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ABSTRACT 

For an Erbium-doped mode locked fibre laser, we demonstrate experimentally a new type of vector rogue waves 

(RWs) emergence of which is caused by the coherent coupling of the orthogonal states of polarisation (SOPs). 

Unlike weak interaction between neighbouring dissipative solitons for the soliton rain, this creates a new type of 

the energy landscape where the interaction of the orthogonal SOPs leads to polarisation trapping or escapes 

from the trapping triggered by polarisation instabilities and so results in the pulse dynamics satisfying criteria of 

the “dark” and “bright” RWs. The obtained results, apart from the fundamental interest, can provide a base for 

development of the rogue waves mitigation techniques in the context of the applications in photonics and 

beyond. 
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1. INTRODUCTION 

The femtosecond/picosecond pulsewidth and MHz repetition rate of mode locked fibre lasers (MLFLs) provide 

an opportunity to observe more data on rogue waves in the form of the chaotic bunches of pulses (soliton rain 

[1]-[5]) in the short time (compared to the time scale of RWs in other systems, such as in the ocean [6]-[8]) and 

under controlled conditions. This makes such lasers perfect test bed systems to study RWs in the context of 

origin and mitigation with further results application in numerous disciplines – social sciences, natural sciences 

and technology & engineering [1-5]. In MLFLs, adjacent pulses interact through their tails overlapping or 

through the dispersive waves. Such interaction can be controlled by the pump power modulation or/and by 

injection of a weak seeding signal and noise that is similar to the fluctuation induced escape (FIE) phenomena in 

an energy landscape (EL) (set of equilibrium minima and saddle points, i.e. unstable maxima in the potential) of 

the multistate or excitable systems [9]-[10]. Based on the weak interaction model (WIM), such scenario of RWs 

emergence has been recently outlined theoretically based on the nonlinear Schrödinger (NLS) equation [11].  

We support the concept in this paper by providing an experimental evidence of a new type of the energy 

landscape created by the interaction of the orthogonal states of polarisation (SOPs) and leading to the 

polarisation trapping or escape from the trapping which is triggered by polarisation instabilities [12]-[13].  We 

demonstrate that tuning the in-cavity and the pump polarisation controllers, i.e. cavity birefringence and the 

ellipticity of the pump wave, enable transitions between two orthogonal states of polarisation which leads to 

output power distribution satisfying the rogue wave’s criteria.  

2. RESULTS AND DISCUSSION 

The laser (Fig. 1) consists of 1.1m long erbium doped fibre (EDF) with a nominal absorption ratio of 80dB/m at 

1530nm. The group velocity dispersion of the EDF is ~ +59 ps
2
/km. A fibre pigtailed optical isolator (OISO) is 

used to provide a unidirectional operation of the laser. A 975nm laser diode (LD) with the output power of 67 

mW is employed to pump the laser via a 980/1550 wavelength division multiplexer (WDM). This power is 10 

times less than the pump power used by many authors for the experimental and theoretical study of the soliton 

rain [1]-[5]. A standard 70:30 fused coupler is used to extract 30% of the laser light out of the cavity. The rest of 

the laser cavity contains 1.22m OFS980 fibre and 4.4m SMF 28 fibre. The CNT mode-locker is a piece of the 

carbon nanotube polymer composite film sandwiched between two standard fibre connectors. The index 

matching gel was used to minimise the insertion losses. The total cavity GVD is ~ -0.04 ps
2
/nm. Two 

polarisation controllers (POC1 and POC2) were used to adjust the SOP of the pump wave and the in-cavity 

birefringence. The polarimeter (Thorlabs IPM5300) was mounted on a chassis (Thorlabs TXP – 5016) and tuned 

to have a 1 µs resolution and a total temporal length of the sample of 1 ms (1024 points per measurement). This 

polarimeter was used to measure the normalised Stokes parameters s1, s2, s3, the degree of polarisation (DOP) 

and the power of the signal. The laser signal was measured using a UDP–15 –IR–2FC detector with a bandwidth 

of 17 GHz; the electric signal from the detector was recorded with a Tektronix DPO7254 – 2.5 GHz 

oscilloscope. The POC1 and POC2 have been adjusted to find conditions for RWs emergence. The optical 

spectrum was measured with the optical spectrum analyser (ANDO AQ6317B) and the pulse width – with the 

help of the auto-correlator (Pulsecheck). The results of measurements are shown in Figs.2 and 3. The 

oscillogram comprises 20 slices of the pulse dynamics with 20K points in each slice, autocorrelation trace 

consists of 8 slices, and polarimeter trace includes 20 slices.   



