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PRIDE AND PREJUDICE, AND CAUSAL INDICATORS 

 

Aguirre-Urreta, Ronkko, and Marakas’ (2016) paper in Measurement: 

Interdisciplinary Research and Perspectives (hereafter referred to as ARM2016) is an 

important and timely piece of scholarship, in that it provides strong analytic support 

to the growing theoretical literature that questions the underlying ideas behind causal 

and formative indicators (e.g. Cadogan and Lee, 2012; Edwards, 2011, Hardin, et al., 

2011; Howell, Brievik, and Wilcox, 2007; Lee, Cadogan, and Chamberlain, 2014; 

2013; Rhemtulla, Bork, and Borsboom, 2015). Such literature provides in our view 

compelling reasoning to avoid, or at best be extremely cautious in using, formative / 

causal indicators. However, the theoretical arguments presented in such work seem to 

have had little impact on either the common use of causal / formative indicators in 

practice, nor the continuing proliferation of methodological articles defending their 

use (e.g. Bollen, 2007, 2011; Bollen and Bauldry, 2011; Bollen and Diamantopoulos, 

2015; Diamantopoulos, 2011; Diamantopolous, Riefler, and Roth, 2008). It should be 

no surprise that we hope that the approach used in ARM2016 proves more convincing 

evidence to scholars that there are significant dangers in applying the causal / 

formative approach to measurement. 

 In this commentary, we hope to supplement and add clarity to a small number 

of areas of ARM2016. In doing so, we hope both to add support to the main 

conclusions of ARM2016, but also to open up the potential for causal / formative 

indicators to provide some useful function in future work, rather than the rather 

confused and contradictory place they seem to occupy at present. Specifically, we 

explain that – while we support ARM2016 strongly – there really should have been 

no need for such a demonstration, because basic understanding of the principles of 

measurement leads to exactly the same conclusions. In doing so, we first explain what 



‘measurement’ actually means, and demonstrate where literature on formative / causal 

indicators makes important missteps, leading to erroneous conclusions. We are hardly 

the first to point this out (e.g. Borsboom, 2005), yet such lessons continue to go 

unheeded. Second, we diverge from ARM2016 in recommending a distinct 

nomenclature that distinguishes between formative and causal indicators, which 

follows from our earlier work (e.g. Lee, 2010; Lee, Cadogan, and Chamberlain, 2013), 

and again remains generally unheeded in current literature. Finally, we briefly suggest 

how separating formative from causal indicators allows each to have their distinct 

uses in empirical research, even though neither are measurement models. 

 

Just what is ‘measurement’? 

There is much confusion over the meaning of the term ‘measurement’, and space 

limitations preclude us from doing more than touching on the issues herein. At its 

most basic level, measurement can be defined as “the assignment of numbers…to 

entities and events to represent their properties and relations” (Savage and Ehrlich, 

1992, p. 3). Similarly, Hand (2004, p. 12, emphasis in original) defines measurements 

as “mappings from objects in the universe being studied to a numerical representation 

called a variable”. However, such formal definitions are at best ontologically agnostic, 

and at worst almost meaninglessly broad, and leave many important questions 

unaddressed, the most serious of which concerns exactly what can be measured. In 

addressing this question we follow the logic compellingly expressed by Guildford 

(1954, p. 3) in saying “whatever exists in some amount can be measured”. Of course, 

this implies the opposite: that which does not exist cannot be measured. The question 

is: what exactly does it mean for something to exist? In answering this question, we 

draw heavily from Borsboom (2005, see also Markus and Borsboom, 2013). In 



essence, Borsboom (2005) shows that the only plausible notion of measurement is a 

realist one, which assumes the existence of real attributes that cause variation in 

measurement devices. Markus and Borsboom (2013) term this a causal theory of 

measurement (CTM).   

