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Abstract. Einstein spacetimes (that is vacuum spacetimes possibly with a non-zero
cosmological constant Λ) with constant non-zero Weyl eigenvalues are considered. For type
Petrov II & D this assumption allows one to prove that the non-repeated eigenvalue necessarily
has the value 2Λ/3 and it turns out that the only possible spacetimes are some Kundt-waves
considered by Lewandowski which are type II and a Robinson-Bertotti solution of type D.

For Petrov type I the only solution turns out to be a homogeneous pure vacuum solution
found long ago by Petrov using group theoretic methods. These results can be summarised
by the statement that the only vacuum spacetimes with constant Weyl eigenvalues are either
homogeneous or are Kundt spacetimes. This result is similar to that of Coley et al. who proved
their result for general spacetimes under the assumption that all scalar invariants constructed
from the curvature tensor and all its derivatives were constant.

1. Introduction
In this paper special classes of solutions of Einstein’s vacuum field equations in general relativity,
possibly with a non-zero cosmological constant Λ,

Rab = Λgab (1)

are considered. The eigenvalues λ and eigenbivectors V ab of the Weyl tensor satisfy the equation

Cab
cdV

cd = 2λV ab (2)

where the factor two, which arises due to the contraction over a pair of antisymmetric indices,
is included for later convenience. Owing to the duality conditions satisfied by the Weyl tensor
there are essentially only three roots of the characteristic equation and these sum to zero due
to the trace-free nature of the Weyl tensor (see, for example, chapter 4 of Stephani et al. [1]).

In this paper the class of fields considered are Petrov types I, II & D fields where all Weyl
eigenvalues are constant; the conformally flat fields are of constant curvature and need not be
considered further whereas for Petrov types III and N fields the assumption of the constancy of
the Weyl eigenvalues do not restrict these fields as all the eigenvalues are necessarily zero. For
Petrov type I fields it may be assumed that the Weyl eigenvalues are non-zero since Brans [2]
showed that pure vacuum Petrov type I fields with a zero Weyl eigenvalue do not exist. His
proof generalises trivially to the case when Λ is non-zero.

There are a number of motivations for investigating fields of this sort. Firstly, most known
vacuum solutions of the field equations are either algebraically special or admit a group of
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isometries and so it would be interesting to enlarge the class of known vacuum solutions of
Petrov type I. Making simplifying assumptions regarding the scalar curvature invariants seems
to be a promising approach which has hitherto been largely neglected. Secondly, in recent years
there has been considerable interest in general spacetimes in which all the scalar invariants
constructed from the curvature tensor and its covariant derivatives are constant. For example
Coley and his collaborators [3] showed that such spacetimes were either homogeneous or are a
special class of Kundt-waves [4]. In this paper it is shown that a similar result holds for four
dimensional Einstein spaces under the weaker assumption that the scalar curvature invariants
constructed from the curvature tensor alone are constant and non-zero. It would be interesting
to see how far this result could be extended to non-vacuum spacetimes.

To conclude this section some useful results on the Petrov classification are briefly reviewed.
The conditions on the Weyl eigenvalues are expressed in the notation of the Newman-Penrose [5]
formalism which will be used in the analysis later in the paper (see chapters 3 & 4 of Stephani et
al. [1] for more details). For Petrov types I & D there is a complex null tetrad: `a = (ua+ea3)/

√
2,

na = (ua − ea3)/
√

2, ma = (ea1 + ıea2)/
√

2 in which the NP Weyl tensor components satisfy

Ψ0 = Ψ4 = (λ2 − λ1)/2 Ψ1 = Ψ3 = 0 Ψ2 = −λ3/2, (3)

where, the λA’s are the Weyl eigenvalues and (ea1, e
a
2, e

a
3, u

a) is an orthonormal Weyl principal
tetrad. For type D we have in addition Ψ4 = Ψ0 = 0 as λ1 = λ2. For Petrov type II the NP
Weyl tensor components satisfy

Ψ0 = Ψ1 = Ψ3 = 0 Ψ4 = −2 Ψ2 = −λ3/2. (4)

Thus the constancy of the Weyl eigenvalues may be restated as (where in all cases Ψ1 = Ψ3 = 0):

Type I: Ψ2 and Ψ4 are both non-zero constants;

Type D: Ψ2 is a non-zero constant and Ψ0 = Ψ4 = 0;

Type II: Ψ2 is a non-zero constant, Ψ0 = 0 and Ψ4 = −2.