     As follows from Fig. 2 (a), multi-pulse dynamics is stable during each slice (16
 
roundtrips) and is changing 

from slice to slice. Detailed auto-correlation analysis (Fig. 2 (b)) and the shape of optical spectrum (Fig. 2 (c)) 

reveal soliton rain similar to the observed in literature [1-5]. The main difference is in low pump power of 67 

mW used here vs 800 mW used by the other authors [1-5]. The pulse width is about 700 fs and the distance 

between the main pulse and satellites fluctuates between 1 to 7 ps. The presence of the pedestal in 

autocorrelation trace and the absence of the pronounced spectral fringes indicate the presence of loosely bound 

solitons moving in the range of 1ps - 10 ns delays with respect to the main pulse.  Probability distribution 

histogram and RW criteria (more than eight standard deviations from the mean value, i.e. mean(I)+8(I) where 

I is an output power signal) are shown in Fig. 2 (d). As follows from this figure, our case corresponds to the 

presence of the rogue waves. 

 

 
Figure 1 Experimental set-up. 
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Fig.2 a) Oscillogram (2.5 GHz resolution): 3 different traces are shown in different colours, b) autocorrelation 

trace: different slices are shown in different colours, c) optical spectrum, d) probability distribution histogram: 

RW criteria (mean(I)+8(I)) is shown as the vertical line. 

 

    To get insight ino the mechanism of the RW emergence we used the polarimeter with 1 µs resolution and 

interval of 1 ms (aprox 30 – 30000 round trips range) to measure the normalized Stokes parameters s1, s2, s3 

which are related to the output powers of two linearly cross-polarized SOPs Ix and Iy, and phase difference 

between them  as follows: 
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Results are shown in Fig. 3 (a-c). As follows from Fig. 3 (a), the anomalous spikes in the output power 

corresponds to the phase difference jumps in π, i.e. transitions between orthogonally polarised SOPs as follows 

from Fig. 3 (b). The probability distribution histogram is shown in Fig. 3 (c) along with RW criteria (red and 

blue lines) indicate the presence of so-called “bright” (spikes in Fig.3 (a)) and “dark” (dips in Fig. 3 (a)) RWs 

(Fig3 (c)). As follows from Figs. 2 and 3, slow evolution of the soliton rain is accompanied by the random 

polarisation switching between orthogonal SOPs.  As a result, averaging over the 30 roundtrips provide almost 

constant output power (Fig.3 (a)) for different structures of the soliton rain (Fig. 2 (a))  whereas it is likely that 

spikes and dips appear when the type of the structure changes (Fig. 3 (a)) as result of the abrupt  switching.  The 

mechanism of such vector rogue waves emergence can be caused by the chaotic phase drift considered by 

Ansmann and co-workers for the system of two coupled oscillators [14].  
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Fig. 3 Polarization measurements (1 μs resolution, i.e. averaging over approximately 33 round trips): a) The 

output power and the phase difference vs time, b) trajectories in normalised Poincaré sphere, and  c) 

probability distribution of the output power (red and blue lines are  the “dark” and  “bright” RWs criteria). 

 

Models of networks of coupled oscillators are widely used to study different synchronisation scenarios from the 

phase locking to the phase drift in the context of applications from biomedicine to the laser physics [15]. For the 

phase couple oscillators, evolution can be considered based on Kuramoto equations: 
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Here ϕi and Ωi are the phase and the frequency of the oscillator, K is the coupling strength and G is the coupling 

function [15]. In the simplest case of two coupled oscillators with G=sin(ϕi- ϕj) , Eq. (2) is called Adler equation 

[15]. For a comprehensive study of the synchronisation in lasers leading to complex dynamics along with 

conditions for RWs emergence, the amplitude dynamics along with dynamics of the population inversion have 

to be included into consideration that results in a new class of coupled system, i.e. coupled oscillators with the 

dynamic coupling strength [15]. With accounting for the SOP, orthogonally polarised SOPs can be treated as 

coupled oscillators as well [12, 13]. This provided a very good test bed for study synchronisation regimes of the 

orthogonal SOPs in a mode-locked fibre laser with a saturable absorber as a function of the laser parameters 

(power and ellipticity of the pump wave, and in-cavity birefringence) tunable by the pump laser current driver, 

polarisation controller for pump wave and in-cavity polarisation controller [5-8]. The result of the laser 



parameter tuning shown in Fig. 3 (a) leads to chaotic phase jumps of the phase difference between the 

orthogonal SOPs which coincide with the anomalous spikes and dips in the output power. Thus, the observed in 

Fig. 3 rare events taking the form of the “dark” and “bright” vector RWs along with quite long time intervals 

with the constant output power can be explained in terms of the spontaneous desynchronization of the cross 

polarised SOPs.  The desynchronization can be caused by the decreased coupling between SOPs allowing the 

polarisation instabilities-driven chaotic transitions.  

