=1,2,... is dense on ΓS and {τ`}`=1,2,... is dense in (0,T ). By a dense set in L2, we mean that the span of the set is
dense. We can then state the main result:

Theorem 1.1. The set of functions {F(x, t; yk, τ`)}k,`=1,2,... is linearly independent and dense in L2(Γ × (0,T )). The
same hold for the set consisting of the normal derivatives, {∂ν(x)F(x, t; yk, τ`)}k,`=1,2,.... Moreover, restriction in time
generates a set {F(x, t0; yk, τ`)}k,`=1,2,..., which is linearly independent and dense in L2(Ω) for any 0 < t0 ≤ T.

In the next section, we formulate some results needed in the proof. Note that it is for ease of presentation that we
chose points on ΓS × (0,T ) as above, that is a dense set in space and a dense set in time. A more general dense set
with the points on ΓS changing with time is also possible.

2. Some results on the parabolic heat equation

The space L2(0,T ; X), where X is a Hilbert space, consists of those measurable functions u(·, t) : (0,T )→ X, with∫ T
0 ‖u(·, t)‖2X dt < ∞. The space Hk(Ω), k > 0, is the standard Sobolev space of functions having weak and square

integrable derivatives up to order k, with trace space Hk−1/2(Γ).
We first recall a well-posedness result for (1):

Proposition 2.1. Let ϕ ∈ L2(Ω) and let the element ψ be sufficiently regular. Then there exists a unique weak solution
u ∈ L2(0,T ; H1(Ω)) to (1) with ut ∈ L2(0,T ; L2(Ω)), and this solution depends continuously on the data.

This is a standard result and a proof can, for example, be found in [10, Chapter 4, Section 15], where also precise
spaces for ψ are presented.

Let u be the weak solution to (1), and let v be a (weak) solution of the adjoint equation, that is ∂tv + ∆v = 0 in
Ω × (0,T ). Then the following Green’s formula holds,

∫

Ω

u(x,T )v(x,T ) dx −
∫

Ω

u(x, 0)v(x, 0) dx =

∫ T

0

∫

Γ

v(x, t)
∂u(x, t)
∂ν

dx dt −
∫ T

0

∫

Γ

u(x, t)
∂v(x, t)
∂ν

dx dt, (3)

and this follows from [11, Proposition 2.24].
The fundamental solution F(x, t; y, τ) is defined in all of Rn for t > τ and satisfies the heat equation, we shall

therefore also need a well-posedness result for the heat equation in Rn:
2
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Proposition 2.2. Consider the Cauchy problem
{
∂tu − ∆u = 0 in Rn × (0,T ),
u(x, 0) = ξ(x) for x ∈ Rn.

(4)

Provided the data ξ does not grow faster than ec|x|2 , for some positive constant c, there is a unique solution to (4)
among solutions satisfying the similar exponential growth bound.

A proof of this standard result is given in, for example, [9, Chapter 1.7–9]; without a growth condition uniqueness
can be violated, see [9, pp. 30–31] with further details in [12, pp. 211–213].

Finally, we need a result on the lateral (and in general ill-posed) Cauchy problem.

Proposition 2.3. Let u be a sufficiently smooth solution of the heat equation in Ω × (0,T ), which is such that both u
and its normal derivative vanish on a portion Γc of the boundary of Ω for an interval in time, that is

u =
∂u
∂ν

= 0 on Γc × (0,T ).

Then u is identically zero in Ω × [0,T ].

A proof of this is given in [13, Section 3]. A general account on uniqueness from such Cauchy data with precise
function spaces and estimates is given in [14, Chapter 3.3].

3. Proof of Theorem 1.1

We shall then make proof of Theorem 1.1.
Linear independence on Γ × (0,T ). Assume that linear independence does not hold. Then, after a possible re-
numbering of the points {yk, τ`}k,`=1,2,...,

M∑

k=1

N∑

`=1

ck,`F(x, t; yk, τ`) = 0 on Γ × (0,T ), (5)

for some integers M,N > 0 with at least one of the coefficients ck,` being non-zero, say ck0,`0 . The function

uM,N(x, t) =

M∑

k=1

N∑

`=1

ck,`F(x, t; yk, τ`) (6)

satisfies the heat equation in Ω × (0,T ), is zero on Γ × (0,T ) and uM,N(x, 0) = 0. Thus, by Proposition 2.1, uM,N is
identically zero in Ω× [0,T ]. In particular, uM,N and its normal derivative vanish on Γ× (0,T ). Using Proposition 2.3,
uM,N(x, t) is therefore also identically zero for x in the region between the two boundary surfaces Γ and ΓS , for
t ∈ [0,T ].

Let then (x, t) in
(
ΩS \Ω

) × (0,T ] approach (yk0 , τ`0 ), a point with ck0,`0 , 0 in (5), such that the ratio

r =
|x − yk0 |2
4(t − τ`0 )

(7)

remains bounded. This leads to a contradiction to having uM,N(x, t) = 0 in (ΩS \ Ω) × [0,T ], since the term
ck0,`0 F(x, t; yk0 , τ`0 ) in (5) can be as large as we please by choosing (x, t) sufficiently close to (yk0 , τ`0 ) obeying (7),
while the other terms remain bounded. From this contradiction, we conclude that {F(x, t; yk, τ`)}k,`=1,2,... is a linearly
independent set.