For Petrov type I the choice of a canonical tetrad is not unique; it depends on the choice
of numbering of the 3 spacelike Weyl principal vectors eaA used to construct the complex null
tetrad. As there are six distinct numberings a given Petrov type I field will manifest itself
as six different solutions of the Newman-Penrose equations for the spin coefficients and Weyl
tensor components Ψi. These fall naturally into 3 pairs depending on the choice of the spacelike
principal vector ea3 used to construct the real null vectors `a and na. The two members of each
pair have the same value of Ψ2, but Ψ4 changes opposite sign under interchange of ea1 and ea2.

The ambiguity in the numbering of the principal vectors also means that type D fields with
λ3 = λ1 = −λ2/2 or λ2 = λ3 = −λ1/2 appear as special cases in the analysis of type I spacetimes
and need to be excluded. They are characterised by the conditions Ψ4 = ±3Ψ2 respectively.
Similarly the Petrov type I fields where one Weyl eigenvalue is zero appears as a special case
in the analysis and can be immediately excluded by Brans’ result [2]. The cases with λ1 = 0,
λ2 = 0 and λ3 = 0 are characterised by the conditions Ψ4 = ±Ψ2 and Ψ2 = 0 respectively.

2. Algebraically Special Spacetimes with Constant Weyl Eigenvalues
In this section the type II and type D fields satisfying the assumptions of §1 are investigated.
It is convenient to consider these two cases together; the NP Weyl tensor components satisfy
Ψ0 = Ψ1 = Ψ3 = 0 and Ψ2(6= 0) is a constant. Thus DΨ2, ∆Ψ2, δΨ2, δ̄Ψ2, DR, ∆R, δR and
δ̄R are all zero and for type II Ψ4 6= 0 whereas for type D, Ψ4 = 0.

In what follows the equation numbers refer to the Newman-Penrose equations in chapter 7
of Stephani et al. [1]. Using the above restrictions on Ψi the Bianchi identities (7.32a,b,e,h)
become

3κΨ2 = 0, 3σΨ2 = 0, 3ρΨ2 = 0, 3τΨ2 = 0. (5)
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Hence κ = σ = ρ = τ = 0, and so the spacetime belongs to a special subclass of the Kundt
spacetimes [4]. The Ricci identity (7.21q) reduces to Ψ2 + R/12 = 0 and thus Ψ2 = −Λ/3 or
equivalently λ3 = 2Λ/3. Thus under the assumption of constancy, the non-repeated eigenvalue
of the Weyl tensor of an Einstein spacetime of type D or II necessarily has the value 2Λ/3.

These Einstein spaces belong to the subclass of the Kundt spacetimes considered by
Lewandowski [6]. In terms of a complex coordinate z and real coordinates u & v, the metric
becomes

ds2 = 2P−2dzdz̄ − 2du(dv +Wdz + W̄dz̄ +Hdu) (6)

where P = P (z, z̄, u) and H = H(z, z̄, u, v) are real and W = W (z, z̄, u) is complex; W is
independent of v as a consequence of τ = 0. The repeated principal null vector `a is given by
∂v. As shown by Lewandowski [6], the metric functions P , H and W may be written as

P = 1 + Λzz̄/2 H = −Λv2/2 +H0(z, z̄, u), W = iL,z (7)

where L is a real potential satisfying

P 2L,zz̄ = −ΛL. (8)

To complete the identification of the type II & D spacetimes with constant Weyl scalars with
those considered by Lewandowski, it is necessary to check that all Lewandowski spacetimes are
Petrov type II or D with constant Weyl scalars. Choosing a complex null basis of one-forms:

`idx
i = (H + P 2WW̄ )du+ dv, nidx

i = du, midx
i = −PW̄du+ P−1dz, (9)

a straightforward calculation using the computer algebra system Classi [7] shows that Ψ2 = Λ/3
& Ψ0 = Ψ1 = Ψ3 = 0. Thus the Weyl tensor is either type II or D and the Weyl eigenvalues are
constant. Note that this basis of one-forms is a canonical null tetrad of the Weyl tensor.