 Accepting such a framework of measurement unavoidably places significant 

constraints on formal measurement definitions such as those given above. In 

particular, it places an ontological restriction on what can be measured – in that if 

something does not exist as an attribute, it cannot be measured. Questions regarding 

existence of attributes are challenging, and our prior work attempted to provide a 

framework for such thinking, to varying degrees of success (e.g. Cadogan, Lee, and 

Chamberlain, 2013; Lee, 2010). Specifically, it seems to us that attributes that are 

somehow ‘created’ by researchers, as combinations or composites of other attributes 

(for example, Socioeconomic Status, or SES), are problematic in this regard. Perhaps 

even more importantly, the clear causal asymmetry in CTM mitigates against causal 

indicators being considered measures. This chimes with basic logic and intuition, in 

that it simply seems illogical to consider changes in the value of a measure to cause 

changes in the value of an attribute. Causal indicators may have many uses, but 

measurement is not one of them (Rhemtulla, Bork, and Borsboom, 2015). 

 

The Importance of Distinguishing Causal from Formative 

ARM2016 settles on the use of the term ‘causal’ to refer to what different authors 

have on various occasions also termed ‘formative’. Bollen and Bauldry (2011) 

correctly pointed out the inconsistency of terminology, as did we (e.g. Lee, 2010; Lee, 

Cadogan, and Chamberlain, 2013). However, it seems that the key implications of 

distinguishing ‘causal’ from ‘formative’ in this literature remain unappreciated. First, 



a ‘causal’ indicator must be exactly that, causal. In other words, it must have a causal 

relationship to the attribute represented by a latent variable. Few scholars who write 

about formative / causal indicators address exactly what they mean when they use the 

term ‘cause’. However, the term is not neutral, and implies a number of important 

features, which are somewhat intertwined, and which we also attempted to unpick in 

prior work (e.g. Lee, 2010; Lee, Cadogan, and Chamberlain, 2014). In particular, the 

notion of ‘cause’ is complex, and definitions differ across various philosophical 

points of view. However, it seems there are at least two features, relevant to our 

present discussion, that seem reasonably consistent. First, in order to cause something, 

a thing has to be real. This seems almost so obvious as to be trivial, but it does raise 

issues regarding our commitments to reality of our unobservables, and how we justify 

these claims to reality, touched upon above. Second, as Markus and Borsboom (2013, 

p. 92) note, “the notion (or notions) of causation that underlies typical behavioral 

science research assumes that the cause is an entity distinct from the effect”. This 

follows the Humean (2008) tradition, which in turn follows Aristotle’s (1984) concept 

of ‘efficient causation’ (see Lee, Cadogan, and Chamberlain, 2014). In this case, a 

‘causal’ indicator is one which has a causal effect on another attribute. This seems to 

match well with early discussion of causal indicators in the literature, such as 

Blalock’s (1963) ‘exposure to discrimination’ variable, which has ‘race’ as a causal 

indicator. While this model has flaws touched on later, it does at least maintain the 

separation between cause and effect. 

 Like ARM2016, we consider the confusion to have begun to creep into the 

literature with Bollen and Lennox (1991), who (clearly shown by the quotes in 

ARM2016) conflated the terms ‘cause’ and ‘form’, and introduced the idea that causal 

indicators somehow compose the latent variable, and thus assign its meaning. As such, 



Bollen and Lennox (1991) suggest that omitting a causal indicator changes the 

meaning of the latent variable. However, if the cause and effect are separate, this 

makes no sense at all. In Blalock’s (1963) model for example, ‘race’ does not 

somehow define the meaning of ‘exposure to discrimination’, it is a cause of it. This 

situation is completely different from what should be called ‘formative’, where the 

indicators are actually the defining components of a formed composite – as is clearly 

the case with archetypal examples such as SES. In such a case, SES is nothing more 

than the combined scores on income, education, and occupation. Change the 

components, and you change what SES is. They do not cause SES, they are SES. 