For the normal derivative of the fundamental solution (2), we have by direct calculation

∂F(x, t; y, τ)
∂νx

= − [(x − y) · νx]
2(t − τ)

F(x, t; y, τ). (8)

3



B. T. Johansson / Applied Mathematics Letters 00 (2016) 1–6 4

The heat equation supplied with a zero initial condition and a zero normal derivative on the boundary has also a unique
solution according to Proposition 2.1 (choosing Bu in (1) as the normal derivative). Therefore, we can again conclude
that (6) is identically zero in ΩS × [0,T ]. Thus, approaching a suitably chosen point on the boundary ΓS × (0,T )
keeping the ratio (7) bounded, the reader can check that the same arguments as given above render a contradiction
(since (8) will grow indefinitely), which in turn establishes linear independence of the corresponding set of normal
derivatives of fundamental solutions.

Denseness on Γ × (0,T ). Assume that there exists an element f ∈ L2(Ω) with
∫ T

0

∫

Γ

f (x, t)F(x, t; yk, τ`) dx dt = 0 (9)

for every k ≥ 1, ` ≥ 1. Consider a single-layer representation

v(y, τ) =

∫ T

τ

∫

Γ

f (x, t)F(x, t; y, τ) dx dt.

Then v is a solution to the adjoint equation ∂tv + ∆v = 0 in the exterior and interior of Γ, and is smooth in those two
regions. Since {yk, τ`}k,`=1,2,... is a dense set of ΓS ×(0,T ) and v in (9) vanish on this set by the choice of f , we conclude,
since v is smooth in the exterior of Γ, that v is identically zero on ΓS for 0 < τ < T . We note that v is a decaying
solution of the adjoint heat equation in the exterior of ΓS , with zero Dirichlet boundary condition for t ∈ (0,T ), hence
v is zero in that exterior region. Appealing to Proposition 2.3, we have that v is zero in all of the exterior of Ω for
0 < τ < T . Using this and the continuity of the single-layer potential across Γ, imply that v is zero on Γ. Hence, due to
the uniqueness of the Dirichlet problem in Ω, v is zero also in Ω. Therefore, using jump properties of the derivative of
the single-layer potential across Γ× (0,T ), it follows that f = 0. Thus, {F(x, t; yk, τ`)}k,`=1,2,... is dense in L2(Γ× (0,T )).

We remark that the properties used for the single-layer potential are classical for a smooth surface (or curve) and
a continuous density, see, for example, [9, Chapter 5.1-4]. In the case of, for example, a square integrable density
and Lipschitz domain, the continuity of the single-layer operator and the jump properties of the derivative still hold,
see [11, Theorem 3.4].

To show the similar result for the normal derivative of fundamental solutions, the above goes through the same by
replacing the single-layer operator with the double-layer, as can be verified by the reader.

Linear independence on Ω×{t0}. Assume that the given set is not dense. Then, again after a possible re-numbering
of the points {yk, τ`}k,`=1,2,..., we have

uM,N(x, t) =

M∑

k=1

N∑

`=1

ck,`F(x, t0; yk, τ`) = 0 for x ∈ Ω, (10)

for some integers M,N > 0 with at least one of the coefficients ck,` being non-zero, and t0 ∈ (0,T ). Since F(x, t0; yk, τ`)
is identically zero for τk ≥ t0, we can assume that each τk in (10) is less than t0. Then F(x, t0; yk, τ`) is real analytic in
the spatial variable in all of Rn (see [12, p. 219]); therefore the relation (10) can be extended and is valid for x ∈ Rn.
Clearly, uM,N satisfies an exponential bound in the spatial variable x. Hence, from Proposition 2.2, it follows that uM,N

is identically zero in Rn for [t0,T ]. In particular, it is zero on Γ × (t0,T ), and from the first part of the proof we know
that restrictions to the boundary of fundamental solutions constitute a linearly independent set. Thus, we conclude
that all the coefficients in (10) are identically zero, and linear independence of the given set for a fixed instance in time
is thereby established.

Denseness on Ω × {t0}. Assume that there exists an element g ∈ L2(Ω) such that
∫

Ω

g(x)F(x, t0, yk, τ`) dx = 0, (11)

for every k, ` ≥ 1. Let v be a solution to the adjoint equation ∂tv + ∆v = 0 in Ω × (0, t0), supplied with v = 0 on
Γ × (0, t0) and a final condition v(x, t0) = g. Using (3) together with (11) noting that F(x, 0, yk, τ`) = 0, we obtain

∫ t0

0

∫

Γ

F(x, t, yk, τ`)
∂v(x, t)
∂νx

dx dt = 0. (12)

4
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Since, as shown above, {F(x, t; yk, τ`)}k,`=1,2,... is dense in L2(Γ × (0,T )), choosing T = t0, we conclude from (12) that
the normal derivative of v vanishes on Γ × (0, t0). Then v is an element with vanishing lateral Cauchy data, and by
Proposition 2.3, v is identically zero for 0 ≤ t ≤ t0. Hence, g = 0, and the given set is dense for t = t0.