The general solution of equation (8) for the potential L is [6]

L = <(ΛP−1z̄f(z, u)− f,z(z, u)) (10)

where f(z, u) is an arbitrary function analytic in z. The remaining field equation implies

H0,zz̄ = ΛL,zL,z̄ − Λ2P−2L2. (11)

Given L, this can be integrated to give H0 up to addition of an arbitrary harmonic function
<h0(z, u). It can be seen that the general solution of Petrov type II depends on two arbitrary
complex functions f(z, u) and h0(z, u) analytic in z.

The type D condition Ψ4 = 0 implies, after a somewhat messy calculation (see [8] for more
details), that the metric may be written in the form

ds2 = 2(1 + Λzz̄/2)−2dzdz̄ − 2dudv − Λv2du2. (12)

The metric is decomposable into two 2-spaces of constant curvature and so is a Robinson-Bertotti
solution [9, 10]. It is homogenous with a multiply-transitive isometry group of dimension 6.

3. Algebraically General Spacetimes with Constant Weyl Eigenvalues
Now consider Petrov type I fields with constant Weyl eigenvalues. The NP Weyl tensor
components satisfy Ψ1 = Ψ3 = 0 and Ψ2 & Ψ4(=Ψ0) are non-zero constants. The Bianchi
identities (7.32) of [1] become purely algebraic equalities:

(4α− π)Ψ4 + 3κΨ2 = 0, 3πΨ2 − κΨ4 = 0,
(4γ − µ)Ψ4 + 3σΨ2 = 0, 3µΨ2 − σΨ4 = 0,
(4ε− ρ)Ψ4 + 3λΨ2 = 0, 3ρΨ2 − λΨ4 = 0,
(4β − τ)Ψ4 + 3νΨ2 = 0, 3τΨ2 − νΨ4 = 0.
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Solving these for eight of the spin coefficients in terms κ, σ, ν and λ one obtains:

ρ = ψλ, τ = ψν, µ = ψσ, π = ψκ, (13)

α =
(ψ2 − 1)κ

4ψ
, β =

(ψ2 − 1)ν

4ψ
, ε =

(ψ2 − 1)λ

4ψ
, γ =

(ψ2 − 1)σ

4ψ
. (14)

where a subsidiary constant ψ = Ψ4/(3Ψ2) has been introduced for later convenience. The
following values of ψ are excluded: ψ 6= 0,±1 (type D) & ψ 6= ±1/3 (zero Weyl eigenvalue).
These eight spin coefficients may be completely eliminated from the 18 Newman-Penrose Ricci
identities (7.21) which thus now only involve derivatives of κ, σ, ν and λ. Here and below equation
references of the form (7.xx) refer to Chapter 7 of Stephani et al. [1].

Equations (7.21b & h) are equalities for Dσ − δκ and result in the purely algebraic identity:

24(κν − σλ)(1− ψ2)− 12Ψ2(1− 3ψ2)−R = 0. (15)

Similarly (7.21j & q) are both equalities for ∆λ− δ̄ν and also results in (15). A second algebraic
expression is obtained from (7.21b, `, f & j):

6(κν − σλ)(1− ψ2)(1− 5ψ2)− ψ2(18ψ2Ψ2 − 42Ψ2 +R) = 0. (16)

From (15) and (16) the following simpler algebraic relations may be deduced:

Ψ2 =
(κν − σλ)(9ψ2 − 1)

9ψ2
, R = 4(κν − σλ)(3ψ2 + 1)2/3. (17)

From these two equations it can be immediately deduced that κν − σλ 6= 0 as Ψ2 6= 0 and
that the pure vacuum case (R = 0) is characterised by ψ = ±i/

√
3. Note that for the pure

vacuum case the Weyl eigenvalues are proportional to the three cube roots of −1; for example
λ1 = (−1 + i

√
3)λ3/2 and λ2 = (−1− i

√
3)λ3/2 for the choice ψ = +i/

√
3.

Equations (7.21a & g) reduce to two linear equations for Dλ & δ̄κ which may be solved for
these two derivatives. Similarly, from the pairs (7.21c & i), (7.21k & m) and (7.21n & p) the
derivatives Dν,∆κ, δλ, δ̄σ, δν and ∆σ are obtained. Thus 8 of the 16 derivatives of κ, σ, ν and λ
are now known. In addition to the previous two algebraic equations and the eight equations for
single derivatives of κ, σ, ν and λ, five independent Ricci identities involving pairs of derivatives
of these spin coefficients remain. A more complete exposition of the calculations here and below
may be found in [8].