 Of course, as we point out in Lee, Cadogan, and Chamberlain (2014), 

Aristotle’s (1984) concept of ‘material causation’, suggests that a cause can be 

considered something of which the final consequence is made. Such a definition of 

cause could indeed encompass the formative composite model. However, while this is 

termed ‘causation’ by Aristotle, it is a completely different concept to the Humean 

notion of cause, and thus could not be used to refer to the notion of cause encoded 

within Blalock’s ‘causal indicator’ model, and those which draw from it. As such, 

there remains a problematic conflation of ideas, even though the term ‘cause’ could 

refer to either, depending on how one defines it.  

 The solution to this is clear. The term formative should refer to composite 

based models, where the indicators are somehow combined to create a composite 

score, which is not representative of a real attribute that can exist distinct from the 

indicators. The term causal should refer to models where the indicators and the 

attribute they are supposed to relate to are distinct and independent of each other. 

Causal indicators do not therefore determine the meaning of the attribute, any more 



than an antecedent cause determines the meaning of its consequence, in a Humean 

causal framework at least. A thing cannot cause itself from this viewpoint.  

 

Conclusions 

In light of the delineation of the meaning of causal and formative above, a number of 

conclusions can be drawn regarding the findings of AMR2016. In terms of true 

‘causal’ indicators, which are considered distinct causes of a separate real attribute, it 

becomes completely obvious that a census of indicators is not required. Indeed, why 

should it? The causal indicators cannot be considered measures, since the causal flow 

runs in the wrong direction (Markus and Borsboom, 2013). As such, they are simply 

antecedent causes, and cannot serve to define the meaning of the consequence. With 

this in mind, what can we consider the meaning of the consequence to be? Here, we 

advocate a return to Blalock’s (e.g. 1963) nomenclature of unmeasured variable, 

which sums up exactly the problem we face, and the one Blalock was searching for a 

solution to. A model which sets up a latent variable X, with causal indicators and 

some downstream consequences, has no measure of X. It should be clear to all but 

those blinded to alternatives that the modelled X therefore has no stability across 

models and data sets. Such models may be acceptable – even necessary – in many 

situations of secondary data (e.g. trying to model ‘exposure to discrimination’ with 

only census demographic data), such as those common to sociology, where the model 

first emerged. However, setting out to collect primary data for such a model, if 

alternatives are available, is akin to tying one’s own hands. The alternative of course, 

if one can define a sensible case that X is a real unobservable, is to measure it, by 

which we mean first set up a plausible measurement theory, involving causal 

influence from X to some measure (Markus and Borsboom, 2013). Note the causal 



asymmetry – cause must flow from the attribute to the measure for this to make sense. 

The alternative is simply not a plausible theory of measurement (Borsboom, 2005).  

 What then of formative indicators? Neither measure nor (Humean) cause, how 

should we think of them? Here, it seems a census of indicators is by definition 

essential. Indeed, since the choice of indicators creates the meaning of the composite, 

it seems almost impossible to not have a census. The conceptual trap is mistakenly 

thinking of the composite as a real thing. It is not, it is simply the combination of the 

components defined. The analytical trap is allowing data to estimate the relationships 

and combination, when in fact these should be part of the definition (Lee and 

Cadogan, 2013; Lee, Cadogan, and Chamberlain, 2013). Space restrictions preclude 

us from elaboration, and we refer interested readers to the cited works. 

 The ongoing controversy over formative and causal indicators is disturbing, 

because it seems to us that it contains an over-reliance on empirically-based argument, 

and an under-appreciation of the philosophical consequences of various theories. Put 

simply, no amount of identified models can make up for a theory which makes no 

sense. More specifically, we agree with Borsboom (2005, p. 9), who states that “the 

proper ground for the evaluation of conceptual frameworks like measurement models 

lies not in their empirical implications, but in their philosophical consequences. We 

may find such consequences plausible, or they may strike us as absurd…[in 

evaluating measurement models] plausibility and absurdity play roles analogous to 

the roles of truth and falsity in empirical research”. It seems plain to us that the 

philosophical consequences of the theory of causal indicators as defined in the 

relevant literature, and summarized in ARM2016, are completely implausible. 

ARM2016’s results are welcome support for these conceptual conclusions.  
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