The first part of the proof, that is linear independence and denseness on the lateral surface for function values,
follows the ideas of [15], the results for derivatives and for a fixed t0 were not discussed in that work.

4. A Method of Fundamental Solutions for the heat equation (1) and convergence thereof

We outline a method of fundamental solutions for approximating a solution to (1) with a Dirichlet boundary
condition (B = I). To accommodate for the initial condition in (1), let now {yk, τ`}k,`=1,2,... be a dense set of points on
the outer lateral (cylindrical) surface ΓS × (−t0,T ), where t0 > 0. These points are referred to as source points. Let the
index set I correspond to those ` with τ` < 0 and I′ corresponds to the remaining ones, that is those ` with τ` ≥ 0.

Consider the set {F(x, t; yk, τ`)}k=1,2,...;`∈I . From Theorem 1.1, it is a linearly independent and dense set in L2(Ω)
for t = 0. Hence, we can apply the Gram-Schmidt procedure to generate a total orthonormal set {Φm}m=1,2,... in L2(Ω)
(total refers to that the span of the set is dense); an overview including numerical aspects and history of the Gram-
Schmidt orthogonalization is given in [16]. From the construction each Φm is generated from fundamental solutions
of the heat equation, thus each Φm has a natural extension in time to a solution of the heat equation for 0 < t < T .

We can then, since {Φm}m=1,2,... is a total orthonormal set, choose an integer M = M(ε) > 0 and coefficients {cm},
with

∥∥∥∥ϕ −
M∑

m=1

cmΦm

∥∥∥∥
L2(Ω)

≤ ε, (13)

for a given ε > 0, where ϕ ∈ L2(Ω).
Similarly, the functions {F(x, t; yk, τ`)}k=1,2,...;`∈I′ is linearly independent and dense in L2(Γ × (0,T )). We can use

the Gram-Schmidt procedure to generate a total orthonormal set {Ψn}n=1,2,... in L2(Γ× (0,T )). Each Ψn can be extended
to a solution to the heat equation in Ω × (0,T ). We can choose an integer N = N(ε) and coefficients {dn}, with

∥∥∥∥ψ −
M∑

m=1

cmΦm −
N∑

n=1

dnΨn

∥∥∥∥
L2(Γ×(0,T ))

≤ ε, (14)

for a given ε > 0, where ψ ∈ L2(Ω).
Let

uM,N(x, t) =

M∑

m=1

cmΦm(x, t) +

N∑

n=1

dnΨn(x, t). (15)

Then, using the linearity of the heat equation, u−uM,N is a solution to (1) with initial data ϕ−∑M
m=1 cmΦm and boundary

data (ψ − uM,N |Γ×(0,T )). Estimating the solution u − uM,N in terms of the data,

‖u − uM,N‖L2(Ω×(0,T )) ≤ C
(∥∥∥∥ϕ −

M∑

m=1

cmΦm

∥∥∥∥
L2(Ω)

+
∥∥∥∥ψ −

M∑

m=1

cmΦm −
N∑

n=1

dnΨn

∥∥∥∥
L2(Γ×(0,T ))

)

and this can be made arbitrarily small by choosing M and N sufficiently large according to (13) and (14).
Thus, one can approximate the solution to the heat equation (1) arbitrarily well in L2 by linear combinations from

the set {F(x, t; yk, τ`)}k,`=1,2,....
Since also the normal derivative of the set of fundamental solutions is dense on the boundary according to Propo-

sition Theorem 1.1, the similar error estimate between the solution and approximation can be shown in the case of a
Neumann boundary condition in (1).

In practise, data is often at least continuous making pointwise evaluation meaningful. Then typically a set of
collocation points are chosen on (Γ ∪Ω) × (0,T ), and the coefficients in an approximation

uappr(x, t) =

M∑

k=1

N∑

`=1

ck,`F(x, t; yk, τ`), (16)

5
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are found by imposing that this expansion matches the given data in (1) at the collocation points. Matching first the
initial condition generates coefficients in (16) corresponding to the index set I above. Details and examples of the
generation of source and collocation points are given, for example, in [7, Section 3].

5. Some remarks

We point out the following:

(i) The techniques presented can be applied also when ∆ in (1) is replaced by a general second order linear elliptic
operator L(x, t); there is then usually no explicit expression for the fundamental solution. A similar MFS for
other time-dependent problems such as the unsteady Stokes system can be derived.

(ii) There are well-posedness results for (1) in Lp-spaces, see [17], and one can thus investigate linear independence
and denseness of fundamental solutions in such spaces.

(iii) Parabolic equations can be studied in abstract form in Banach spaces. There are fundamental solutions, see [18],
thus one can propose an MFS in that setting as well.
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