On applying the commutator δD −Dδ to λ and ν, equations for κ∆λ − σδ̄λ & κ∆ν − σδ̄ν
are obtained. Similarly applying the commutator δ̄∆−∆δ̄ to σ and κ equations for νDσ− λδσ
& νDσ − λδσ result. The first three of these equations and the five remaining Ricci identities
may be solved for the unknown spin coefficient derivatives: Dκ, δκ,Dσ, δσ,∆ν, δ̄ν,∆λ and δ̄λ.

Substituting these in the equation for νDσ − λδσ a purely algebraic relation is obtained:

ψ̄(1 + 3ψ2)(κν − σλ)2 = 0. (18)

It may be concluded that ψ = ±i/
√

3 (since ψ 6= 0 as type D is excluded and from (17)
κν−σλ 6= 0 since Ψ2 6= 0). Without loss of generality we may choose ψ = +i/

√
3 as the negative

sign simply corresponds to interchanging the two Weyl eigenvalues λ1 and λ2. Thus, from (17),
the spacetime is a pure vacuum spacetime (R = 0 or equivalently Λ = 0). To summarise it has
been shown that the only Petrov type I Einstein spacetimes with constant Weyl eigenvalues have
Λ = 0 (i.e. are pure vacuum) and the Weyl eigenvalues are proportional to the three cube roots
of −1. Thus, a fortiori there are no homogeneous proper Einstein spaces of Petrov type I; this
recovers a result of MacCallum & Siklos [11] without using group theoretic methods. In the
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same paper MacCallum & Siklos showed there are no homogeneous proper Einstein spaces of
Petrov type II; a result also confirmed by the analysis in §2 as it is easy to show the Lewandowski
metrics are not homogeneous. Note that in the proof of non-existence for Petrov type II the
assumption of homogeneity cannot be replaced by the weaker one of constant Weyl eigenvalues.

As shown above Λ = 0 and it can be assumed wlog that ψ = +i/
√

3. As all 16 derivatives of
the spin coefficients κ, σ, ν & λ are now known, the remaining commutators may be applied to
these 4 spin coefficients and all the resulting derivative terms eliminated to produce eight purely
algebraic compatibility relations.

2κσν + σ2λ+ σκ̄ν̄ − σσ̄λ̄+ i
√

3ν2λ = 0, λ3 + σσ̄λ̄− κ̄σν̄ − i
√

3κ2λ = 0, (19a)

2κσλ+ κ2ν + κσ̄λ̄− κκ̄ν̄ + i
√

3νλ2 = 0, σ3 + σ̄λλ̄− κ̄ν̄λ− i
√

3σν2 = 0, (19b)

2κνλ+ σλ2 + κ̄ν̄λ− σ̄λλ̄+ i
√

3κ2σ = 0, ν3 + κκ̄ν̄ − κσ̄λ̄− i
√

3σ2ν = 0, (19c)

2σνλ+ κν2 + σ̄νλ̄− κ̄νν̄ + i
√

3κσ2 = 0, κ3 + κ̄νν̄ − σ̄νλ̄− i
√

3κλ2 = 0. (19d)

There are three sets of solutions and, in each of them, all the spin coefficients are constants:

σ = λ = 0, ν = +κ̄, κ = ±k(1 + ε2i)/
√

2, Ψ2 = 8k2/3. (20a)

λ = σ = ε2κ, ν = −κ, κ = ±k(−
√

3 + i)/2, Ψ2 = 4k2(−1 + i
√

3)/3. (20b)

λ = σ = iε2κ, ν = +κ, κ = ±k(1− i
√

3)/2, Ψ2 = −4k2(1 + i
√

3)/3. (20c)

Here k is an arbitrary positive constant and ε2 = ±1. The remaining spin coefficients are

ρ = iλ/
√

3, τ = iν/
√

3, µ = iσ/
√

3, π = iκ/
√

3, (21)

α = iκ/
√

3, β = iν/
√

3, ε = iλ/
√

3, γ = iσ/
√

3. (22)