3. CONCLUSIONS 

We have demonstrated experimentally a new class of the vector rogue waves taking the form of the rare 

anomalous switching between different types of the soliton rain. This type of switching has a time scale of 

tenths-hundreds roundtrips and can take a form of the “dark” and “bright” vector rogue waves. We show that 

tuning in-cavity and the pump polarisation controllers, i.e. the cavity birefringence and the ellipticity of the 

pump wave, enable, in terms of the theory of the coupled oscillators, changing the coupling strength between 

two orthogonal SOPs and detuning between their oscillation frequencies that is finally result in polarisation 

trapping or escape from the trapping triggered by polarisation instabilities [12]-[13].  The revealed conditions 

for emergence of new class of the rogue waves can potentially find applications for controlling synchronisation 

scenarios along with rogue wave emergence in the ensemble of coupled oscillators that mimic a wide range of 

the coupled systems such as multimode and coupled lasers, electrical power grids, communication networks, 

human brain, and financial markets. 

ACKNOWLEDGEMENTS 

This work was financed by the Leverhulme Trust (Grant ref: RPG – 2014 – 304) and the FP7-PEOPLE-2012-

IAPP (project GRIFFON, No. 324391). 

REFERENCES 

[1] C. Lecaplain, Ph. Grelu, J.M. Soto-Crespo, and N. Akhmediev:  Dissipative Rogue Waves Generated by 

Chaotic Pulse Bunching in a Mode-Locked Laser,  Phys. Rev. Lett., vol. 108 , p. 233901 , Jun. 2012. 

[2] C. Lecaplain, Ph. Grelu, J.M. Soto-Crespo, and N. Akhmediev: Dissipative rogue wave generation in 

multiple-pulsing mode-locked fiber laser, J. Optics,  vol. 15, p. 064005, Jun. 2013. 

[3] A. Zavialov, O. Egorov, R. Iliev,  and F. Lederer: Rogue waves in mode-locked fiber lasers, Phys. Rev. A 

vol. 85, pp. 013828, Jan. 2012. 

[4] A. Niang, et.al.: Rains of solitons in a figure-of-eight passively mode-locked fibre laser, Appl. Phys. B, 

vol. 116, pp. 771-775, Jan. 2014. 

[5] F. Sanchez, et al.: Manipulating dissipative soliton ensembles in passively mode-locked fiber lasers. Opt. 

Fiber Techn., vol. 20,  pp.562-574, Dec. 2014 

[6] C. Kharif, E. Pelinovsky, A. and Slunyaev: Rogue Waves in the Ocean, Heidelberg, Springer, 2009. 

[7] A. Slunyaev et al.: Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear 

hydrodynamic equations,  Phys. Rev. E, vol. 8, p. 012909, Jul. 2013. 

[8] A. R. Osborne: Nonlinear Ocean Waves and the Inverse Scattering Transform , Academic Press, 2010. 

[9]  B. Lindner, J. Garsia-Ojalvo, A. Neiman, L. Schimansky-Greif: Effects of noise in excitable systems, 

Phys. Reports, vol. 392, pp.321-424, Mar. 2004.  

[10]  L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni: Stochastic resonance, Rev. Mod. Phys., vol. 70,  

pp. 223-287, Jan. 1998. 

[11] A. Armaroli, C. Conti, and F. Biancalana: Rogue solitons in optical fibers: a dynamical process in a 

complex energy landscape, Optica, vol. 2, pp. 497-503, May 2015. 

[12] S. V. Sergeyev et al.: Spiral attractors created by vector soliton,  Light: Science & Appl., vol. 3, p. e131, 

Jan. 2014. 

[13] S. V. Sergeyev: Fast and slowly evolving vector solitons in mode locked fibre laser, Phil. Trans. R. Soc. A 

vol. 372, p. 20140006, Oct. 2014. 

[14] G. Ansmann, R. Karnatak, K. Lehnertz, and U. Feudel: Extreme events in excitable systems and 

mechanisms of their generation, Phys. Rev. E, vol.88, p. 052911, Nov. 2013.  

[15] A. Arenas et al.: Synchronization in complex networks, Phys. Rep., vol.469, pp.93-153, Sep.2008.  

 

 

 

 

 

 