As discussed in §1 the choice of canonical tetrad is not unique; it depends on the ordering
of the spacelike eigenvectors used to construct the complex null tetrad. Thus there will be
three pairs of distinct solutions of the Newman-Penrose equations for the spin coefficients and
Weyl tensor components Ψi corresponding to the same spacetime. The choice of ψ = +i/

√
3

effectively singles out one member of each pair and so the appearance of three solutions in (20)
is to be expected. The fourfold sign ambiguity in each of these solutions is also to be expected as
the vectors of the orthonormal principal tetrad (ea1, e

a
2, e

a
3, u

a) are only determined up to signs.
Thus it is expected that the three cases in (20) all correspond to the same underlying

spacetime. In fact, the spacetime in question is homogeneous with metric:

ds2 =
1

4k2

(
dx2 + e−4x/

√
3dy2 + e2x/

√
3 cos(2x)(dz2 − dt2)− 2e2x/

√
3 sin(2x)dzdt

)
. (23)

This metric is originally due to Petrov [12] who derived it using group theoretic methods. The
orthonormal tetrad of Weyl principal vectors corresponding to case (a) in (20) is:

uadx
a = ex/

√
3

2k

(
cosx dt− sinx dz

)
, e3adx

a =
ex/
√

3

2k

(
sinx dt+ cosx dz

)
,

e1adx
a = 1

2
√

2k

(
dx− e−2x/

√
3dy

)
, e2adx

a =
1

2
√

2k

(
dx+ e−2x/

√
3dy

)
.

A straightforward calculation using the computer algebra system Classi [7] shows that

Ψ0 = Ψ3 = 0, Ψ0 = Ψ4 = 8ik2/
√

3, Ψ2 = 8k2/3.

The metric (23) is the only homogeneous Einstein space of Petrov type I [12]. The analysis
above shows that it is the only Einstein space of Petrov type I with constant Weyl eigenvalues.
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4. Conclusions
Vacuum spacetimes possibly with a non-zero cosmological constant Λ (that is Einstein
spacetimes) with constant non-zero Weyl eigenvalues have been considered. For type II & D the
non-repeated eigenvalue necessarily has the value 2Λ/3 and so algebraically special pure vacuum
spacetimes of this type are ruled out. It is then shown that the only possible spacetimes are
some Kundt-waves considered by Lewandowski [6] which are type II and a Robinson-Bertotti
solution of type D. The Lewandowski solutions depend on an arbitrary complex function f(z, u)
analytic in z = x + iy and an arbitrary real function of x, y & u harmonic in x and y. The
solutions are not homogeneous and in general, they admit no isometries. Originally the solutions
were found by Lewandowski by considering Kundt solutions with a reduced holonomy group;
this paper gives them a new characterisation namely the constancy of their Weyl eigenvalues.

For Petrov type I the only solutions in which all three Weyl eigenvalues are constant must
have Λ = 0 (i.e. must be pure vacuum); there are no proper Einstein spaces satisfying this
assumption. Thus a fortiori there are no homogenous proper Einstein spaces of Petrov type I.
This provides an independent proof of the result of MacCallum & Siklos [11] (see also [1] §12.9)
which does not use group theoretic methods. The only metric turns out to be the homogeneous
pure vacuum solution found long ago by Petrov [12] using group theoretic methods. It is the only
homogenous Einstein spacetime of Petrov type I; this paper shows that it can be characterised
uniquely by the weaker assumption of the constancy of the Weyl eigenvalues.

The above results can be summarised in an alternative way by the statement that the
only vacuum spacetimes with constant Weyl eigenvalues are either homogeneous or are Kundt
spacetimes of the Lewandowski class. This result is similar to that of Coley et al. [3] who proved
their result for general spacetimes under the assumption that all scalar invariants constructed
from the curvature tensor and all its derivatives were constant. The result in this paper is
restricted to Einstein spaces of Petrov types I, II & D only, but subject to the weaker assumption
of the constancy of the scalar invariants constructed from the curvature tensor alone.

It is somewhat disappointing that all solutions in this paper had previously been found by
other methods, given the generality of initial assumptions (namely the constancy of the Weyl
eigenvalues). However, the paper does provide new characterisations of the solutions based on
conditions that are weaker than those originally used to derive them. In particular the proof
makes no assumptions regarding the isometry or holonomy groups of the spacetimes.
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